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Machine learning assisted approximation of
descriptors (CO and OH) binding energy on
Cu-based bimetallic alloys†

Pallavi Dandekar,‡a Aditya Singh Ambesh,‡a Tuhin Suvra Khanb and
Shelaka Gupta *a

Data driven machine learning (ML) based methods have the potential to significantly reduce the

computational as well as experimental cost for the rapid and high-throughput screening of catalyst

materials using binding energy as a descriptor. In this study, a set of eight widely used ML models

classified as linear, kernel and tree-based ensemble models were evaluated to predict the binding

energy of catalytic descriptors (CO* and OH*) on (111)-terminated Cu3M alloy surfaces using the readily

available metal properties in the periodic table as features. Among all the models tested, the extreme

gradient boosting regressor (xGBR) model showed the best performance with the root mean square

errors (RMSEs) of 0.091 eV and 0.196 eV for CO and OH binding energy predictions on (111)-terminated

A3B alloy surfaces. Moreover, the xGBR model gave the highest R2 scores of 0.970 and 0.890 for CO

and OH binding energies. The time taken by the ML predictions for 25 000 fits for each model was

varied between 5 and 60 min on a 6 core and 8 GB RAM laptop, which was very negligible as compared

to DFT calculations. Our ML model showed remarkable performance for accurately predicting the CO

and OH binding energies on a (111)-terminated Cu3M alloy with a mean absolute error (MAE) of 0.02 to

0.03 eV compared to DFT calculated values. The ML predicted binding energies can be further used

with an ab initio microkinetic model (MKM) to efficiently screen A3B-type bimetallic alloys for the formic

acid decomposition reaction.

Introduction

Catalyst discovery and optimization play a key role in meeting the
ever-growing global demands, developing eco-friendly processes
and reducing energy intensity.1,2 However, the diversity in metal
element combinations makes traditional experimental trial-and-
error methods difficult for designing new catalyst materials,
which provide higher conversions and better selectivity. On the
other hand, significant advances in computational power and
methods such as density functional theory (DFT) have made
computational chemistry a valuable tool for the rational design
of catalysts for homogeneous,3,4 heterogeneous,5,6 and enzyme
catalyses.7,8 These simulations provide information about catalyst
properties and reaction pathways. However, screening of active

and selective catalysts from DFT simulations is difficult again, due
to the wide choice of catalytic materials and huge computational
cost associated with them. Therefore, in order to accelerate the
discovery of new catalysts, a tool based on a simple structural or
energetic criterion is desirable, which can predict the properties of
untested catalysts. To accomplish this, Sabatier principle9 based
volcano plots10 are used to predict the catalyst performance using
easily accessible descriptor variables.11 For the high-throughput
screening of prospective catalysts, these volcano plots use linear
scaling relationships to relate the kinetic or thermodynamic
performance of the catalyst with the quantitative value of the
descriptor.12,13 For example, Jalid et al. used carbon and oxygen
binding energies as descriptors for the volcano plots to screen
bimetallic catalysts (Co3Ni, Ni3Fe and Co3Fe) with maximum
turnover (10�3 s�1) for C–O bond scission of ethanol to produce
ethane.14 Similarly, Chen et al. used volcano plots to design a
transition metal doped Ni3S2 catalyst for the water splitting
reaction.15 However, the values of descriptors were determined
through slow DFT simulations.

An increase in the speed of determining the descriptor
variable would definitely accelerate the discovery of catalysts.
In this regard, quantum ML models provide instantaneous
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access to the descriptor.16,17 Based on the physical and chemical
characteristics of materials, ML models have been used for the
screening of large material databases to find materials that may
perform well.18 Gradient Boosting Regression (GBR)19 was used
for the prediction of CO binding energy on Pt nanostructures.20

Liu et al. used ML models for the prediction of the binding
energies of C and O atoms on bimetallic surfaces and used these
binding energies for the steam methane reforming reaction.21

Saxena et al. also used an ML based approach for predicting C
and O adsorption energies on Cu-based bimetallic surfaces and
used these predictions in an MKM for the ethanol decomposi-
tion reaction.22 Wang et al. used a similar approach to screen
sulphur resistant catalysts for the steam methane reforming
reaction by using an ensemble model to predict the binding
energies of C, H, S and O on bimetallic surfaces and combined
these predictions with the MKM model.23

Formic acid has been suggested as a suitable material for H2

storage.24,25 On transition metal catalysts, formic acid decom-
poses either via dehydrogenation to form H2 and CO2 or
dehydrates to produce CO and H2O.26–28 But, CO production
via the latter pathway deactivates the catalyst surface. In order
to develop formic acid as a H2 storage material, efficient
catalysts that can easily decompose formic acid to H2 and
CO2 are needed. Towards this, pure Cu has been observed to
selectively catalyse the dehydrogenation reaction,29 but with
reduced rates.30 On the other hand, Cu-based bimetallic cata-
lysts such as Cu3Pt have shown good activity towards formic
acid dissociation into H2 and also inhibit CO poisoning.31–33

Furthermore, binding energies of all the reaction species
formed during formic acid decomposition can be scaled with
CO and OH adsorption energies as they are already involved in
the reaction mechanism, and their adsorption energies are
known to correlate well with carbon and oxygen adsorption
energies respectively.34,35 Therefore, in this study we have used
ML with simple and easily accessible features to train predic-
tion models that can accurately predict the binding energy of
descriptors (CO and OH) on (111)-terminated Cu3M (where M is
a guest metal) alloy surfaces. CO and OH binding energies are
also the key descriptors for other reactions as well, such as CO2

