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Effect of architectural asymmetry of
hyperbranched block copolymers on
their phase boundaries†

Jiahao Shi, a Qingshu Dong, *a Tao Yang b and Weihua Li *a

Asymmetric architecture of AB-type block copolymers can induce additional spontaneous curvature to

the A/B interface, accordingly deflecting the phase boundaries. However, it is often difficult to determine

or compare the asymmetric effects of different asymmetric architectures. In this work, we proposed to

use the equivalent arm number nequ, which was originally defined as nequ = n/iÐ for ABn with unequal

B-arms and iÐ being the intramolecular polydispersity of these B-arms, to quantify the asymmetric

effect of various linear-hyperbranched copolymers. For each linear-hyperbranched copolymer, nequ is

estimated by matching its phase boundaries on the side with expanded spherical phase region with

those of ABn with unequal B-arms but tunable iÐ. Our results suggest that the addition of B-blocks at

the further location from the A–B joint point has less influence on nequ, i.e. the asymmetric effect,

because these B-blocks can access more space. For the linear-dendrimer copolymers, nequ changes

from 2 to about 3.8 when the overall generation number of the copolymer increases from 2 to 5. In

other words, the asymmetric effect of these linear-dendrimer copolymers is intermediate between those

of AB2 and AB4 miktoarm star copolymers. In brief, nequ can effectively describe the asymmetric effect

on the interfacial curvature of complex asymmetric architectures.

1 Introduction

Block copolymers can self-assemble into innumerable ordered
structures when varying their composition and architectures,1–9

and thus have attracted abiding interest10–16 in many fields
including functional nanomaterials and nanotechnology.17–20

AB diblock copolymers as the simplest block copolymer can
form sphere, cylinder, network and lamellar structures as their
composition changes from asymmetric to symmetric.21–30 If
there are no other different properties between A and B blocks
in the AB diblock, the phase diagram with respect to the
composition (or the volume fraction of A-block, f ) is
symmetric.31 On both sides of the symmetric phase diagram,
the spherical phase region is rather narrow and is mainly
occupied by the body-centered cubic (BCC) phase. To expand
the spherical region, an additional asymmetry factor needs to
be introduced, such as the conformational asymmetry32–38 or
architectural asymmetry.39–49 One of the common asymmetric

architectures is ABn miktoarm star copolymers composed of a
single A block connected with n B blocks.47,48,50–52 The multiple
B blocks are more difficult to be stretched than the single A
block, creating a tendency for the A/B interface to curve toward
the A block. In other words, a curvature effect is caused by the
branching architecture in addition to that arising from the
compositional asymmetry. As a result, the phase diagram
becomes asymmetric and is deflected to large volume fraction
f of the A-block, of which the phase region of the A-sphere is
expanded while that of the B-sphere is compressed. More
importantly, the complex Frank–Kasper s or A15 phase is
stabilized with the expansion of the spherical region.42,47,53–55

Conformational asymmetry is related to the different intrinsic
properties of flexibility, which can also be encoded into the
asymmetry of the phase diagram. Almdal et al. proposed the ratio
of Kuhn length bA/bB to describe the conformational asymmetry of
the linear AB diblock by comparing the radius of gyration (Rg) of
the linear A-block and B-block.32 The asymmetry parameter of the
AB diblock was updated as rAbA

2/rBbB
2, where rk (k = A or B) is the

density of the k-monomer.33,56 Soon after, Milner combined
conformational asymmetry and architectural asymmetry into an
asymmetry parameter, e � (nB/nA)(rAbA

2/rBbB
2)0.5, in an AB-type

miktoarm star copolymer composed of nA A-arms and nB B-
arms.50 This unified definition implies that the ratio of arm
numbers and that of Kuhn lengths should have a similar effect
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on the phase behavior, which has been confirmed in subsequent
experimental57–60 and theoretical studies.37,43,48

