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A general, robust framework for determining the
key species that forewarns sudden transitions in
biological circuits†

Dinesh Kashyap, a Taranjot Kaur,b Partha Sharathi Duttab and
Sudipta Kumar Sinha *a

The Cdc2-cyclin B/Wee1 kinase system exhibits bistability between alternative steady states, which

emerges due to the mutual inhibition between Cdc2-cyclin B and Wee1 kinases. Alternative steady

states are the M phase-like state and G2 arrest state, which have implications in cell cycle progression at

the G2 phase in eukaryotic cells. A slight alteration in the feedback strength can drive sudden transitions

between these contrasting alternative states upon crossing a critical threshold or a tipping point. The

phenomenon of critical slowing down (CSD) has been widely used to identify the proximity to a tipping

point. However, determining the key variable or species that best signals CSD is a challenging task and

holds significance in complex biochemical processes. Here, we determine the key variable or

observation direction (OD) from the direction of CSD to best detect an upcoming transition in the

Cdc2-cyclin B/Wee1 model system. We find that with increasing feedback strength, the Cdc2-cyclin B is

the OD, as it produces a stronger signal than that of Wee1. With decreasing feedback strength, both

Cdc2-cyclin B and Wee1 produce similar signals and can be used as the OD. Furthermore, the noise-

sensitive direction highlights the effect of stochasticity in Cdc2-cyclin B and Wee1 for increasing and

decreasing feedback strength, respectively. We also perform sensitivity analyses that reveal the

robustness of the OD. Finally, we compare the efficacy of OD with principal component analysis while

detecting a tipping point, and also validate its general applicability to epithelial–mesenchymal transition

for cancer progression.

1 Introduction

Critical transitions refer to an abrupt shift in the state of a
dynamical system upon crossing a tipping point due to small
changes in the driver parameter and are observed in numerous
multistable nonlinear systems, ranging from molecular biology
to large-scale ecology. The tipping point refers to a critical
threshold on surpassing which an abrupt shift occurs.1–4

Commonly, a tipping point corresponds to a saddle-node
bifurcation point (where one stable equilibrium point and
one unstable equilibrium point collide and disappear), as the
system undergoes a qualitative change in its steady-state beha-
vior with variations in the system parameter. For instance, a
sudden transition from the epithelial to the mesenchymal

(EMT) state in cells,3 from insulin sensitive to insulin-
resistant state in human bodies,5 from grassland to woodland
in the forest Savanna,6 etc. are a few practical examples of
critical transitions. Forewarning such critical transitions in
biological systems is of paramount importance as the sudden
change from one stable state to another is often undesirable,
e.g., sudden shifts from a healthy physiological state to the
onset of diseases such as cancer,7 depression,8 and gut micro-
biome dysregulation.9 A key characteristic in predicting these
transitions is the phenomenon of critical slowing down (CSD).
CSD occurs when the system experiences slower recovery from
perturbations in the proximity of the tipping point. Further-
more, prior to a critical transition, CSD may lead to an increase
in statistical signatures, like variance and autocorrelation,
which work as early warning signals (EWSs).3,10 Detecting
critical transitions in multi-species/higher-dimensional sys-
tems can be quite challenging as EWSs may not always be
present or weak in certain variables or bio-molecular species.11

Specifically, it is significant to be able to determine the key
variable that produces the strongest signal of an impending
transition.
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The Cdc2-cyclin B/Wee1 biochemical switch is a pivotal regula-
tory mechanism that controls the progression of a cell cycle during
the transition from the G2 phase to the M phase. Cdc2-cyclin B is a
complex between the protein kinase Cdc2 and cyclin B. The cyclin B
activates Cdc2 by binding to it, which facilitates the transition from
the G2 to the M phase. The interplay between this complex and
Wee1 kinase determines whether the cell will progress from the G2
phase or not. In particular, the regulation of the Cdc2-cyclin B
complex is controlled by both kinase Wee1 and phosphatase
Cdc25.12 Wee1 kinase inhibits Cdc2-cyclin B by attaching a phos-
phate group to its active site.13 Once activated, Cdc2-cyclin B can
further inactivate its inhibitor Wee1 by constituting a double
negative feedback loop. The presence of a double negative feedback
loop constitutes a bistable switch in the system, resulting in the
possibility of occurrence of a critical transition. A cell can enter
from the G2 phase to the M phase (known as cell cycle progression)
only if the activity of Cdc2-cyclin B is high and that of Wee1 is low.
On the other hand, the high activity of Wee1 and low activity of
Cdc2-cyclin B would result in cell cycle delay (or cell arrest).

Various experimental studies have shown that DNA damage
can block the dephosphorylation of Cdc2-cyclin B, which is
necessary for its activation and, thus, entry into the mitotic
phase. Also, Cdc2 can be inactivated (or downregulated) by many
pathways. Moreover, many cancer cells have defective mechan-
isms that control the cell cycle at the G1 checkpoint due to
mutation in the p53 gene.14–16 As a result, these cells rely
predominantly on the G2 checkpoint17 and Cdc2-cyclin B is
required for checkpoint control.18 Also, Wee1 kinase has been
investigated as a promising target for drug intervention aimed at
regulating the cell cycle, specifically at the G2/M checkpoint.19–21

Given these factors, understanding and determining critical
transitions within the Cdc2-cyclin B/Wee1 biochemical switch
is crucial and can provide strategies to disrupt the cell cycle at
the G2 checkpoint at the onset of cancer.