reduction reactions,36,37 reverse water gas shift reactions,38,39

methanol electro-oxidation,40,41 etc. Furthermore, intermediate
CO binding energy on Cu based catalysts makes them selective
for the above reactions.42,43 The ML predicted CO and OH
binding energies in this study can be used with an ab initio
microkinetic model (MKM) to calculate the catalytic rates for all
the above reactions over bimetallic alloys.32 Li et al. have also
used an ML based approach to predict OH and CO binding
energies on (111)-terminated metal surfaces.44 However, the
features used in the ML models as input were derived from DFT
local density of state calculations, structural optimization and
modelling iterations, which increase the time and limit the
transferability of the method.21 On the other hand, utilizing
easily accessible metal properties as features can effectively
address the aforementioned issues. Therefore, it is essential to
identify the intrinsic properties of catalysts, i.e., features that
not only are closely related to the adsorption properties but also

have physical meanings.45 The features should encapsulate the
geometric and electronic properties of the local environment of
surface-active sites while also capturing key characteristics of
adsorbates. Additionally, they should be readily accessible from
databases to enhance the efficiency of machine learning frame-
works. Basic elemental properties, such as the atomic number,
atomic radius, period number, group number, electronegativ-
ity, etc., which can be easily obtained from periodic tables and
databases, have been widely used in ML for predicting alloy
performance.46–52 In this study different ML algorithms were
evaluated to predict the binding energy of catalytic descriptors
(CO* and OH*) on (111)-terminated Cu3M alloy surfaces using
the readily available metal properties in the periodic table as
features and to put forward the advantage of extreme gradient
boosting regressor (xGBR) over other ML models. As compared
to DFT calculations, the computational time required for the
ML model prediction was negligible.

Methodology

Different ML models such as Linear Regression (LR), k-Nearest
Neighbours Regression (KNN), Support Vector Regression (SVR)
and Kernel Ridge Regression (KRR) were used for the predic-
tions. Ensemble-based models such as Random Forest Regres-
sion (RFR), Extra Trees Regression (ETR), GBR and xGBR were
also included. All these models were trained and tested on a
dataset comprised of CO and OH binding energies over (111)-
terminated A3B type bimetallic alloys where ‘A’ is the main
metal and ‘B’ is the guest metal. The CO and OH binding
energy data on the selected (111)-terminated A3B alloy surfaces
were obtained from a previous DFT study conducted by Zheng
et al.44 A model representation of the (111)-terminated A3B alloy
surface is shown in Fig. 1. The bimetallic alloy with A3B (L12
type structure) composition has an FCC crystal structure, with
75 : 25 composition of A and B metals, respectively.53–55 In this
study, only alloys with a formation energy below 0.2 eV per unit
cell were deemed potentially stable and were considered.56,57

Furthermore, surface metal’s individual physical properties such
as period, group, atomic number, atomic radius, atomic mass,
boiling point, melting point, electronegativity, heat of fusion,
ionization energy, density, surface energy etc. play an important
role in the adsorbate/metal interactions. These elemental

Fig. 1 A (111)-terminated A3B bimetallic surface for the ML model
development, where A and B represent the metal elements across the
periodic table.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 2
/1

2/
20

26
 6

:4
4:

11
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp04887c


This journal is © the Owner Societies 2025 Phys. Chem. Chem. Phys., 2025, 27, 7151–7168 |  7153

properties can be easily obtained from the periodic table and
other databases.58,59 The surface energy dataset was obtained
from Tran et al.60 The above-mentioned features were used to
uniquely represent each bimetallic alloy and have been shown to
produce sufficiently accurate results.48,61 A total of 18 distinct
features for the main metal and 18 for the guest metal in the
alloy were used and are shown in Table S1 (ESI†).

The implementation of ML algorithms was carried out by
utilizing the popular open-source library, Scikit-Learn.62 All the
features were used in building the above-mentioned ML
models. To assess the predictive efficacy of the ML algorithms,
the dataset was initially bifurcated into two subsets: training
data and testing data. Various pairs of training and testing data
were tested for each model with different separated ratios to
gain ideal regression models. The accuracy of the models was
evaluated based on the root mean-squared error (RMSE) and
coefficient of determination (R2), which are defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Y _i � yi
� �2s

R2 ¼ 1�

Pn
i¼1

Yi � yið Þ2

Pn
i¼1

yi � �yð Þ2

where Yi indicates the DFT computed binding energy value, yi

indicates the value predicted by the ML models, n indicates the
sample size of the data and %y indicates the mean of actual
values.

The accuracy of the models is also affected by the values of the
hyperparameters. Therefore, for each model, a diverse set of
hyperparameters as listed in Table 1, column (i) and (iii) for CO
and OH binding energies, respectively, were tested and optimized
via randomized search cross validation (RCV)63 in Scikit-Learn.
K-Fold cross-validation (k = 10) with 50 iterations was used and
repeated 50 times corresponding to 25 000 fits for different split-
ting ratios of training and testing data. Each split had a unique set
of best hyperparameters for the corresponding RMSE, and even
the lowest RMSEs across splits corresponded to different hyper-
parameter combinations. This suggests that while some para-
meters consistently impacted performance, their optimal values
were sensitive to data partitioning. This variability highlights the
importance of rigorous tuning and multiple resampling strategies
to ensure model robustness and generalizability and avoided data
biasing and overfitting. The tuning of each hyperparameter was
carefully balanced to avoid over- and under-parametrized models,
aiming at models with optimal predictive capabilities. The hyper-
parameter tuning process was guided by an iterative and adaptive
approach. Initially, for each model, the most influential hyper-
parameters that played a crucial role in controlling underfitting,
overfitting, and optimizing the bias-variance trade-off were identi-
fied. These parameters were selected based on prior research and
their effectiveness in similar machine learning models.22,48,51,64