Besides the miktoarm star architectures, there are many
other asymmetric architectures, and for some of them it is
difficult to judge their degree of asymmetry (e.g. their deflection
degree to the phase diagram). Some effort has been devoted to
quantifying the asymmetry degrees of various complex AB-type
block copolymers.44,51,61–63 For example, Fredrickson et al.44

attempted to calculate the asymmetry parameter of comblike/
bottlebrush block copolymers by approximately computing the
radius of gyration of the A and B blocks. Their asymmetry
parameter can describe the deflection degree to the phase
diagram for the comblike copolymers well, but not for the
bottlebrush copolymers. In our previous work,51 we proposed
the number of equivalent (or effective) arms (nequ) as an
asymmetry parameter with reference to ABn miktoarm star
copolymers of equal arms, and used it to quantify the deflection
degree of the phase diagrams of ABn of unequal arms. We
found that nequ can be simply expressed as nequ = n/iÐ, where iÐ
represents the intramolecular polydispersity of the multiple arms.
Our self-consistent field theory (SCFT) results demonstrate that
various ABn of unequal arms with different n but with equal nequ

exhibit very similar asymmetric phase diagrams, verifying that
nequ is an efficient asymmetry parameter for measuring the effect
of asymmetric architectures on the deflection of the phase
diagrams. In line with Milner’s description,50 we can combine
conformational asymmetry with architectural asymmetry, then
modify the equation for determining the equivalent e (eequ) of
linear-hyperbranched copolymers: eequ = nequ(rAbA

2/rBbB
2)0.5. For

the linear-hyperbranched copolymers studied in this paper, we set
rA = rB and bA = bB, thus nequ = eequ. The nequ(eequ) is mainly
reflected in the change of spontaneous curvature for the AB-type
copolymer, and the most prominent manifestation is its influence
on the sphere/cylinder phase boundary. Therefore, in this work,
we attempt to extend the concept of nequ to other asymmetric
block copolymers to quantify their architectural asymmetry.

Hyperbranched copolymers including dendrimer-like have
been extensively studied due to their unique architectures.42,46,64–78

Grason et al.42,46 proposed that the block copolymer composed
of linear A-block and hyperbranched B-blocks exhibits a signifi-
cantly amplified effect of spontaneous curvature toward
the A-domain. As a result, the phase boundaries of these
linear-hyperbranched copolymers are notably deflected to large
volume fraction of the A-block (f), and the Frank–Kasper
spherical A15 phase was predicted to be stable in the expanded
region of the A-sphere.42,47 Although the architectures are
notably asymmetric, it is still difficult to determine how large
their asymmetry degrees are, for example by comparing them
with those of ABn miktoarm star architectures. In this work, we
will determine the equivalent arm number nequ by comparing
the phase boundaries of various hyperbranched copolymers to
those of different ABn with equal or unequal arms using SCFT.
We first move the two B-arms of the equal-arm-AB4 or unequal-
arm-AB4 architecture along the other two B-arms to obtain a
series of linear-hyperbranched block copolymers (Fig. 1), thus
determining their nequ. With the arm length ratios of 1 : 1 : 2 : 2,

the ideal linear-dendrimer architecture can be generated from
AB4 when the two short B-arms are moved to the middle points
of the other two B-arms, respectively. Then we propose a simple
expression for nequ with respect to the tethering position, which
can reasonably measure the asymmetry degrees of these differ-
ent linear-hyperbranched copolymers.

2 Theory and method

We consider an incompressible melt of volume V consisting of
nC chains of hyperbranched copolymers or ABn. To give promi-
nence to the architectural effect on the self-assembly behavior,
we simply assume that all segments have the same Kuhn length
b and density r0. Each copolymer is composed of N segments in
total, of which the A-block contains fN segments. Within the
framework of SCFT for the Gaussian chain, the free energy
functional per chain at temperature T is given by79,80