In a recent work, Patterson et al.22 have shown that it may be
possible to identify the best indicator species or the key variable
to detect such transitions in a multi-dimensional system. They
have demonstrated that CSD exhibits directional properties in
the state space, and the best indicator species, termed the
observation direction (OD), is the one that aligns more closely
with the direction of CSD and produces the strongest EWSs.
They have also shown that in addition to the CSD direction, the
strength of the EWSs is influenced by the noise-sensitive
direction (NSD). The CSD direction and NSD correspond to
the right and the left eigenvector associated with the dominant
eigenvalue (eigenvalue with the least negative real part) of the
Jacobian matrix of a linearized model system. While addressing
a similar question, Dakos23 has shown that principal compo-
nent analysis (PCA) can be used to determine the most sensitive
species, and by monitoring its abundance, one may capture the
strongest EWSs. There remains a question: while recovering
from a critical transition, should one monitor the same species
(that produces the strongest sign at the onset of a population
collapse) or some other species to get the strongest sign of
recovery? Thus far, their application and robustness in systems
biology have also been overlooked. Here, we investigate the best

indicator species to identify critical transitions in the Cdc2-
cyclin B/Wee1 biochemical switch and also explore how the
direction of noise application influences the detection of these
transitions. We further analyze the EMT system24 to identify the
key biochemical species for cancer detection. The EMT system
is more complex than the Cdc2-cyclin B/Wee1 biochemical
switch, as three dynamical variables and intricate nonlineari-
ties govern its dynamics.

Determining the CSD direction in a dynamical system that
exhibits long transient oscillations before shifting to an alter-
native state can be challenging. Recent work by Ryzowicz et al.25

on oscillations has demonstrated that the Cdc2-cyclin B/Wee1
system shows prolonged transient oscillations when a delay is
incorporated. Recognizing long transients and understanding
their implications requires an analysis that integrates multiple
relevant time scales in a biological system to effectively detect the
monitoring species.26 However, for other dynamical systems,
when there is a transition from a steady state to sustained
oscillation via a Hopf bifurcation, determining the CSD direction
is straightforward and will be similar to the method discussed in
this paper. In fact, the present method is applicable to any
dynamical transition scenario where CSD is present, regardless
of whether the transition is catastrophic or non-catastrophic.27

Here, we study critical transitions in the Cdc2-cyclin B/Wee1
biochemical switch using a model system comprising two
coupled ODEs.28–31 The system exhibits saddle-node bifurca-
tion with increasing and decreasing feedback strength (n). We
find that the OD can vary as the system approaches a tipping
point either in the forward or in the backward direction (‘G2
delay/arrest’ and ‘G2 to M transition’). We demonstrate that as
n increases and the system approaches the tipping point of G2
delay/arrest, the population of active Cdc2-cyclin B drops, and
the Cdc2-cyclin B acts as the OD. Also, as n decreases and the
system approaches the tipping point of G2 to M transition, the
population of Cdc2-cyclin B rises, and any one of Cdc2-cyclin B
or Wee1 can act as the OD. Moreover, we compare the effect of
noise in both Cdc2-cyclin B and Wee1. We find that increasing n,
adding noise in Cdc2-cyclin B, gives a better signal, and decreas-
ing n, adding noise in Wee1, gives a better signal. These two
findings can be explained by the alignment of the noise-sensitive
direction (NSD) in the state space; the NSD aligns more with
Cdc2-cyclin B on increasing n and with Wee1 more on decreasing
n, resulting in a better signal on increasing and decreasing n,
respectively. We also perform principal component analysis on
the simulated stochastic time series and calculate variance in the
direction of the first principal component. Finally, ZEB turns out
to be the best indicator species for both the EMT and the
mesenchymal-epithelial transition (MET).

2 Model and methods
2.1 Cdc2-cyclin B/Wee1 model system

The Cdc2-cyclin B/Wee1 biochemical switch controls the pro-
gression of the cell cycle for the transition from the G2 phase to
the M phase upon binding cyclin B to Cdc2. Cdc2-cyclin B is a
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complex between the protein kinase, Cdc2 and cyclin B, and
Wee1 is another kinase protein. Fig. 1 illustrates the
various phases of the cell cycle – specifically the G1 phase, G2
phase, and M phase – along with the corresponding
checkpoints: the G1 checkpoint, G2 checkpoint, and M check-
point. This figure also highlights the double negative
feedback loop between Cdc2-cyclin B and Wee1,28–31 emphasiz-
ing how this interplay regulates the G2 checkpoint. The bio-
chemical reactions involved in the negative feedback loop are
as follows.

Cdc2-cyclin B �!a1 Cdc2-cyclin B� ðactivationÞ

Cdc2-cyclin B� �����!b1ðny1Þg1
K1þðny1Þg1

Cdc2-cyclin B ðdeactivationÞ

Wee1 �!a2 Wee1� ðactivationÞ

Wee1� �����!b2ðx1Þg2
K2þðx1Þg2

Wee1 ðdeactivationÞ

(1)

where, * denotes activated species, x1 and x2 represent the
population of active and inactive Cdc2-cyclin B, respectively,
and y1 and y2 represent the population of active and inactive
Wee1, respectively. The first reaction represents the activation
of Cdc2-cyclin B from its inactive form with rate a1. This
activated Cdc2-cyclin B can be further inactivated by active
Wee1 through a Hill type regulation, modeled by the rate
b1ðny1Þg1

K1 þ ðny1Þg1
, where b1 is the rate constant. The third reaction

represents the activation of Wee1 from its inactive Wee1 with
rate a2, which can be further inactivated by active Cdc2-cyclin B

via a Hill type regulation given by
b2ðx1Þg2

K2 þ ðx1Þg2
, where b2 is the

rate constant. Also, K1 and K2 are dissociation constants, g1

and g2 represent the Hill coefficients, and n is the feedback
strength. The above reactions lead to the following kinetic
equations.

dx1

dt
¼ a1x2 �

b1x1ðny1Þg1
K1 þ ðny1Þg1

;

dy1

dt
¼ a2y2 �

b2y1x
g2
1

K2 þ x
g2
1

;

dx2

dt
¼ �a1x2 þ

b1x1ðny1Þg1
K1 þ ðny1Þg1

;

dy2

dt
¼ �a2y2 þ

b2y1x
g2
1

K2 þ x
g2
1

:

(2)

Both xi’s and yi’s are the fractions of the species that form
the two conserved relations, x1 + x2 = 1 and y1 + y2 = 1, i.e., the
total concentration of both Cdc2 and Wee1 is fixed in the entire
system. The fraction of the active concentrations of the Cdc2-

cyclin B and Wee1 can be written as:

dx

dt
¼ a1ð1� xÞ � b1xðnyÞg1

K1 þ ðnyÞg1
;

dy

dt
¼ a2ð1� yÞ � b2yx

g2

K2 þ xg2
:

(3)

This reduced system comprises a double negative feedback
loop between Cdc2-cyclin B and Wee1 at the G2 phase of the
cell cycle. In the rest of the paper, we analyze model (3).

