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The effect of oscillatory decay in charge density in concentrated ionic solutions and ionic liquids on the
double-layer capacitance is studied within the framework of a mesoscopic theory. Only Coulomb and
steric forces between the ions that are present in all ionic systems are taken into account. We show that
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the charge oscillations lead to a rescaled distance between the electrode and the virtual monolayer of
counterions in the Helmholtz capacitance, and the scaling factor depends on the period of the charge
oscillations. Our very simple formula for large density of ions and small voltages can serve as a reference
point for the double layer capacitance in concentrated ionic solutions and ionic liquids, and can help to
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|. Introduction

Understanding the fundamental properties of a double-layer in
concentrated electrolytes and room temperature ionic liquids is
of great importance for designing fuel cells, batteries, super-
capacitors and energy storage devices. In the early model of the
double layer, the counterions form a layer separated from the
electrode by a distance L that was first approximated by the
ionic diameter a. In this model, the Helmholtz capacitance is
simply Cy; = ¢/(4na), where ¢ is the dielectric constant. In a more
accurate model of the double layer," thermal motion of the ions
is taken into account, and in the screening cloud of ions the
charge density decays with the distance from the electrode with
the Debye screening length /p."* In the Debye capacitance, the
diffuse layer of counterions is taken into account, and L = Ap.
The Debye capacitance Cp = ¢/(4n/p) is a reference point for
dilute electrolytes at very small voltages.

In concentrated electrolytes and ionic liquids (IL), however,
the charge density decays with the distance from the electrode
in an oscillatory way, and the decay length differs significantly
from /p. The simple picture of dilute electrolytes where the
average distance between the ions is much larger than their
diameter is no longer valid, and the assumption of point-like
ions is not justified.

A lot of effort has gone into experimental, theoretical and
simulation studies of the structure of concentrated electrolytes
and IL.*** On the one hand, universal behavior was observed
by the Perkin group for the decay length /; of the force between
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disentangle the universal and specific contributions to the capacitance in particular systems.

charged objects immersed in concentrated electrolytes or
IL.*%® ], determined in these experiments obeys the scaling
Asl’p ~ (alAp)* with n = 3 for all ionic systems confined between
crossed mica cylinders.*®® This result indicates increasing
charge-charge correlation length for increasing concentration
of ions. In theoretical and simulation studies of concentrated
ionic solutions as well as in recent SAXS experiments,'®>* the
increasing /s for increasing concentration of ions was con-
firmed, but different values of n were obtained in different
works. The underscreening observed in the above experimental,
simulation and theoretical studies was not confirmed by the
AFM experiments with ionic systems confined between silica
surfaces,>* and the issue remains controversial.

On the other hand, specific effects play an important role in
determining the capacitance, especially in the case of polar
solvents, where ¢ may exhibit strong dependence on p and on
the distance from the electrode.>®® In general, the perfor-
mance of the double layer capacitance is determined by a
combination of many factors that include the concentration
of ions in the electrolyte solution, size and nature of the ions,
solvent polarity, electrode material, electrolyte-surface interac-
tions, pore geometry, temperature, etc.”*™*' In particular, elec-
trode surface morphology modifies the structure of the electric
double layer and can either break or enhance overscreening
depending on the relationship of the surface roughness to the
electrostatic correlation length and the ion size-asymmetry.***?

It is not easy to disentangle different effects on the capaci-
tance. In this work, we consider the simplest model of ionic
systems with the size of the ions taken into account, namely the
restricted primitive model (RPM) of charged hard spheres with
equal diameter a and opposite charges in a structureless
solvent characterized by the dielectric constant ¢. In this model,
the Coulomb and steric interactions lead to the oscillatory
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decay of the charge density with the distance from a charged
boundary.**™*® We can thus determine the effect of the charge
layering near the electrode on the capacitance that should be
common for many concentrated ionic solutions. In particular
cases, specific interactions and the dielectric constant depen-
dence on the local environment can play important roles. Our
purpose, however, is to find a reference point for the capaci-
tance in concentrated ionic solutions at very small voltages, in
analogy with the Debye capacitance for dilute electrolytes. To
achieve this goal, we use the theoretical approach developed in
our previous works for the description of systems with sponta-
neous inhomogeneity in the bulk, near a charged wall and in a
slit geometry.17‘22’45’47’48