F

nCkBT
¼ � lnQþ 1

V

ð
dr wNfAðrÞfBðrÞ � wAðrÞfAðrÞf

� wBðrÞfBðrÞ � xðrÞ 1� fAðrÞ � fBðrÞ½ �g
(1)

where kB is the Boltzmann constant. fk(r) and wk(r) (k = A, B)
are the volume-fraction function and the conjugate potential
field of the k-component, respectively. x(r) is a Lagrange multi-
plier used to enforce the incompressibility condition, fA(r) +
fB(r) = 1. The quantity Q is the partition function of one single
chain interacting with the mean fields of wk(r) (k = A, B), which
is determined by

Q ¼ 1

V

ð
drqðr; sÞqyðr; sÞ (2)

where q(r, s) and q†(r, s) are two conjugate propagator functions
satisfying the modified diffusion equations

@qðr; sÞ
@s

¼ r2qðr; sÞ � wðr; sÞqðr; sÞ (3)

Fig. 1 Schematics of the linear-hyperbranched architectures generated
from ABn with equal or unequal B arms.
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�@q
yðr; sÞ
@s

¼ r2qyðr; sÞ � wðr; sÞqyðr; sÞ (4)

where w(r, s) = wk(r) when s belongs to the k-block (k = A, B). The
values of q(r, s) or q†(r, s) at the free ends are set to 1 as the
initial conditions. The spatial length is rescaled by the radius of
gyration (Rg) of an unperturbed linear homopolymer chain with

N segments, Rg ¼ N1=2b
� ffiffiffi

6
p

. We considered that A and B
segments have the same segment density (rA = rB) and length
(bA = bB). The total number of segments in the A block and B
blocks is given by fAN (fA = f) and fBN, respectively. Minimization
of the free energy functional with respect to the volume-fraction
functions and the mean fields leads to the following SCFT
equations

wA(r) = wNfB(r) + x(r) (5)

wB(r) = wNfA(r) + x(r) (6)

fAðrÞ ¼
1

Q

ð
s2A

dsqðr; sÞqyðr; sÞ (7)

fBðrÞ ¼
1

Q

ð
s2B

dsqðr; sÞqyðr; sÞ (8)

1 = fA(r) +fB(r) (9)

We use the pseudospectral method81–83 to solve the modified
diffusion equations, and implement the Anderson mixing itera-
tion scheme84 to accelerate the converging process toward the
equilibrium solution. We consider eight ordered phases, includ-
ing face-centered cubic (FCC) spherical phase, body-centered
cubic (BCC) spherical phase, Frank–Kasper s/A15 spherical
phase, hexagonal cylinder phase (C6), Fddd network phase
(O70), double-gyroid network phase (G) and lamellar phase (L)
(Fig. 2). It is necessary to mention that we do not consider the
hexagonally close-packed (HCP) spherical phase because it is
nearly degenerate with the FCC phase. The sizes of the unit cell
(lx, ly and lz) are optimized by the variable cell algorithm.85–87 The
chain contour is divided into pieces with Ds r 0.005. The grid
spacings Dx, Dy and Dz are chosen to be smaller than 0.15Rg by

using a lattice of 64 � 64 � 64 for the three-dimensional phases
except for a lattice of 256 � 256 � 128 for the s phase and a
lattice of 32 � 64 � 128 for the O70 phase. In addition, the
pseudospectral method is accelerated using the crystallographic
FFT to replace the normal FFT.88

3 Results and discussion

We first consider a linear-hyperbranched architecture composed
of a linear A-block connected with two generations of hyper-
branched B-blocks. As shown in Fig. 1, this copolymer can be
seen as an AB2 copolymer tethered by an additional B-block on
each branching B-block. The tethering B-block with volume
fraction of fB3 divides the branching B-block of AB2 into two
sub-blocks denoted as B1 (with free end) and B2 (connected with
A block) blocks with volume fractions fB1 and fB2, respectively. We
introduce a variable t = fB2/( fB2 + fB1) to characterize the tethering
position of the B3-block. Accordingly, the linear-hyperbranched
copolymer is reduced to AB2 with two equal B-arms at t = 1 and
AB4 with equal or unequal B-arms at t = 0, respectively. The simple
analysis implies that the asymmetry degree of this complex
architecture should lie between those of AB2 and AB4 copolymers.