The bifurcation analysis of the model (3) with variation in
the feedback strength n (other parameter values are given in
Table S1, ESI†) shows that in a certain parameter range, the
system exhibits three equilibrium points: two stable equili-
brium points and a saddle point intermediate between the
two stable points, as illustrated in Fig. 2. The saddle point
forms the basin boundary between the two alternative stable
equilibrium points. Systems with alternative stable points may
exhibit a regime shift. While a parameter gradually moves
toward a tipping point, known as a bifurcation point, where
such systems suddenly become unstable and shift to another
alternative stable state. Specifically, the bifurcation diagram in
Fig. 2 reveals the change in steady-state population of Cdc2-
cyclin B and Wee1 for different values of n. It shows that
bistability and fold bifurcation exist in the system, and thus,
the system can tip from one steady state to another. For low
values of n, i.e., a high Cdc2-cyclin B and a low Wee1 active
state, represent the G2 phase of the cell cycle, and the high
values of n, i.e., a low Cdc2-cyclin B and a high Wee1 active
state, represent the M phase of the cell cycle. Close to the
tipping point, a tiny change in n or fluctuations in the steady-
state population due to noise may trigger a sudden transition.

2.2 Theoretical background for the CSD and NSD directions

The chosen model (3) exhibits bistability, which results in the
possibility of forward and backward sudden transitions
between the G2 phase and the M phase with increase and
decrease in n, respectively. As already discussed, CSD plays a
key role in predicting these transitions and has a directional
property. Therefore, one has to first determine the leading
variable, which is to be monitored among all the variables to
get the best signal of an impending transition, employing the
directional property of CSD.

To identify the direction of the CSD in the Cdc2-cyclin B/
Wee1 biochemical system, we first determine the Jacobian
matrix (J) near an equilibrium point (x*,y*). For model (3), J
is a 2� 2 matrix, and its elements can vary as a function of n.
Out of two eigenvalues of J, let ld be the least negative
eigenvalue (dominant eigenvalue) that contributes most to
CSD. Corresponding to ld, the right and left eigenvectors, vr

and vl, respectively, can be determined. The right eigenvector,
vr of ld, is defined as the CSD vector, as this vector gives the
direction along which the return rate is approaching zero. The
return rate is the speed (rate) at which the system returns back
to its equilibrium state after being perturbed. In the proximity
of the tipping point, this return rate decreases (becomes zero at
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the tipping point), and the steady state variance in the direction
of critical slowing down grows. The left eigenvector vl of ld is
defined as the noise-sensitive vector, as it determines the noise-
sensitive direction. To understand the alignment of CSD and
NSD, we compute their angles with the state variables axes (1,0)
and (0,1), corresponding to species x and y, respectively. The
biochemical species vector, which makes the least angle with
the CSD vector, is considered the observation direction (OD)
and is monitored for EWS. For example, the angle yx between
the CSD vector (vr) and the state vectors x and the angle yy

between vr and the state vectors y are calculated as:

yx ¼ tan�1
ld � a

b

� �
¼ tan�1

d � aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� dÞ2 þ 4bc

p
2b

 !
;

yy ¼ 90� � yx;

(4)

Fig. 2 Bifurcation diagram for the deterministic Cdc2-cyclin B/Wee1
model. Feedback strength (n) is the bifurcation parameter. Panel (a) shows
the bifurcation diagram for x, and panel (b) shows the bifurcation diagram
for y. Solid blue lines represent stable states (high x and low y represent the
G2 phase-like state and low x and high y represent the M phase-like state),
while the dotted red lines represent the unstable state. The parameter
values are: a1 = a2 = 1, b1 = 200, b2 = 10, K1 = 30, K2 = 1, and g1 = g2 = 4. The
feedback strength n is varied from 0.2 to 2.0. The tipping points, where the
critical transition occurs, are marked by circular beads.

Fig. 1 (A) A schematic diagram illustrating key phases (G1, S, G2, and M) and their respective checkpoints, which regulate the progression of the cell cycle. The G1
checkpoint ensures the conditions are favorable for DNA replication before entering into the S phase, where DNA replication occurs. The G2 checkpoint ensures
the completion of DNA replication and checks for DNA damage before the cell enters the mitotic (M) phase. The Cdc2-cyclin B complex and Wee1 kinase are
responsible for the regulation of the G2 checkpoint, and inhibit each other. When the population of active Cdc2-cyclin B is high, the cell will progress from the G2
phase to the M phase. (B) The inline depiction highlights that the direction of CSD may vary in the vicinity of the tipping threshold. Notably, the CSD direction may
also differ for the forward and backward direction, underscoring the complex regulatory mechanisms governing the dynamics of the cell cycle.
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where a, b, c and d are elements of J ¼ a b
c d

� �
. A value of y

(for x and y) close to zero indicates stronger alignment with the
CSD vector, and thus, the monitored protein ought to provide
stronger EWS of an impending transition. Furthermore, near
the tipping point, the angle between the observation direction
and the CSD vector increases if it is not robust enough to
forewarn a sudden transition. We present details of the calcula-
tion of the angle between the CSD vector and Cdc2-cyclin B and
Wee1 in the ESI† (Section S1).