In Section II, we briefly summarize the mesoscopic theory
developed in ref. 17,22,45,47 and 48. In Section IIL.A, we present
results for dilute electrolytes to test the mesoscopic theory
predictions for the capacitance. In Section III.B, we derive our
results for the capacitance of systems with large density of ions.
We discuss our results in Section IV, and conclude in Section V.

ll. The mesoscopic theory

In this section, we briefly summarize the key concepts, assump-
tions, approximations and results of the mesoscopic theory that
can be applied to dilute as well as to concentrated electrolytes.
The theory developed and described in detail in previous
studies'”*>*”*® allows the determination of the differential
capacitance of the double layer in terms of the structure of
the ionic solution. In principle, different levels of approxi-
mation in this theory are possible, but in this work, we limit
ourselves to the simplest approximation to highlight the under-
lying effect of the structure, i.e., the distribution of the ions, on
the capacitance.

In order to calculate the capacitance of the double layer, we
consider the electrolyte in contact with a planar metallic
electrode, and assume that the charge of the electrode is
distributed over its flat surface. In the case of concentrated
ionic solutions, for example water in the salt electrolyte, IL, or
IL mixture with a neutral solvent, the assumption of point
charges is not valid. The simplest model that takes the size of
the ions into account is the restricted primitive model (RPM) of
charged hard spheres with equal diameter a and opposite
charges in a structureless solvent characterized by the dielectric
constant ¢. If the sizes of the positive and negative charge ions,
a, and a_, are somewhat different, we assume a = (a, + a_)/2.
We adopt this model, and assume in addition monovalent ions
with the charge homogeneously distributed over the whole
volume of the ion. For the same valency n of the cations and
the anions, all our results apply when e is replaced by ne, where
e is the elementary charge. For different valences of the anions
and the cations, the theory becomes more difficult because of
the lack of symmetry.*®*® We should mention that significantly
different sizes of ionic cores together with specific interactions
can lead to spontaneous formation of relatively large charged
domains,”** as well as an asymmetric shape of the electric
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Fig. 1 Cartoon explaining the mesoscopic densities in our theory in the
case of IL. The yellow shaded region represents the solid wall with fixed
charge or fixed voltage. The red and gray circles represent the negatively
and positively charged ions. The mesoscopic density is p;(z) = 6{{z)/x,
where (;(z) is the fraction of the volume of the layer centered at z and of
the thickness a that is covered by the /" type ions. A typical layer with the
center at z = zp is bounded by the dashed lines. With this construction, p;(z)
are continuous functions. The charge at the surface of the solid wall is
included in the considered system. We choose z = 0 at the distance a/2
from the surface of the electrode inside the solid, as shown in the cartoon.
With this choice, the mesoscopic charge density c(0) = p,(0) — p_(0)
contains only the charge from the wall, i.e. the charge included in the liquid
does not contribute to ¢(0). When the charge of the metallic electrode is
confined to the surface at z = a/2, a layer of the thickness a with the center
at z < 0 contains no charge; therefore, c(z < 0) = 0. With this formulation
of the mesoscopic theory, we assume that the charge in the electrode of
area A is equal to ec(0)A, and the overall charge neutrality condition is
o dze(z) =0.

double layer capacitance.”*>® The cases of significant size
disparity, different valences of the cations and the anions and
strong specific interactions require separate study.

Our theory®® is based on the local mesoscopic volume
fraction (; of the i component of the mixture. The mesoscopic
volume fraction is defined by analogy with its macroscopic
counterpart, namely, {,(r) is equal to the fraction of a meso-
scopic volume with the center at r that is occupied by the
particles of the considered species. In general, it depends on
the scale of the coarse graining.