Each model was initialized with commonly used parameter
ranges. After analysing the RMSE values from the initial tuning

phase, the hyperparameter ranges were redefined, tailoring them
to each model based on the previously observed best RMSE. This
process was repeated multiple times across all chosen hyperpara-
meters until the best possible RMSE values were achieved or no
further improvement in RMSE and R2 scores was observed. This
iterative tuning process, combined with RCV, allowed us to
efficiently explore the hyperparameter space while adapting the
search to each model’s performance characteristics. Furthermore,
Sobol Sequence65 helped in achieving a more systematic and even
distribution of initial points in the hyperparameter space. This
aided the searching algorithm to explore promising areas more
efficiently, making the tuning process more effective and time
saving. The most effective ML model for predicting CO and OH
binding energies on (111)-terminated A3B bimetallic alloys was
identified by evaluating the RMSE and R2 scores obtained at the
optimal hyperparameter settings for each model. The Seaborn
library66 was used for the construction of the correlation matrix.
Moreover, Principal Component Analysis (PCA) was used to extract
the essential patterns or information from the original features
and to check the effect of dimensionality reduction on the ML
model’s performance.67

Results and discussion

The ML models were built over a dataset comprised of 156 CO
and 69 OH binding energy values on (111)-terminated A3B type
bimetallic alloys. These values for binding energies for CO
and OH were taken from a previous study conducted by Zheng
et al. and are shown in a matrix form in Fig. 2(a) and (b)
respectively.44 The dataset did not contain the binding energy
datapoints on Cu3M alloys. However, the CO and OH binding
energies were predicted through ML on Cu3M bimetallic alloys.
Predicting the binding energy on bimetallic alloys is a sophis-
ticated non-linear problem, as these alloys tend to diverge from
the linear scaling relationship that typically governs the bind-
ing energy of related species. This complexity arises due to the
unique interactions and anisotropies at the interfaces of the
different metals in the alloy.22,68–70 Therefore, ML models can
be used for predicting the binding energy on these alloys due to
their ability to learn non-linear interactions.

For selecting a ML model, features play an important
role.71,72 It is important to choose readily accessible but char-
acteristic values as features that link to the target values i.e.
binding energy. Regarding the choice of features for the bime-
tallics used in our work, we chose 36 physical properties such
as the melting point, boiling point, surface energy, electrone-
gativity, group, atomic number, etc. as mentioned in Table S1
(ESI†), 18 for the main metal (A) and 18 for the guest metal (B).
These values are easily available from the periodic table and
standard reference sources.58,59 Readily available physical char-
acteristics of metals as features have been used previously as
well for the prediction of binding energies of CH4 related
species on Cu-based alloys using tree-based ensemble
algorithms.48 Similarly, in another study conducted by Saxena
et al., physico-chemical properties easily available in the
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periodic table were used as features in the ML model to predict
the binding energy of oxygen and carbon for the screening of
bimetallic and single atom alloys using the GBR model.22

Performance of different ML models

To predict CO and OH binding energies on (111)-terminated
Cu3M bimetallic alloys, a set of eight widely used ML models
classified as linear, kernel and tree ensemble models were
evaluated, which include LR, KNN, SVR, KRR, RFR, ETR, GBR
and xGBR. The optimum hyperparameters for these models for
CO and OH binding energies are given in Table 1, column (ii)
and (iv) respectively, which were determined using a rando-
mized search approach technique with 10-fold cross-validation
for each algorithm. The average training and testing errors for
each model using the optimized hyperparameter values along
with the minimum and maximum errors observed over 25 000
trials are given in Table 2. During each of these 25 000 trials, the
data were randomly split into train and test data. The process of
splitting data into training and test sets in various ratios is
fundamental in machine learning.73,74 Different ratios allow us
to assess how well a model generalizes to new data, strike a
balance between bias and variance, and understand overfitting

or underfitting. This practice aids in tuning and optimizing
models, especially when dealing with limited data.75,76 The
model was constructed using the training data and the training
error was calculated on the same data. Conversely, the testing
error was calculated using the testing data. An examination of
train and test errors (RMSE) facilitated the comparison and
selection of models based on their predictive accuracy. All
models consistently demonstrated optimal performance at a
test/train ratio of 30/70. Moreover, the R2 scores are also given
in Table 2 for all the ML models.

LR is a basic statistical technique that models the associa-
tion between a dependent variable and one or more indepen-
dent variables by reducing the sum of squared residuals.77

Its straightforward nature and ease of interpretation make it
a popular choice across diverse scientific fields.78 Using the LR
model, test RMSE values of 0.139 eV and 0.557 eV were
obtained for predicting CO and OH binding energies on
(111)-terminated A3B type bimetallic alloys as shown in
Table 2, entries 1(ii) and (v). The value for RMSE for the LR
model is lower in the case of CO binding energies than KNN
(0.232 eV) and KRR (0.146 eV) models, Table 2, entries 2(ii) and
4(ii) respectively. However, the RMSE values are relatively high
in the case of OH binding (0.557 eV, Table 2, entry 1(v)),
compared to the counterparts, which can be attributed to the

Fig. 2 The dataset used for ML models for (a) CO and (b) OH binding energies on (111)-terminated A3B bimetallic surfaces. Highlighted cells indicate the
‘‘A’’ and ‘‘B’’ metals forming the bimetallic alloys, while the cell colours represent the corresponding binding energies of CO/OH, with ‘‘A’’ and ‘‘B’’
representing elements of the periodic table.

Table 2 Train and test errors along with the R2 score for predicting CO and OH binding energies on (111)-terminated A3B bimetallic alloys

S. no. Model

For CO binding energy (eV) For OH binding energy (eV)

Train error mean (min, max) Test error mean (min, max) R2 score Train error mean (min, max) Test error mean (min, max) R2 score

(i) (ii) (iii) (iv) (v) (vi)