CSD direction is one of the four important directions from
which one can identify a sensitive protein for best EWS.
However, their simultaneous analyses provide a road map for
robust prediction of the most sensitive protein toward EWS.
Apart from the CSD direction, the other three are: (a) the
primary noise direction (PND) along which the noise is intro-
duced externally, (b) the noise sensitive direction (NSD), which
is the vl, and (c) the observation direction (OD), along which the
detection is performed.22

The EWS becomes weak if the PND and NSD are nearly
orthogonal. In other words, the most informative protein whose
direction is parallel to the CSD, but if PND and NSD are nearly
orthogonal, it may incorrectly predict critical transitions. Thus,
one can propose that the best possible protein for predicting
critical transitions through EWS analyses would be the parallel
arrangement of (a) the OD and CSD vectors and (b) the PND
and the NSD vectors. Similar to the angle between the direction
of CSD and observation directions, the angle between the NSD
and PND can be calculated by utilizing the left eigenvector vl

corresponding to the dominant eigenvalue ld (details are
provided in Section S1, ESI†).

2.3. Sensitivity analysis

We calculate the angle between the CSD direction and the
biochemical species x and y across a range of parameters.
Specifically, with variations in one of the rate constants a1, a2,
b1, and b2, along with the bifurcation parameter (n). In the
range of parameter values where the system exhibits bistability,
two distinct steady states exist, denoted as ðx�high; y�lowÞ and

ðx�low; y�highÞ. Here, ðx�high; y�lowÞ corresponds to a state with active

Cdc2 and inactive Wee1, whereas ðx�low; y�highÞ corresponds to a

state with inactive Cdc2 and active Wee1. The angle between
the CSD vector and these two steady states can be expressed as
follows:

y1x ¼ cos�1
~U1 �~x
~U1

�� �� ~xk k

 !
; y1y ¼ 90� � y1x;

y2x ¼ cos�1
~U2 �~x
~U2

�� �� ~xk k

 !
; y2y ¼ 90� � y2x;

(5)

where jj~xjj is the norm of the vector -
x, and

-

U1 and
-

U2 represent
the right eigenvectors of the dominant eigenvalue of the
Jacobian corresponding to the steady states ðx�high; y�lowÞ and

ðx�low; y�highÞ, respectively.

2.4 Governing stochastic differential equations (SDEs)

Investigating a nonlinear system in the presence of noise is
crucial since noise is inevitable in any natural system. We
incorporate multiplicative noise into the model, ensuring that
noise intensity scales up with the magnitude of the species.
This formulation ensures that the stochastic fluctuations in x
are more pronounced when x is large, while fluctuations in y
increase with the magnitude of y.

The model (3) in the presence of multiplicative noise
can be written incorporating a stochastic term in the
following form:

dx ¼ a1ð1� xÞ � b1xðnyÞg1
K1 þ ðnyÞg1

� �
dtþ s1xdWt;

dy ¼ a2ð1� yÞ � b2yx
g2

K2 þ xg2

� �
dtþ s2ydWt;

(6)

where, s1 and s2 determine the strength of the noise along x
and y, respectively. dW1 and dW2 represent Weiner processes
with zero mean and unit variance, i.e., W(t + Dt) � W(t) B
N(0,1). Also, W1(t) and W2(t) are independent of each other. A
stochastic model incorporating additive noise is also presented
in Fig. S5 (ESI†). We generate stochastic trajectories with
changing feedback strength by solving eqn (6) using the
Euler–Maruyama method32 with a time step of 10�3.

2.5 Principal component analysis

As the complexity of a system increases, identification of the
OD to forewarn a critical transition becomes challenging. In
such cases, principal component analysis (PCA) is an objective
and data-driven approach.

However, it is crucial to frame the significance of the
interpretation and applicability of the PCA and the process of
identifying the OD. In order to perform the PCA analysis,
consider a dataset represented by p-dimensional vectors, (X),
and summarize them by projecting them into a lower q-
dimensional subspace Y with minimal loss of information.
Mathematically, this projection is achieved by constructing
the p � p covariance matrix, defined as:

Cov(Xi, Xj) = h(Xi � hXii)(Xj � hXji)i

Diagonalizing this covariance matrix yields p eigenvalues (l)
and corresponding p orthogonal eigen directions Y. These p
eigenvectors serve as a new basis onto which the original data
can be projected to maximize the variance, which can be
reordered based on the magnitude of the eigenvalues. The data
set projected on the first principal eigen direction corres-
ponding to the largest eigenvalue gives us the first principal
component. Therefore, the calculation allows us to identify the
most informative directions, with the first principal component
corresponding to the direction of maximum variance. For our
case, to perform PCA, the two stochastic trajectories were
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combined into a matrix X such that:

X ¼

xð1Þ yð1Þ

xð2Þ yð2Þ

..

. ..
.

xðnÞ yðnÞ

2
6664

3
7775: (7)

Here, x(1),x(2),. . .,x(n) and y(1),y(2),. . .,y(n) represent the values of x
and y at time points t = 1,2,. . .,n, respectively.

The corresponding covariance matrix A is constructed. Here,
the covariance matrix can be written as:

A ¼ covðx; xÞ covðx; yÞ
covðy; xÞ covðy; yÞ

� �
; (8)

where, cov(x,y) is given by the relationship:

covðx; yÞ ¼
P
ðxi � �xÞðyi � �yÞ

n� 1
; (9)

where, %x and %y represent the mean values along the columns of
X, and n is the sample size.

The first principal component (PC1) is then determined as
the eigenvector associated with the largest eigenvalue corres-
ponding to A, indicating the direction in space where the data
points exhibit the most significant variance. Then, the variance
along the PC1 direction is calculated. The PCA-based direc-
tional analysis is inherently statistical, which allows one to
apply it to multivariate complex time series data. We also aim
to explore the correlation between PCA and CSD-based meth-
ods for our system, if any exists.