Besides the tethering position, another characteristic para-
meter is the ratio of B3-block. In this work, we consider two
specific cases: fB3 = fB/4 and fB3 = fB/6. In the first case of fB3 = fB/4,
the linear-hyperbranched architecture is reduced to AB4 of equal
arms. In the other case of fB3 = fB/6, the architecture of the B-
blocks becomes dendrimer-like at t = 1/2.

To demonstrate the change of the architecture on the
asymmetry, we vary t (i.e. the tethering position of B3-block)
to gradually change the linear-hyperbranched architecture and
construct the phase diagrams with respect to f and wN. Fig. 3
presents the phase diagrams of the linear-hyperbranched copo-
lymer with fB3 = fB/4 for t = 0, t = 1/3, t = 2/3 and t = 1,
respectively. At t = 0, the copolymer is AB4 of equal arms, and
thus its phase diagram is rather largely deflected to large f.
Accordingly, the overall phase region of the A-sphere is
expanded to range from f E 0.172 to f E 0.344 with a width
of about Df E 0.172 at wN = 40, consisting of a wide window of
Frank–Kasper s-phase as well as a considerable window of A15-
phase. As the two B3-blocks (two of B-arms) move away from
the junction point to the tethering positions of t = 1/3, the
asymmetry of the phase diagram is noticeably reduced, accom-
panied by a narrowing of the A-spherical phase region. In
particular, the width of the A15-phase window is decreased
from Df E 0.041 at t = 0 to Df E 0.018 at t = 1/3. When the B3-
blocks move to t = 2/3, the asymmetry or deflection of the phase
diagram is further decreased, leading to the absence of the A15-
phase region. Finally, the architecture changes to AB2 at t = 1,
whose phase diagram is considerably less asymmetric than that
of AB4 at t = 0. The width of the A-spherical phase region at wN =
40 is narrowed to be Df E 0.127.

Qualitatively, the decrease in the asymmetry of the phase
diagram with increasing t can be explained by the change in
the overall extension distance8 of the B-blocks from the A/B

Fig. 2 Isosurface plots of the candidate ordered phases considered in the
current study, including FCC, BCC, s, A15, hexagonally arranged cylinders
(C6), Fddd network (O70), double-gyroid (G) and lamellae (L). Larger and
clearer figures and specific parameters are provided in the ESI.†
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interface to the central area of the B-domain. Obviously, as the
B3-blocks move from the junction point toward the free ends of
the B1-blocks, the extension distance of the B-blocks increases,
lowering the tendency of the B-blocks to locate outside the
curvature. In other words, the effect of spontaneous curvature
bending toward the A-domain is reduced with increasing t,
lowering the asymmetry of the phase diagram. In order to
quantify the change in the asymmetry of the phase diagram
with t, we attempt to estimate the equivalent number of arms
(nequ

51) by comparing the phase boundaries of the linear-
hyperbranched copolymer with those of ABn of unequal B arms.
As the linear-hyperbranched architecture changes from AB4 to
AB2 as t increases from 0 to 1, its nequ should accordingly
decrease from 4 to 2. Therefore, we choose n = 4 and consider
four arms containing two equal long arms with a segment
number of fBl

N and two equal short arms with a segment
number of fBs

N. By tuning the relative lengths of the long and
short arms of AB4, we can get any value of nequ = n/iÐ, where iÐ =
2(k2 + 1)/(k + 1)2 is the intramolecular polydispersity index51 of
the four arms of AB4 with k = fBl

/fBs
. By minimizing the difference

of the phase boundaries between the linear-hyperbranched
copolymer with a given t and AB4 of unequal arms with respect
to nequ (or iÐ), we can obtain the value of nequ quantifying the
asymmetry of the linear-hyperbranched copolymer.