1 LR 0.149 (0.149, 0.149) 0.139 (0.139, 0.139) 0.902 0.076 (0.076, 0.076) 0.557 (0.557, 0.557) 0.860
2 KNN 0.025 (0.00, 0.180) 0.232 (0.215, 0.307) 0.781 0.00 (0.00, 0.00) 0.476 (0.451, 0.558) 0.421
3 SVR 0.106 (0.106, 0.106) 0.123 (0.122, 0.124) 0.902 0.128 (0.117, 0.133) 0.309 (0.303, 0.313) 0.841
4 KRR 0.152 (0.150, 0.154) 0.146 (0.142, 0.150) 0.933 0.129 (0.091, 0.130) 0.313 (0.310, 0.395) 0.659
5 RFR 0.058 (0.049, 0.079) 0.089 (0.086, 0.095) 0.964 0.093 (0.086, 0.105) 0.305 (0.282, 0.319) 0.809
6 ETR 0.030 (0.004, 0.038) 0.091 (0.087, 0.093) 0.965 0.069 (0.009, 0.120) 0.235 (0.232, 0.249) 0.836
7 GBR 0.005 (0.00, 0.046) 0.099 (0.095, 0.110) 0.956 0.00 (0.00, 0.002) 0.304 (0.276, 0.353) 0.872
8 xGBR 0.004 (0.001, 0.014) 0.091 (0.086, 0.097) 0.970 0.010 (0.001, 0.028) 0.196 (0.180, 0.216) 0.890
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inherent limitations of linear regression. LR excels in capturing
linear relationships between features and the target
variable.79,80 However, the prediction of binding energy entails
complex nonlinear associations between the features and the
response variable. This complexity contributes to the observed
variations in the RMSE values.

KNN is a non-parametric distance-based model, which looks
at the properties of its nearest neighbours in the training set to
predict a target value.81,82 It is particularly useful for capturing
complex, nonlinear relationships in data without requiring
prior assumptions about the underlying distribution, though
its performance can be sensitive to the choice of distance
metric and the number of neighbours.83 Also, for high-
dimensional data, calculating the distance between the target
and nearest neighbour data points becomes computationally
challenging and makes KNN inefficient. In this work also, KNN
yielded high RMSEs for predicting CO (0.232 eV) and OH
(0.476 eV) binding energies compared to other models as
shown in Table 2, entries 2(ii) and (v).

In contrast, kernel-based methods such as the SVR model
use a subset of the training data called support vectors for
making prediction.84,85 It maps input features into a high-
dimensional space and finds an optimal hyperplane that mini-
mizes prediction errors within a defined margin.86 Due to its
ability to handle high-dimensional data and nonlinear relation-
ships using kernel functions, SVR is widely applied in scientific
and engineering problems.87 It shows reduced sensitivity to
input dimensionality and often achieves lower generalization
error.88 SVR in our case outperformed linear models with the
test RMSEs of 0.123 and 0.309 eV for predicting CO and
OH binding energies as shown in Table 2, entries 3(ii) and (v)
respectively. However, compared to tree-based models it still
falls short.

On the other hand, by using a different loss function
compared to SVR, KRR which is another kernel-based method is
known to provide closed-form estimates.89,90 KRR is a nonlinear
regression method that combines ridge regression with kernel
functions, enabling it to model complex relationships by mapping
data into higher-dimensional spaces.91,92 By incorporating an c2-
norm regularization term, KRR helps prevent overfitting while
maintaining flexibility in capturing intricate patterns, making it
particularly effective for small to medium-sized datasets.93–95

However, for CO binding energy, KRR showed indications of
overfitting, with a higher training error (RMSE: 0.152 eV) than
the testing error (RMSE: 0.146 eV) as shown in Table 2, entries 4(i)
and (ii). Despite KRR’s capability to handle nonlinear relation-
ships, its performance in predicting OH binding energy (RMSE:
train/test = 0.129 eV/0.313 eV (Table 2, entries 4(iv) and (v)) was
less than optimal when compared to other models.

However, tree-based ensemble methods such as RFR, ETR,
GBR and xGBR were found to outperform their counterparts,
such as the linear model (LR), KNN, and kernel models (SVR
and KRR). This was due to their robustness to noise, ability to
fit non-linear relationships, scalability in high-dimensional
spaces, interpretability through feature importance insights
and ease of parameter tuning.96–98 RFR is a powerful ensemble

machine learning technique that builds multiple decision
trees, each trained on random data subsets and features, to
improve predictive performance and reduce overfitting through
bagging and feature randomness.99,100 By averaging tree pre-
dictions, it effectively captures complex, nonlinear relation-
ships. It handles both numerical and categorical data and
provides a feature importance mechanism.101 However, it can
be computationally expensive and may struggle with high-
dimensional, sparse data such as text.102

ETR is an ensemble learning method used for regression
tasks that builds multiple decision trees, like RFR, but with
additional randomness to enhance robustness and reduce
overfitting. Instead of selecting the best split at each node, it
randomly selects a split for each feature, injecting randomness
both at the sample and feature levels. This allows it to capture
complex, nonlinear relationships efficiently. While it offers
faster training than RFR due to the randomness in splitting,
it may lead to slight performance trade-offs.103 It is effective
with numerical and categorical data, handles missing data, and
provides feature importance estimates but may underperform
on high-dimensional sparse data, such as text.104

GBR is a powerful ensemble learning method used for both
regression and classification tasks. It sequentially adds weak
learners, typically decision trees, to correct the errors of the
previous ones, with each new model focusing on the residuals of
the previous predictions. The key idea behind GBR is that combin-
ing multiple weak learners creates a strong predictive model,
leveraging the principle of boosting.105 The algorithm minimizes
the loss function by approximating the gradient of the residuals
with respect to the model parameters, effectively improving pre-
diction accuracy. While GBR is highly effective at capturing
complex, nonlinear relationships and can handle both categorical
and numerical data, it can be prone to overfitting, especially with
noisy data, and requires careful hyperparameter tuning, such as
the number of estimators, tree depth, and learning rate.106

On the other hand, xGBR is an efficient and scalable version
of GBR that builds an ensemble of decision trees, with each tree
correcting the errors of the previous ones. It improves tradi-
tional gradient boosting by adding regularization (L1 and L2) to
reduce overfitting, as well as incorporating parallelization,
handling missing values, and optimizing split finding for faster
computation.106,107