3 Results
3.1 EWSs for transitions at G2 phase

Fig. 3(a) and (c) illustrate the temporal progression of the cell
cycle, capturing the dynamic transition between active Cdc2-
cyclin B and active Wee1 populations, or G2 phase to M phase
and vice versa, driven by gradual variations in the feedback
strength n.

We generate a large number of stochastic trajectories of (3)
for values of n between 0.2–2.0 and calculate the variance for
each stochastic trajectory. The evaluation of the variance of the
Cdc2-cyclin B and Wee1 populations within their stochastic
time series, prior to the onset of the transition, unveils a
marked increase, as presented in Fig. 3(b) and (d). This escala-
tion serves as a compelling indicator of an imminent, abrupt
shift. However, the increase in variability for the Cdc2-cyclin B
population is much more significant than the slight increase in
Wee1 population variability. Importantly, the identification of
CSD-based EWS is regulated by the Cdc2-cyclin B but not
necessarily by the Wee1 population. We now aim to substanti-
ate our understanding of the underlying mechanisms, high-
lighting the vital role of Cdc2-cyclin B in driving and predicting
this cellular transition. Furthermore, a decrement of the para-
meter n gives rise to another critical transition (i.e., G2 delay or
arrest), and the variance increases for Cdc2-cyclin B and Wee1.
This means that Cdc2-cyclin B and Wee1 regulate the CSD-
based indicator for this critical transition. Therefore, a

question remains to be identified: What is the critical protein
among Cdc2-cyclin B and Wee1 to be monitored (or used for
the critical transition analysis) for a robust prediction of
tipping in this biochemical switch?

3.2 Observation direction: Cdc2-cyclin B or Wee1?

The sudden decrease in Cdc2-cyclin B complex population can
significantly impair the execution of mitosis,33 which may
imply errors such as chromosome missegregation. As a con-
sequence, it becomes imperative to proactively anticipate fluc-
tuations in protein populations before they manifest.
Accordingly, our investigation is directed toward elucidating
the underlying mechanisms that can serve as early indicators of
compromised cell functionality within the cell cycle. We, there-
fore, examine the critical slowing down vectors near the tipping
point to determine the observation direction, which serves as a
proxy of an upcoming sudden transition in complex systems.

The arrows in Fig. 4 depict the direction of the CSD vector in
Cdc2-cyclin B/Wee1 interaction for various values of feedback
strength n. The panels on the left are evaluated for changing the
n from low to high values, while the panels on the right are
investigated by changing the n values in the backward direction
(high to low). We determine yx when monitoring the Cdc2-
cyclin B population and yy when observing the Wee1 popula-
tion by measuring the angle between the CSD vector and the
observation direction. The CSD vectors near and away from the
tipping point are presented in Table S2 (ESI†). A more compre-
hensive plot illustrating the variations in CSD vectors with
respect to n is presented in the ESI† (Fig. S1).

Fig. 3 Stochastic time series embedded on the bifurcation diagram for
the forward (a) and backward (c) directions as the value of feedback
strength (n) is progressively increased and decreased, depicted by the
black arrow, respectively. Early warning signals (EWS) are highlighted by a
significant increase in variance (b) and (d) prior to the tipping point. The rise
in variance serves as a predictive indicator of the impending critical
transition in the system. The strengths of the noise in x and y are s1 =
s2 = 0.5.
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When n is low, and the system is in an activated Cdc2 state,
the CSD vector aligns with the observation of Cdc2-cyclin B but
diverges from the Wee1 observation direction. As we increase n
and approach the tipping point, the angle between the CSD
vector and the observation direction shifts. Near the transition,
yx increases while yy decreases. However, the CSD direction
remains primarily aligned with the observation direction, Cdc2-
cyclin B, rather than Wee1. This underlines the mechanism of
identifying the early warning signal when monitoring the Cdc2-
cyclin B population but not Wee1.

We further investigate the CSD vector in the reverse direc-
tion, tracking changes in n values until we reach the threshold
at which the cell recovers from G2 arrest and transitions into
the G2 to M progression. For a high nE 1.7 value, considerably
distant from the tipping threshold, the CSD vector aligns
significantly with the observation of Wee1 levels. As n gradually
changes to lower values, we observe a shift in the direction of
the CSD vector. In this scenario, approaching the tipping
threshold (n E 0.2), the CSD vector aligns nearly equally with
the state variable axes corresponding to Cdc2-cyclin B and
Wee1. Therefore, changes in the variance of both Cdc2-cyclin
B and Wee1 populations can serve as an indicator of an
upcoming recovery from G2 arrest in the cell cycle. Importantly,
our analysis of the interplay between CSD vectors and OD
underscores the importance of prioritizing different variables
based on the specific transition pathway under consideration.

3.3. Impact of noise direction on transitions among G2 and M
phase

Stochasticity plays a key role in affecting the dynamics of
biological and biochemical processes,34,35 which can further
influence the detection of early warning signals. It is quite
natural that both proteins will not experience the same level of
stochasticity; instead, the stochasticity acts heterogeneously. To
explore the effect of this heterogeneous stochasticity, we

introduce multiplicative noise along Cdc2/cyclin B and Wee1
PND. As mentioned before, if the PND and NSD are orthogonal
to each other for a protein, then it may not be a suitable
monitoring protein for the identification of a tipping event.
We evaluate how stochasticity impacts the EWSs along the CSD
vectors in the Cdc2-cyclin B/Wee1 biochemical switch. In
Fig. 5(a), we show that in the forward direction, as n is
increased, stochasticity in the Wee1 population has no impact
on the variance of either of the state variables. In the realm of
cellular function, it is of significance to recognize that mon-
itoring the levels of either Cdc2-cyclin B or Wee1 does not offer
a reliable means of promptly detecting the transition.

In contrast to this outcome, external stochasticity in the
Cdc2-cyclin B level gives rise to an increase in variance. Also, it
depicts that treating Cdc2-cyclin B but not Wee1 as an observa-
tion variable is a reliable indicator of an upcoming critical
transition, indicating that the observation direction remains
the same.