When minimizing the difference of the phase boundaries in
the phase diagrams with respect to f and wN between the linear-
hyperbranched copolymer and the AB4 copolymer of unequal B
arms with tunable nequ or iÐ, we find it difficult to make all the
boundaries between them perfectly consistent. The main rea-
son is that the asymmetric architecture affects the deflection of
different phase boundaries in different degrees. Accordingly,
we estimate nequ by mainly minimizing the sphere/cylinder,
cylinder/gyroid and gyroid/lamella boundaries between the two
copolymers in the region where A-blocks are located inside the
curvature of the A/B interface, but not considering the sphere/
disorder boundary. Fig. 4 presents the comparison of the phase
diagrams between the linear-hyperbranched copolymer and the

AB4 copolymer of unequal B arms with optimized nequ for t = 1/3
and t = 2/3. For t = 1/3, the optimal nequ is estimated around 3.0.
In Fig. 4(a), the left C6/G and G/L phase boundaries of the linear-
hyperbranched copolymer with t = 1/3 are nearly overlapped with
those of AB4 with nequ = 3.0, and the s/A15, s/C6 and A15/C6

phase boundaries are also in good agreement with those of the
latter. In contrast, the BCC/s, BCC/FCC and FCC/disorder
boundaries between the two copolymers are noticeably different.
Another factor that should not be ignored is the difference
in the equivalent segregation strength89 between the copolymers,
which has a considerable influence on the order–disorder (ODT)
transition boundaries.44,48 Nevertheless, the overall agreement
of the phase boundaries between the two copolymers is accep-
table. Therefore, it is a feasible approach to quantify the asym-
metry of the phase diagram of the complex linear-hyperbranched
copolymer using the equivalent number of arms defined by ABn

of unequal B arms.
In Table 1, we estimate the values of nequ for fB3 = fB/4 with

t = 0.1, 0.2, . . ., 0.9. Fig. 5(a) suggests that nequ decreases
nonlinearly as t increases from 0 to 1. Since many phase
boundaries need to be determined using SCFT for the estima-
tion of each nequ, the calculation is rather costly. To obtain the
continuous value of nequ, it would be useful to find an expres-
sion for nequ as a function of t. According to the changing trend,
we choose the following concise equation to calculate nequ of
linear-hyperbranched copolymers,

nequ = nmin + Dn � (1 � t)a, (10)

where Dn = nmax � nmin and t = fB2/(fB2 + fB1). The copolymers
with nequ = nmax = 4 and nmin = 2 correspond to two limiting
cases, t = 0 and t = 1, respectively. a is a constant that quantifies
the nonlinear relationship between nequ and t. By fitting the
data points in Fig. 5(a) using the expression, we got a E 1.6. As
t decreases from 1 to 0, the increasing of nequ along the fitting
curve with a = 1.6 shown by the red solid lines in Fig. 5(a) is
accelerating, causing the value of nequ on the curve to be

Fig. 3 Phase diagrams for copolymers with (a) t = 0, (b) t = 1/3, (c) t = 2/3,
and (d) t = 1. In all cases, fB3 = fB/4.

Fig. 4 Phase diagrams of: (a) the linear-hyperbranched copolymer with
fB3 = fB/4 for t = 1/3 (red solid) and AB4 copolymer with nequ = 3.0 (simply
denoted as AB3.0, blue dot-dashed lines); (b) the linear-hyperbranched
copolymer with fB3 = fB/4 for t = 2/3 (red solid) and AB4 copolymer with
nequ = 2.4 (denoted as AB2.4, blue dot-dashed lines). The length percen-
tages of the B-blocks of all considered samples are listed in Table 2.
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smaller than the data points for t \ 0.5, then becomes larger
than the data points for t t 0.5. Overall, the fitting curve with
a = 1.6 is in good agreement with those data points.