The above models produce more accurate and robust pre-
diction by combining the predictions of weak learners such as
decision trees to construct a strong estimator. Each model
differs in the way of construction of the decision tree to build
an ensemble. Remarkably, low RMSE values were obtained for
all four models out of which RFR exhibited the least value of
RMSE (0.089 eV) for predicting CO binding energy as shown in
Table 2, entry 5(ii), suggesting its proficiency in capturing the
underlying patterns in the data. Similarly, the ETR and xGBR
models also showed a low RMSE of 0.091 eV (Table 2, entries 6(ii)
and 8(ii) respectively). On the other hand, the GBR model gave
an RMSE of 0.099 eV (Table 2, entry 7(ii)) for CO binding energy.
Although RFR and ETR demonstrated superior performance in
terms of RMSE values, our study uncovered a significant pattern
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wherein these models showed an inclination towards overfitting,
particularly noticeable in the prediction of CO binding energies.
Given the constraints of a small dataset, a large number of input
features might have led to overfitting. This can be clearly
observed by the inflated values from ML predictions (blue lines)
as compared to the DFT values (orange line) shown in Fig. 3(e)–(g).
In contrast, xGBR predicted values were closer to the DFT
calculated values as shown in Fig. 3(h). The test RMSE value
obtained for xGBR for CO binding (0.091 eV, Table 2, entry 8(ii))
was the lowest amongst all other models except RFR. Thus,
xGBR was finally selected due to its ability to produce predic-
tions that closely align with DFT calculated values. This choice
was further supported by the model’s capacity to mitigate
inherent prediction biases in the dataset. Prior studies sug-
gested that boosting algorithms, such as xGBR, are generally
more effective at managing systematic prediction bias com-
pared to bagging-based models like RFR and ETR.108 The test
RMSE value of 0.091 eV obtained using the xGBR model for
predicting CO binding energy on (111)-terminated A3B alloys in
this study is much lower than those reported in the previous
studies. For example, Li et al. obtained a RMSE value of 0.12 eV
for CO binding energy prediction on (100)-terminated multi-
metallic Cu catalysts by using an artificial neural network.71

In another study, the neural-network model trained with all
available data sets of bimetallic catalysts predicted CO binding
energy on Cu-based core–shell alloys (Cu3B-A@CuML) with a
RMSE of 0.13 eV.109 Zhong et al. by using the Random Forest

Regression Algorithm also predicted CO binding energy on Cu
based alloys with a RMSE of 0.1 eV.110

Similarly, for OH binding energy predictions, all models
were found to overfit (Fig. 4(a)–(e)) except for ETR, GBR and
xGBR as shown in Fig. 4(f)–(h). From Fig. 4(h), it is clear that
xGBR model’s predictions (blue lines) and DFT values (orange
lines) are very close as compared to the other models. Moreover,
xGBR gave the lowest RMSE value of 0.196 eV as shown in
Table 2, entry 8(v). This highlights xGBR model’s ability to
deliver more consistent and dependable predictions, particularly
when dealing with limited datasets. A similar RMSE value
of 0.188 eV was obtained for predicting OH binding energy on
(111)-terminated intermetallic (A3B) and near-surface alloys
by using deep learning algorithms integrated with the well-
established d-band theory.64 Furthermore, the RMSE values
reported in this study using the xGBR model for predicting
CO (0.091 eV) and OH (0.196 eV) binding energies on (111)-
terminated A3B bimetallic alloys are lower than the ones
reported by Zheng et al. (0.22 eV for CO and 0.24 eV for OH).44

The accuracy of the ML model was further evaluated using R2

scores, as presented in Table 2. Higher R2 scores, closer to 1,
indicate better model performance. The xGBR model demon-
strated higher R2 scores (xGBR = 0.970) as compared to the other
models tested (LR = 0.902, KNN = 0.781, SVR = 0.902, KRR =
0.933, RFR = 0.964, ETR = 0.965 and GBR = 0.956) as shown in
Table 2, entries 1–7(iii)) for CO binding energies. Similarly, for
OH binding energies the xGBR model was found to have the

Fig. 3 Deviation of ML predicted CO binding energies from DFT calculated values for unseen data of (111)-terminated Cu3M bimetallic alloys for (a) LR,
(b) KNN, (c) SVR, (d) KRR, (e) RFR, (f) ETR, (g) GBR and (h) xGBR models. Error bars in the ML data represent standard deviation in the RMSE values obtained
using RandomizedSearchCV. A very low value of standard deviation in some models (B0.0089 to 0.0002) could not be represented in the error bars.
Error bars in DFT data indicate the computational error (0.1 eV) in DFT simulations.
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highest R2 scores of 0.890 for OH binding energies as shown
in Table 2, entry 8(vi). The R2 score for CO binding energy
predicted by the xGBR model (0.970) in this study is comparable
to the one reported by Salomone et al. with the GBR model
(0.970).111

Artificial Neural Networks (ANNs) inspired by the biological
brain neural networks consist of multiple interconnected nodes
that are loosely modelled on neurons.112 Since they can also fit
non-linear and complex data and are robust to noise and
adaptive learning, they have proven to be predictive in solving
various complex real-world problems. In this study, ANNs were
tested with extensive parameter tuning, including layer configu-
ration, neurons per layer and a range of learning rates. How-
ever, the test RMSE values of 0.387 and 0.406 eV were achieved
for CO and OH molecule binding, which were higher as
compared to tree-based ensemble models and even simple
statistical models. This may be attributed to a very small data
set, which might lead to poor performance of ANNs. Previous
studies have also shown tree-based models to be best in
predicting C and O binding energies on A3B alloys.22

A ML based study conducted by Zong et al. also found the
xGBR model to be the best model in predicting the hydrogeno-
lysis barrier of large hydrocarbons without the need for addi-
tional DFT features.113 In another study conducted by Praveen
et al., the xGBR model in combination with a tree booster
displayed the best performance for predicting the chemisorption
energy of several gas-phase adsorbates on different metal

facets.114 xGBR offers several advantages, which include high
precision and speed, parallel processing abilities, effective hand-
ling of missing values, and high customizability.115–117 A sche-
matic illustration of the process flow for the xGBR model is
shown in Fig. 5. All these advantages along with a lower RMSE
value and a high R2 score make xGBR the best choice in this
study for predicting the descriptor binding energies. Thus, for
further analysis only xGBR was considered.