However, a gradual change of n from 2.0 to 0.2 increases the
variances in both Cdc2-cyclin B as well as Wee1 proteins, when
noise is added along the Wee1 protein, as shown in Fig. 5(b).
The above findings can be explained by the direction, which is
called the noise-sensitive direction (NSD). For the forward
direction, the NSD is aligned more with the Cdc2-cyclin B
direction in the cell, while the NSD is aligned with Wee1 for
the backward direction. The NSD vectors near and away from
the tipping point are presented in Table S3 (ESI†). Also, a
comprehensive plot illustrating the variations in NSD vectors
with change in n is also presented in Fig. S2 (ESI†).

3.4 Sensitivity analysis

Complexity, where numerous parameters govern system
dynamics, is an inherent characteristic of biological systems.
It is, therefore, imperative to focus on the robustness of our
outcomes towards changes in the various parametric condi-
tions in the Cdc2-cyclin B/Wee1 cell functioning. Fig. 6 and 7
show the change in yx as the system reaches the bifurcation
point for a range of values of the kinetic parameters (a1, a2, b1,
and b2) along with the variation of bifurcation parameter
values, n.

Fig. 4 Comparative analysis of CSD Vectors near and away from the
tipping points. The plot illustrates the change in CSD vectors with varia-
tions in the feedback strength n. Notably, in the forward direction (as n is
increased), the CSD vectors align with x in the vicinity of the tipping point,
suggesting a predominant influence along this direction. Conversely, in the
backward direction (as n is decreased), the CSD vectors exhibit almost
equal alignment with both x and y near the tipping point, highlighting a
distinct directional preference.

Fig. 5 Effect of noise strength on EWS performance in the forward (a) and
backward (b) directions as the value of n is increased and decreased,
respectively. The strength of EWS is observed to increase with the incre-
ment of noise strength (s1 for the forward direction and s2 for the
backward direction). This figure illustrates the contrasting impact of the
direction of noise on the EWS in both directions.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 7

/3
0/

20
25

 7
:3

2:
52

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp04863f


This journal is © the Owner Societies 2025 Phys. Chem. Chem. Phys., 2025, 27, 10884–10895 |  10891

The black lines denote a series of saddle-node bifurcation
points, and the region between these curves indicates the
bistability region, beyond which the system exhibits a transi-
tion from one state to another, indicating critical transitions as
the parameters vary. A detailed three-dimensional illustration
of the saddle-node bifurcation with observation variable x and
the n and b2 is shown in Fig. S3 (ESI†).

As the value of n increases, the solid line on the right-hand
side indicates G2 arrest. Variation in the kinetic parameters
alters the bifurcation threshold value of n, as indicated by the
solid line.

Fig. 6 illustrates that before the critical transition, the CSD
direction for the variation in all the kinetic parameters a1, a2,
b1, & b2 remains aligned more with Cdc2-cyclin B and does not
change much (pink color region). However, we find a sharp
change in yx and it becomes orthogonal upon further increase
of n (green color region). Note that the effect of the variation of
all the kinetic parameter values on the yx is similar, implying
that they affect the critical transition homogeneously. There-
fore, selecting Cdc2-cyclin B is more appropriate for detecting
the critical transition as the value of n is increased and the
system remains insensitive to the kinetic parameters. This
implies that besides knowing the most suitable observation
variables, understanding parametric sensitivity is critical for
detecting critical transition.

Also, as the value of n decreases, as happens in the backward
transition, the solid line on the left demonstrates the recovery
of the cell functioning from G2 arrest.

Fig. 7 illustrates that before the critical transition, the CSD
direction remains aligned more with Wee1 for the variation of
all kinetic parameters until it hits the bifurcation point (solid
black line). However, near the bifurcation point, the CSD vector
changes its orientation and is aligned almost equally with the

Cdc2-cyclin B and Wee1. Unlike the forward transition, the
angle change is not sharp for the backward direction, as
evidenced by the faded green color near the transition point.
The results imply that the chosen observation direction is not
unique to the transition point for the backward direction. Our
analysis shows that the effect is almost similar for the variation
of all the kinetic parameters. Furthermore, the kinetic para-
meters alter the bifurcation threshold but do not affect the
angle between the CSD and the OD. Thus, understanding the
EWS in both Cdc2 and Wee1 levels is robust to system para-
meters for varying values of the bifurcation parameters.

3.5 Principal component analysis

We showed that aligning the OD and CSD vectors provides a
clue for identifying the most sensitive species that govern the
significant disturbances before the transition. However, calcu-
lating CSD for a dynamical system is limited since the quantity
is nothing but the dominant eigenvector of the Jacobian of the
linearized system. Thus, prior knowledge of the model equa-
tion is required to calculate the Jacobian and the CSD. How-
ever, in many practical instances, the system’s dynamics may
be described by time series data of a vector constituted by a set
of dynamical variables without knowing the model equations.
Therefore, we look for an alternative method that bypasses the
calculation of CSD. As demonstrated before, detecting a tipping
point identifies maximum variance along the direction in
which critical transition occurs. In this spirit, the principal
component analysis (PCA) may serve this purpose as the
method maximizes the variances along the first principal
direction (PC1). The PCA method is a statistical technique used
to reduce the dimensionality of a data set while retaining as
much information as possible.36 We conducted PCA on
a time series generated from the stochastic simulation23 and

Fig. 6 The angle the CSD vector makes with x (yx) is plotted with
variations in parameters a1, a2, b1 & b2 and the strength of the feedback
n for the forward direction. Panels (a)–(d) correspond to variations in a1, a2,
b1 & b2, respectively. The two black lines represent the set of saddle-node
points, and the black arrow represents the direction of change of n. y o
451 before the transition suggests that x is the dominant sensitive protein
and will give a more pronounced increase in variance before the tipping
point.