Similarly, we estimate the values of nequ by the matching
approach for fB3 = fB/6 listed in Table 1. Using the expression
in eqn (10) to fit these data points, we also obtain a E 1.6. The
fitting curve and the data points plotted in Fig. 5(b) show good
agreement. These results demonstrate that nequ of the linear-
hyperbranched copolymer with varying architectures can be
roughly estimated using the expression of eqn (10). Note that
the linear-hyperbranched copolymer with fB3 = fB/6 and t = 0.5
becomes the three-generation linear-dendrimer architecture
(i.e. g = 3) with equal B-blocks and its asymmetric effect on
the spontaneous curvature can be roughly quantified by the
nequ E 2.5 intermediate between those of AB2 and AB3

copolymers.
To understand how the asymmetric effect of the linear-

dendrimer copolymer on the spontaneous curvature or the

phase boundaries changes with increasing g, we directly esti-
mate nequ using the matching approach for g = 4 and g = 5,
respectively. In Fig. 6(a), we calculated the sphere/cylinder/
gyroid/lamella boundaries of AB4 with unequal arms in the
range of 25 r wN r 40 as well as those of the linear-dendrimer
copolymer with g = 4. For AB4, we consider two samples with
nequ = 3.20 and nequ = 3.30. The comparison of the phase
boundaries suggests that the phase boundaries of AB4 with
nequ = 3.20 are in good agreement with those of the linear-
dendrimer copolymer with g = 4, and are noticeably better than
those of AB4 with nequ = 3.30. Accordingly, we quantify the
asymmetric effect of the linear-dendrimer copolymer with g = 4
to be nequ E 3.20. Similarly, we estimate nequ E 3.80 for the
linear-dendrimer copolymer with g = 5.

In Fig. 7(a), we plot the estimated nequ of the different linear-
dendrimer copolymers with respect to g. When g = 2 increases
to g = 3, the B-blocks at the outermost generation increase from
2 to 4, only raising n = 2 to nequ E 2.5. In other words, the
asymmetric effect of the linear-dendrimer copolymer with g = 3
is lower than that of AB3 with equal arms. When g = 3 changes
to g = 4, eight B-blocks are added at the outmost generation,
while nequ E 2.5 increases to nequ E 3.2. These results
demonstrate that the addition of these B-blocks at the outer
generation has less effect on the asymmetry. For the ABn

copolymer, the packing of B-blocks nearby the A/B interface is
very crowded, so it forces the interface to bend toward the A-
block. The curved interface generates more space for the multi-
ple B-blocks, thus reducing their stretching degree. In contrast,
as the generation of the linear-dendrimer copolymer increases,
B-blocks are added to the outermost generation while keeping

Table 1 List of estimated nequ and calculated nequ for linear-
hyperbranched copolymers with different t

fB3 = fB/4

t Estimated nequ nequ with a = 1.6

0.1 3.63 3.69
0.2 3.32 3.40
0.3 3.06 3.13
0.4 2.84 2.88
0.5 2.65 2.66
0.6 2.50 2.46
0.7 2.36 2.29
0.8 2.24 2.15
0.9 2.13 2.05

fB3 = fB/6

t Estimated nequ nequ with a = 1.6

0.1 3.35 3.35
0.2 3.10 3.12
0.3 2.87 2.90
0.4 2.67 2.71
0.5 2.50 2.53
0.6 2.36 2.37
0.7 2.25 2.23
0.8 2.16 2.12
0.9 2.10 2.04

Fig. 5 Comparison of estimated nequ by matching the phase boundaries
(filled squares) and calculated nequ using the expression of eqn (10) for
linear-hyperbranched copolymers with different t, a = 1.6 (red solid) for: (a)
fB3 = fB/4; (b) fB3 = fB/6.