For a small data set, like that used in the present study,
choosing an optimum split ratio becomes very crucial. So, we tried
different test/train ratios of 15/85, 20/80, 25/75, 30/70, and 50/50
and performed hyperparameter tuning for improving the RMSEs
of these split ratios. As shown in Table 3 (columns (i) and (ii)), with
an increase in the test/train ratio to 30/70 the test error decreases.
However, a further increase in the ratio resulted in an increase in
the error. This is because when the training data are small, the
model may fail to capture essential patterns and will not be able
to generalize well. And in cases where the testing data become
small, one has to compromise the reliability of the predictions.
In the present study, with a 70% training set, an optimum RMSE
of 0.091 eV (Table 3, entry 4(ii)) was obtained for CO binding
energy. Similar trends were observed for OH binding energy
predictions, wherein, for the 30/70 test/train ratio, an RMSE
value of 0.196 eV was obtained (Table 3, entry 4(iv)). Fig. 6 and 7
present the deviation of ML predicted CO and OH binding
energy values from DFT calculated values respectively for differ-
ent test/train ratios.

Fig. 4 Deviation of ML predicted OH binding energies from DFT calculated values of unseen data of (111)-terminated Cu3M bimetallic alloys for (a) LR, (b)
KNN, (c) SVR, (d) KRR, (e) RFR, (f) ETR, (g) GBR and (h) xGBR model. Error bars in the ML data represent standard deviation in the RMSE values obtained
using RandomizedSearchCV. A very low value of standard deviation in some models (B0.01 to 0.0002) could not be represented in the error bars. Error
bars in DFT data indicate the computational error (0.1 eV) in DFT simulations.
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Analysis of computational time

A significant advantage of using ML over DFT calculations for
the estimation of binding energy of adsorbates on the surface is
in the reduction of computational resources and time. DFT
simulations will need 10 to 11 hours of total CPU time cost for
calculating one CO or OH binding energy on a 2 � 2 (111)-
terminated A3B alloy surface with four atomic layers on 20 cores
of the Intel Xeon Cascade lake 8268 computing node. In con-
trast, ML predicts the same binding energy within 60 seconds of
CPU time. Thus, the total CPU time cost of DFT is significantly
higher compared to ML. Therefore, using DFT simulations to
calculate the desired properties remains a bottleneck for com-
putational research due to their high cost, and thus, machine
learning models are used to make rapid predictions.

Feature importance for xGBR
prediction

After developing the ML model, the most important step is to
understand which features should be considered to determine
the final binding energy (target variable). Initially, a total of 36
features were used to describe each bimetallic alloy for

predicting the CO and OH binding energy on (111)-terminated
Cu3M bimetallic alloys. The Seaborn library from Python was
employed to generate a correlation matrix, providing a visual
representation of the relationships between features and the
target variable. The correlation matrix scales from�1 to 1, where
a positive value denotes positive correlations and a negative
value indicates negative correlations as shown in Fig. 8. Features
that are highly correlated with the target variables and correlated
less with the other features are referred to as good features.118,119

However, since the database is relatively small in the present
study (less than 200 data points in the input database), a large
number of input features may lead to overfitting. Thus, a
separate analysis was performed to remove the least important
features from the model so as to find the test error. The test
error obtained for CO binding energy prediction with the xGBR
model using 36 features was 0.091 eV (Table S2, entry 1, ESI†).
Upon removing six highly correlated features the test error
remained the same (Table S2, entry 2, ESI†). Upon reintrodu-
cing these six features as a single component using PCA, the
error increased to 0.098 eV (Table S2, entry 3, ESI†). For the
xGBR model built with the top 10 and top 20 features, the test
error remained high (Table S2, entries 3 and 4, 0.096 and
0.093 eV respectively, ESI†), suggesting that the set of 36 features
predicts the binding energy better. A similar observation was
made by Shivam et al., wherein a set of 27 features were found to
better predict the binding energy of O and the test error was
observed to increase upon removing the features.22 This suggests
that the less important features still carry meaningful and
beneficial information, which helped in enhancing the model’s
robustness and accuracy. Furthermore, by using PCA on the
reduced set of features (top 10 + 8 PCA components and top 20 +
5 PCA components) the model exhibited a further increase in
RMSE (0.134 and 0.107 eV; Table S2, entries 6 and 7, ESI†).
Similarly, the test error obtained for OH binding energy predic-
tion with the xGBR model using 36 features was the least with
the value of 0.196 eV (Table S3, entry 1, ESI†) as compared to the
others mentioned in Table S3 (ESI†). Therefore, the model

Table 3 Effect of the change of the test/train data ratio on training and
testing errors for the xGBR model for predicting the binding energy of CO
and OH on (111)-terminated A3B bimetallic alloys

S. no. Test/train split

For CO binding energy
(eV)

For OH binding energy
(eV)

Train error Test error Train error Test error

(i) (ii) (iii) (iv)

1 15%/85% 0.006 0.108 0.009 0.279
2 20%/80% 0.007 0.104 0.006 0.259
3 25%/75% 0.004 0.099 0.018 0.225
4 30%/70% 0.004 0.091 0.010 0.196
5 50%/50% 0.008 0.112 0.039 0.235

Fig. 5 Representation of the xGBR tree algorithm.
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captures information better from individual features rather than
from combined features (i.e. components). A similar analysis was
performed for RFR and ETR, confirming that these models also
leveraged information from less important features. It was
observed that reducing the number of features led to a slight
increase in RMSE as shown in Table S4 (ESI†), justifying the
retention of all available features while managing the risk of
overfitting. This analysis indicated that while some degree of
overfitting was inevitable due to data limitations, it remained
controlled across all models.