Fig. 7 The angle the CSD vector makes with x (yx) is plotted with
variations in parameters a1, a2, b1, & b2 and the strength of the feedback
n for the backward direction (as n is decreased). Panels (a)–(d) correspond
to variations in a1, a2, b1 & b2, respectively. The two black lines represent
the set of saddle-node points, and the black arrow represents the direction
of change of n. yx 4 451 before the transition suggests that y is the
dominant sensitive protein as yy = 901�yx and will give a more pro-
nounced increase in variance before the tipping point.
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calculated the variance in the direction of the first principal
component (PC1) for the stochastic trajectories. In order to
carry out this calculation, we first calculate the PC1 from the
stochastic trajectory and then project it on the PC1. We
calculate the variance from the projected trajectory for the
forward and backward transitions, and the results are pre-
sented in Fig. 8. We observe an increase in variances near the
tipping point, indicating an upcoming critical transition for our
data set. In other words, PC1 serves the same role as the CSD
vector for time series data. Therefore, we can use PC1 as a
reference direction for detecting the critical transition for time
series data.

In the following step, we find the species most related to the
first principal component. Note that PC1 is a linear combi-
nation of unit vectors associated with the dynamical variables.
The square of each component (vi

2) is the probabilistic con-
tribution of that variable to the PC1, and it plays a crucial role
in identifying the most sensitive species for a critical transition.
In other words, the species most related to the first principal
component could be the OD with the strongest expected trends
in variance prior to transition. We plot the square of the
components (v1

2 and v2
2) of PC1 as a function of n and present

them in Fig. 9. It is clear from the analyses that the Cdc2-cyclin
B contributes more to the PC1 than the Wee1 for the transition
along the forward direction near the tipping point. However,
both proteins contribute equally to the PC1 for the backward
direction near the tipping point. These results correlate well
with the results obtained from the CSD-based analysis, where
we find that the Cdc2-cyclin B is the most suitable OD for
detecting the critical transition in the forward direction. How-
ever, we do not have such a choice in the backward direction
since both proteins contribute almost equally to the PC1. The
results are further supported by the angle alignment between
PC1 and ODs, as shown in Fig. 10. In the forward direction, the
Cdc2-cyclin B is aligned more (the angle ranging between 13.4
to 22.41) with the PC1 up to the tipping point and exhibits an
abrupt jump in angle at the tipping point. However, we find
both Cdc2-cyclin B and Wee1 aligned to the PC1 at an angle
of E 45.01 in the backward direction, indicating the difficulty of
choosing the species for detecting the transition. Nevertheless,

we find that both results obtained from CSD and PC1 corre-
spond with each other, suggesting that one can perform PCA-
based analyses for time series data to identify the most sensi-
tive species toward the detection of a critical transition.

4 Generality of the proposed method

In the previous sections, we demonstrated how to choose a
specific protein to accurately forecast a sudden transition for
the G2/M transition in a cell cycle. The results obtained from
our proposed methods are promising. We have identified
CdC2-cyclin B protein as the best monitoring species for
foreseeing such transitions. However, one may argue that the
chosen system is low-dimensional, so the proposed doctrine
may not work efficiently for a higher-dimensional system. In
order to eliminate such an argument and its applicability to a
wide range of systems, we chose a three-dimensional system
where we have also identified the monitoring species for a
critical transition.

We chose a well-known regulatory network model in cancer
biology that governs the epithelial (E) to mesenchymal (M)

Fig. 8 The projected trajectories are used to calculate the variance along
the forward and backward directions by varying the value of feedback
strength (n). Early warning signals (EWS) are highlighted by a significant
increase in variance (a) and (b) prior to the tipping point. The rise in
variance is a predictive indicator of the impending critical transition in
the system.

Fig. 9 The plot of the probabilistic contribution of the species as given by
the square of the components of PC1 (v1 and v2) for x (panel (a)) and y
(panel (b)) species, as a function of the feedback strength, n. The con-
tribution of the species x to the PC1 near the tipping point is much larger
than the species y for the forward direction, which indicates that x could
be the monitoring species. In the backward direction, both species con-
tribute equally to the PC1 near the tipping point, demonstrating the
difficulty of choosing a monitoring species for predicting the critical
transition.

Fig. 10 The alignment of OD with PC1 vectors near and away from the
tipping points is shown. Similar to CSD vectors, as the value of n is
increased, the PC1 vectors align with x in the vicinity of the tipping point.
Also, as the value of n is decreased, the PC1 vectors align almost equally
with x and y.
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transition and vice versa (EMT and MET). The transition
becomes vital in cancer progression since the solid tumors
originate in epithelial organs (localized E state) that undergo a
phase transition where they lose cell–cell adhesion (mobile M
state) and gain the traits of migration and invasion. Cells
undergoing EMT get launched into the bloodstream and also
gain the ability to initiate new tumors at metastatic sites and
gain resistance against multiple drugs. The core regulatory
network of this system is a three-dimensional microRNA
(miR) based chimeric circuit developed by Lu et al.,24 and we
present the model in the ESI† (eqn (S19)–(S21)). The model
received considerable attention since it exhibits tristability and
captures a hybrid E/M phenotype, which may be more aggres-
sive for cancer progression.3

The system exhibits tristability as shown in the bifurcation
diagram Fig. S6 (ESI†), where the protein ZEB is chosen as the
state variable and the protein SNAIL as the driver parameter.
The stochastic trajectory is embedded in the bifurcation dia-
gram and shows the existence of two abrupt transitions, namely
E - E/M and E/M - M in the forward direction. However, the
system exhibits an abrupt transition in the backward transition
but bypasses the E/M phenotype state. In Fig. S7 (ESI†), we
analyze the variances of the three species (miR200(m200), mRNA
(mZ) and the protein ZEB (Z)) as a function of SNAIL for the two
transitions along the forward direction (panels a and b) and the
transition along the backward direction (panel c). The results
demonstrate that Z shows the highest level of variance around
the tipping point compared to the other two biochemical
species. This result also suggests that the CSD direction must
align more with the Z OD. In this regard, we calculate the angle
(ys) between the CSD and ODs associated with all three species.
We present the result in Table S4 (ESI†). We find that Z is
aligned more with the CSD near the tipping point of the E-state
(19.51), and it continues to align up to the tipping point of the
hybrid E/M state (21), and it remains aligned with the backward
CSD vector for the M - E tipping point (0.31). The alignment of
CSD and the OD along the Z protein excludes other monitoring
species for identifying the critical transition.