Table 2 List of fBi
/fB for the considered linear-hyperbranched copolymers

or ABn

Copolymer fB1/fB (%) fB2/fB (%) fB3/fB (%) fB4/fB (%)

t = 1/3 16.7 8.3 25 —
t = 2/3 8.3 16.7 25 —
AB2.4 4.6 4.6 45.4 45.4
AB3.0 10.6 10.6 39.4 39.4
AB3.2 12.5 12.5 37.5 37.5
AB3.3 13.5 13.5 36.5 36.5
AB3.8 19.2 19.2 30.8 30.8
AB3.9 21.0 21.0 29.0 29.0

Fig. 6 Partial phase boundaries of: (a) AB3.2 (red dot-dashed lines), AB3.3

(green dot-dashed lines), and the linear-dendrimer copolymer with g = 4
(solid lines); (b) AB3.8 (red dot-dashed lines), AB3.9 (green dot-dashed lines),
and the linear-dendrimer copolymer with g = 5 (solid lines). The length
percentages of the B-blocks for all considered ABn are listed in Table 2.
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the B-blocks directly joined with the single A-block unchanged.
In particular, as these B-blocks move away from the A/B
junction or the A/B curved interface, they can access expanding
space and thus they have less effect on the curvature. Even for
g = 5 with sixteen B-blocks at the outermost generation, its
asymmetric effect on the phase diagram is still lower than that
of AB4 with equal arms because of nequ E 3.8.

Previous works42,44,47,48,51 have shown that the architectural
asymmetry of the block copolymer is commonly encoded into
its phase diagram, leading to an expansion of the spherical
phase region on one side and a compression on the opposite
side. In the widened spherical region, complex Frank–Kasper
phases tend to appear. Our previous work51 on asymmetric ABn

copolymers with unequal B-arms demonstrated that the emer-
gence of Frank–Kasper phases could be quantitatively indicated
by the value of nequ. Specifically, the Frank–Kasper s-phase
appears when nequ \ 1.5, while the another Frank–Kasper A15-
phase starts to emerge for nequ \ 2.5. To further confirm that
such conclusions also hold for the linear-dendrimer copoly-
mers, we calculated the disorder/FCC/BCC/Frank–Kasper/C6/G/
L phase boundaries for the linear-dendrimer copolymers with
g = 2, 3, 4, and 5 at wN = 40, as shown in Fig. 7(b). In the phase
sequence of g = 3, there is a wide region of s-phase but no A15
phase region due to nequ E 2.5. For g = 4 with nequ E 3.2 4 2.5,
there exists a considerable region of A15-phase.

4 Conclusion

In summary, we have investigated the self-assembly behaviors of
linear-hyperbranched copolymers using self-consistent field theory
(SCFT). Firstly, we view the three-generation linear-hyperbranched
copolymers as the derivatives of ABn with equal or unequal B-arms.
Different linear-hyperbranched copolymers are generated by mov-
ing two B-blocks along the arms of AB2, and their equivalent arm
numbers nequ are estimated by comparing their phase boundaries
with those of ABn copolymers with unequal B-arms. The result of
2 r nequ r 4 suggests that their asymmetric effect on the
spontaneous curvature or the deflection of phase boundaries,
which is intermediate between those of AB2 and AB4 copolymers,
is dependent on the tethering distance from the A/B junction point.

Then we turn to study the asymmetric effect of the linear-
dendrimer copolymers composed of linear A-block as the first

generation and equal B-block on the outer g � 1 generations.
Note that the linear-dendrimer copolymer with g = 2 is AB2.
For g = 3, 4 and 5, the equivalent arm numbers are estimated as
nequ E 2.5, 3.2 and 3.8, respectively. The changing tendency of
nequ with g indicates that the addition of B-blocks at the outer
generation has less effect on the spontaneous curvature
because they are further from the A/B junction. The asymmetric
effect of the linear-dendrimer copolymer quantified by the
value of nequ is confirmed by the changing trend of these
spherical phase regions. Specifically, the phase sequence of
g = 3 contains Frank–Kasper s-phase but no A15-phase because
nequ E 2.5 is close to the critical value of nequ for the emergence
of A15. Since nequ increases to about 3.2 for g = 4, a noticeable
region of A15 appears in the phase sequence. Our work pro-
vides a comprehensive understanding of the asymmetric effect
on the phase boundaries for linear-hyperbranched copolymers.

Data availability

Isosurface plots and the corresponding parameters of the
candidate ordered phases considered in the current study are
available in the ESI.†
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