Fig. 9 shows the feature importance for predicting CO and
OH binding energies with the xGBR model averaged over 25 000
trials. Notably, the surface energy of the main metal has the
highest importance (Fig. 9(a)), followed by the main metal’s
melting point for CO binding energy on bimetallic alloys, which
is consistent with the correlation matrix shown in Fig. 8(a).
Similarly, for OH binding energy also, the surface energy of the
main metal has the highest importance as shown in Fig. 9(b).
This is because surface energies are intrinsically linked to the
coordinative unsaturation of surface metal atoms. Typically, a

Fig. 6 The deviation of ML predicted CO binding energy using the xGBR model for (111)-terminated A3B bimetallic alloys from DFT calculated values for
train/test ratios of (a) 85/15, (b) 80/20, (c) 75/25, (d) 70/30 and (e) 50/50. The black and red dots signify the training data and the testing predicted data
respectively.

Fig. 7 The deviation of ML predicted OH binding energy using the xGBR model for (111)-terminated A3B bimetallic alloys from DFT calculated values for
train/test ratios of (a) 85/15, (b) 80/20, (c) 75/25, (d) 70/30 and (e) 50/50. The black and red dots signify the training data and the testing predicted data
respectively.
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higher surface energy system shows increased reactivity. On the
other hand, the melting point refers to the energy required for
breaking of a few bonds when an element goes from the solid
state to the liquid state. Thus, stronger bonds result in a higher
melting point, indicating that elements with a higher melting
point may form alloys with higher binding energies. Salomone
et al. also found surface energy as the most important feature
for predicting CO binding energy on Cu-based alloys.111 Simi-
larly, Takigawa et al. also found surface energy as the most
important feature in the ML prediction of C and CH binding
energy over Cu-based alloys.48

In addition to the main metal’s surface energy, the main
metal’s electronegativity and guest metal’s group were found to
be important features for predicting OH binding energy on
bimetallic alloy surfaces, as shown in Fig. 9(b). Features like
electronegativity play a significant role in the ease of electron

transfer between the surface metal atoms and the adsorbate,
thereby influencing chemical bonding. The metal OH bonding is
derived from the electronegativity of the elements. The binding
energy decreases as we move from left to right in the periodic
table due to higher electronegativity of elements towards the
right.83 The metal–oxygen binding energies also vary strongly
with the group number83 due to differential occupation of
bonding d-orbitals and antibonding p-orbitals. In general, the
group of an element in the periodic table can influence its
chemical property, which includes its tendency to form bonds
with other elements. Elements from the same group have similar
electronic configurations, leading to similar chemical properties.
Therefore, the group number of an element can provide insights
into the potential binding energy in an alloy. Ultimately, all the
above-mentioned properties of alloys can directly or indirectly
influence the binding energy of the alloy.

Fig. 8 Correlation plots for CO binding energy for: (a) ‘‘A’’ metal and (b) ‘‘B’’ metal and OH binding energy: (c) ‘‘A’’ metal and (d) ‘‘B’’ metal in (111)-
terminated A3B bimetallic alloys.
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While ML models are often employed as data-driven black-
box models, the feature importance in models offers an added
advantage. It captures the underlying physics of the system,
providing a deeper understanding of the model’s predictions.
This allows for a more comprehensive interpretation of the
model beyond its predictive capabilities. Furthermore, plots of
standard deviation for feature importance of CO and OH
binding energies are shown in Fig. S1(a) and (b) (ESI†) respec-
tively. These plots provide an estimate of the uncertainty or
variability of the feature importance scores.120 The standard
deviation values for the highly important features like surface
energy and electronegativity were also found to be low (approxi-
mately 0.04 eV), thus indicating the reliability of our model’s
predictions (Fig. S1(a) and (b), ESI†).

Validation of ML predictions

The CO and OH binding energies predicted in this study by
xGBR model on unseen (111)-terminated Cu3M bimetallic
alloys are presented in Table S5 (ESI†). The model accuracy
was further confirmed by DFT calculated CO and OH binding
energies on a few (Cu3Au, Cu3Ga, Cu3Zn and Cu3Pd) Cu3M alloy
surfaces as shown in Table 4. The DFT methodology for the
above calculations was adopted from the earlier study con-
ducted by Zheng et al.44 The mean absolute error (MAE)
between the DFT calculated and ML predicted binding energies
for CO on (111)-terminated Cu3M surfaces (M-Au, Ga, Zn and Pd)
was calculated as 0.03 eV (Table 4). Similarly, for OH binding
energies on these Cu-based alloys, a MAE value of 0.02 eV was
calculated. This low value for the errors tells that our predictions
are very close to the DFT calculated values and confirms that the
model is not simply memorizing patterns from the training data.

To further assess the robustness of the model, additional
validation tests were conducted using independent datasets
obtained from Shivam et al.22 to predict C and O binding energy
on AA-terminated A3B type 211 surfaces. The xGBR model
yielded reliable predictions on testing it with underrepresented
alloy compositions (AA-terminated A3B type 211 surface), which
were not well represented in the training data. The train and
test RMSE values of 0.0732 and 0.411 eV were obtained for C
binding energy prediction as shown in Table S6 (ESI†), which
were higher compared to 0.0003 and 0.340 eV obtained by
Shivam et al.22 using the GBR model. In contrast, the xGBR
model outperformed the results obtained by the previous GBR
model for O binding energy predictions as shown in Table S6
(ESI†), wherein the test RMSE decreased from 0.310 to 0.289 eV
although the train RMSE increased from 0.0003 to 0.0035 eV.
The increase in train RMSE indicates that the xGBR model
experienced less overfitting compared to the previous GBR
model, which had a near-zero train RMSE (0.0003) and likely
memorized the training data. Further improvements in the
RMSE values of the xGBR model for C and O binding energy
prediction can be expected from intensive hyperparameter
tuning and feature selection through PCA. This demonstrates
that the xGBR model provides reliable and trustworthy predic-
tions, especially for alloys underrepresented in the dataset.