We perform a similar PCA-based stochastic trajectory ana-
lysis as we did for the G2/M transition to identify monitoring
species for the EMT. We calculate the PC1 vector from the
stochastic trajectory of this system. Similarly, as we have done
for the G2/M transition, we project the original stochastic
trajectory on the PC1 and calculate the variance from there
(Fig. S7, ESI†). We find the variance near the tipping point of all
the transitions, a clear sign of the critical transition in the data.
We calculate the square of each component of the PC1 for all
three transitions, and the results are shown in Fig. S9 (ESI†).
The results demonstrate that the Z contributes more to con-
structing the PC1 near the tipping point for all three transi-
tions. The results are further validated by calculating the angles
(fs) between Z and PC1 for all three transitions, and the results
are presented in Table S4 (ESI†). Similar to the results obtained
for the CSD vector, the PC1 also identifies that the Z aligns
more (fZ = 40.01, 0.61 and 2.31) with the PC1 near the tipping
point for all three transitions. Therefore, the PC1 and CSD

vectors also complement each other for this higher dimen-
sional system, and maybe the PC1 based on analysis works
uniquely in identifying the critical transition and the monitor-
ing species from time series data.

5 Conclusions

In this paper, we demonstrate the importance of CSD, NSD,
PND, and OD vectors in detecting critical transitions in the
Cdc2-cyclin B/Wee1 cell cycle model system. We analyze these
directions systematically and find that the alignment of OD
with CSD, as well as with NSD and PND, provided a roadmap
for the robust detection of critical transitions. First, we propose
a method for identifying key monitoring species that can
reliably predict critical transitions in complex biochemical
systems. We identified the direction of CSD and measured
EWSs along this direction. Our results demonstrate that mea-
suring EWSs in alignment with the CSD direction provides a
more dependable indication of an impending critical transi-
tion. Furthermore, incorporating noise along the NSD or with
species that align more with the NSD enhances the intensity of
the EWS indicator. Second, our calculations complement the
PCA-based method, which relies solely on stochastic trajec-
tories. We find that the first principal direction correlates well
with the CSD direction. Therefore, measuring EWS along the
first principal direction of a time series serves the same
purpose as measuring that along the CSD direction. It is
important to note that the PCA-based method does not require
any model equations, as it analyzes data derived from time
series (stochastic trajectories). Since the CSD and PCA-based
methods complement one another, it is possible to predict
critical transitions in any time series data. Such analyses can be
valuable for detecting sudden transitions in multidimensional
time series datasets. Third, we validated our proposed method
using a three-dimensional dynamical system and predicted that
monitoring the ZEB protein would yield the most effective
predictions for the epithelial–mesenchymal transition.

Specifically, our analysis shows that the monitoring protein
may differ in the direction of critical transitions. This happens
because the direction of the CSD vector near the tipping point
depends on such directions. We have shown that variances
(EWS) for the Cdc2-cyclin B and Wee1 increase near the tipping
point for the G2 to M transition and vice versa. However, Cdc2-
cyclin B is the best monitoring species for the forward transi-
tion. However, both proteins are equally preferable for the
backward transition after rigorous analysis of the direction of
various vectors. Our analyses show that CdC2-cyclin B is
aligned more with the CSD vector near a tipping region, which
increases the variance values significantly. However, we have
not found any such preference in protein selection for the
backward transition from our analysis, as both proteins align
almost equally with the CSD vector. Additionally, systems with
multiple parameters may give false positive critical transitions
upon their variation. In this regard, our sensitivity analysis
shows that the increase in variances for the identified species
near a tipping point is almost unaffected by the kinetic
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parameter variation, demonstrating our calculation’s robust-
ness. Furthermore, we find that the first principal direction
(PC1) from the PCA analysis complements the CSD-based
calculations. We show that the species contributing more to
constructing PC1 is the best monitoring species. Since the PCA
analysis is done only on the stochastic trajectory, we find Cdc2-
cyclin B as the best monitoring species for the forward transi-
tion. However, we are silent in choosing the best species in the
backward direction since Cdc2-cyclin B and Wee 1 align equally
with the PC1 vector. The PCA-based method may also identify a
critical transition directly from multidimensional time series
data. However, one must perform similar calculations for
various systems to establish such complementarity between
CSD and PC1-based methods.

Lastly, we put effort into establishing our proposed method
for general applicability to a wide range of problems. In this
regard, we chose the EMT system that exhibits critical transi-
tion. This dynamical system differs from the G2/M transition as
it has three variables and exhibits tristability. We apply our
method to this system and perform all possible directional
analyses to identify the monitoring species for forward and
backward transitions as a function of SNAIL concentration. We
identify a unique protein, ZEB, which may be the best monitor-
ing species to identify a critical transition from a time series
data set or from an experiment. Like the G2/M transition, we
perform PC1-based directional analysis and again establish the
complementarity between PC1 and CSD vectors. Overall, our
analyses may be used as an algorithm to identify monitoring
species for the robust and efficient prediction of critical transi-
tions in a natural system. However, to determine the CSD
direction in a dynamical system that exhibits long transient
oscillations before shifting to an alternative state can be a
challenging and interesting future research question.25

Data availability

Data and relevant codes for these analyses are available at:
https://doi.org/10.5281/zenodo.14269612 and in the ESI.†
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