Furthermore, the model performance was observed to be
better for CO (RMSE: 0.091 eV) with 156 data points, compared
to OH (RMSE: 0.196 eV) with only 69 data points, highlighting
the impact of the dataset size. However, the dataset size is not
the only factor influencing model performance. When a switch
was made from (111)-terminated A3B type bimetallic alloys to
AA-terminated A3B alloys on the (211) surface and the target
variable was also changed from CO to C and OH to O for

Fig. 9 Feature importance plots for predicting: (a) CO and (b) OH binding energies using the xGBR model.

Table 4 DFT calculated CO and OH binding energies vs. ML predicted values by the xGBR model for (111)-terminated Cu3M alloys

S. no. Alloy CO BE (DFT) (eV) CO BE (ML predicted) (eV) Deviation OH BE (DFT) (eV) OH BE (ML predicted) (eV) Deviation

1 Cu3Au �0.57 �0.56 �0.01 0.54 0.57 �0.03
2 Cu3Ga �0.52 �0.58 0.06 0.19 0.20 �0.01
3 Cu3Zn �0.49 �0.49 0 0.33 0.32 0.01
4 Cu3Pd �0.48 �0.43 �0.05 0.46 0.43 0.03
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additional validation tests using independent/unseen datasets,
the xGBR model still delivered reasonable predictions (0.411
and 0.289 eV, Table S6, ESI†), particularly for O even with these
substantial changes in the dataset. This demonstrates the
flexibility of the xGBR model, which when appropriately tuned
and explored further can perform well and yield reliable results
even with limited data.

Overall, from this study xGBR turns out to be the best
predictive model for CO and OH binding energies on Cu-
based bimetallic alloys with the small available dataset. The
high level of accuracy and robustness shown by the xGBR
model will enable the high throughput screening of bimetallic
alloys to accelerate the catalyst discovery for various catalytic
reactions such as the reverse water gas shift reaction, CO or CO2

reduction, methanol electro-oxidation, formic acid decomposi-
tion, etc.

Conclusion

In this work, we used different ML models to predict CO and
OH binding energies on (111)-terminated Cu3M bimetallic
alloys. Readily available periodic properties of the transition
metals were used as input features in the ML models. Among
all the ML models used in this study, ensemble-based models
like xGBR, GBR, RFR and, ETR performed better than the linear
and kernel models. The xGBR model was found to be the best
among the ensemble-based models because of low RMSE
scores, high R2 scores, precise predictions and reduced over-
fitting. Features like the main metal’s surface energy and
melting point played a major role in predicting the CO binding
energies on the alloy surfaces. Similarly, for predicting the OH
binding energies, features like the main metal’s surface energy
and electronegativity and guest metal’s group exercised the
maximum influence. The insights derived at the molecular level
through these features enhance the significance of the ML
model. The mean absolute error between the DFT calculated
and ML predicted binding energies was very low, between 0.02
and 0.03 eV. Furthermore, these predicted descriptor binding
energies can be used in the ab intio Micro Kinetic Modelling to
calculate the turnover frequencies for various reactions. As the
accessibility of alloy data from DFT calculations will expand, it
is anticipated that the precision of ML models will correspond-
ingly improve and will accelerate the catalyst discovery.

Data availability
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E. Skúlason, E. M. Fernández, B. Hvolbæk, G. Jones,
A. Toftelund, H. Falsig, M. Björketun, F. Studt, F. Abild-
Pedersen, J. Rossmeisl, J. K. Nørskov and T. Bligaard,
Universal Transition State Scaling Relations for

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 2
/1

2/
20

26
 6

:4
4:

11
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://doi.org/10.1038/s41578-019-0152-x
https://doi.org/10.1038/s41578-019-0152-x
https://doi.org/10.1021/acs.jpcc.1c10484
https://doi.org/10.1039/c5sc02910d
https://doi.org/10.1016/j.jcat.2017.07.018
https://doi.org/10.1016/j.mcat.2021.111990
https://doi.org/10.1088/1367-2630/15/9/095003
https://doi.org/10.1021/ct400195d
https://doi.org/10.1038/s41598-019-56776-2
https://doi.org/10.1038/s41598-019-56776-2
https://doi.org/10.1016/j.cie.2020.106494
https://doi.org/10.1021/acs.jpcc.6b12800
https://doi.org/10.1016/j.seppur.2023.123270
https://doi.org/10.1039/c9ta07651d
https://doi.org/10.1021/acsomega.4c00119
https://doi.org/10.1002/anie.201101995
https://doi.org/10.1039/c2ee21928j
https://doi.org/10.1039/c2ee21928j
https://doi.org/10.1016/0039-6028(91)91199-8
https://doi.org/10.1016/0039-6028(91)90528-Z
https://doi.org/10.1016/0022-0728(94)87077-2
https://doi.org/10.1021/acscatal.5b01994
https://doi.org/10.1016/j.electacta.2012.08.113
https://doi.org/10.1016/j.jpowsour.2016.03.062
https://doi.org/10.1021/cs400664z
https://doi.org/10.1021/jp5033417
https://doi.org/10.1016/j.jcat.2012.06.004
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp04887c


This journal is © the Owner Societies 2025 Phys. Chem. Chem. Phys., 2025, 27, 7151–7168 |  7165

(de)Hydrogenation over Transition Metals, Phys. Chem.
Chem. Phys., 2011, 13(46), 20760–20765, DOI: 10.1039/
c1cp20547a.

36 A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and
J. K. Nørskov, How Copper Catalyzes the Electroreduction
of Carbon Dioxide into Hydrocarbon Fuels, Energy Environ.
Sci., 2010, 3(9), 1311–1315, DOI: 10.1039/c0ee00071j.

37 X. Liu, J. Xiao, H. Peng, X. Hong, K. Chan and
J. K. Nørskov, Understanding Trends in Electrochemical
Carbon Dioxide Reduction Rates, Nat. Commun., 2017, 8,
DOI: 10.1038/ncomms15438.

38 J. Wang, M. G. Sandoval, M. Couillard, E. A. González,
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