We assume that, near a flat electrode, {; depends only on the
distance z from the solid-liquid interface. As illustrated in
Fig. 1, for the IL in contact with a flat solid surface, we identify
the mesoscopic regions with layers of thickness a that are
parallel to the solid surface. The mesoscopic volume fraction
of the anions or the cations at the center of the layer is equal to
the fraction of the volume of that layer that is occupied by the
anions or the cations, respectively. With this definition, we
obtain continuous functions of the distance from the electrode.
Dimensionless mesoscopic densities are defined by p,(z) =
6{,(z)/n, and in the ionic system, i = +, —. It is convenient to
introduce the local dimensionless number density of ions,
p(z) = piz) + p_(z) and the local dimensionless charge,

This journal is © the Owner Societies 2025
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¢(z) = p+(2) — p—(2). For monovalent ions, the local charge
density is ec(z), where e is the elementary charge.

There are some ambiguities in defining the mathematical
surface representing the solid-liquid interface at the micro-
scopic and mesoscopic levels. We choose the origin of the
coordinate frame, z = 0, inside the solid at the distance a/2
from the solid surface at which the electrode charge with the
surface charge density eo, is homogeneously distributed (see
Fig. 1). From Fig. 1, it can be clearly seen that in our mesoscopic
approach, ¢(0) is equal to the dimensionless surface charge
density ;, = a?ay. For z < 0, we have ¢(z) = 0 when the charge of
the electrode is confined to the surface of the solid, since this
surface is now outside the layer with the center at z < 0. For
0 < z < a, both the electrode and the liquid contribute to ¢(z).
Finally, for z > a, the only contribution to the charge density
ec(z) comes from the electrolyte. The charge-neutrality condi-
tion of the whole system in this theory takes the simple form

0
J dze(z) = 0. €))
0

The electrostatic potential at z = 0 is given by the Poisson
equation in the integral form,

Y(0) = —A‘EJWdzzc(z)7 (2)
ea Jg
and can be calculated once the shape of ¢(z) is known. Here and
below, the distance is in a units. All the characteristic lengths
will be in a units as well, i.e. we will consider dimensionless
quantities.

Determination of the equilibrium shape of ¢(z) is the main
difficulty of the theory. From thermodynamics, we know that in
a system with fixed volume and fixed temperature 7 that is in
contact with a bulk reservoir of ions, the grand thermodynamic
potential Q takes a minimum. Thus, we should consider the
grand potential for different forms of p(z) and ¢(z), and find the
functions that minimize the functional

Q[C,p] = U[C] - TS[C,p] — UN, (3)

where u and N are the chemical potential and the number of
the ions, respectively. The internal energy Ulc| depends only on
the charge c if the specific interactions are neglected, and takes
in kgT = 1/f units, the form

pU[c] = %B[dr] [drzc(rl )@c(rz) @)

where I = fie’/ae is the Bjerrum length in @ units, r = |r; — 1|,
and g(r) is the pair distribution function. The entropy S[c,p]
consists of the entropy of mixing of the anions and the cations,
and of a contribution associated with packing of the hard
spheres representing the ionic cores.

The exact expressions for Q[c,p] (including the precise form
of g(r) and S[c,p]) are not known, and different approximate
theories were developed. In the bulk, the position independent
p is a function of the chemical potential and temperature. The
average charge density is ¢ = 0 because it is equally probable to
find an anion or a cation in a given microscopic volume in the
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absence of external fields. If an ion is kept at a given position,
however, then it is more probable to find an oppositely charged
ion in its vicinity than an ion of the same charge because the
energy in the former case is lower. The charge-charge correla-
tion function is a result of the competition between the energy
favoring oppositely charged close neighbors and the entropy
favoring the random distribution of the ions in the whole
volume.

In our mesoscopic theory, we assume that the ions
cannot overlap; therefore, g(r) = 0 for r<1 (r is in a units),
and g(r) —» 1 for r - oo, since at very large distances the ions
are not correlated. In the mean-field (MF) approximation, the
correlations are neglected for r > 1, and g(r) & 6(r — 1), where
0r —1)=1forr > 1 and 6(r — 1) = 0 for r < 1. In this
approximation,

17,56

pU|c] z%BJdrl Jdrzc(rl )@c(rz)
\ (5)
= 2 [akelio Ve ()i,
where
Velk) = meotl) ©

is the energy per unit amplitude of a charge wave with the
wavelength 27/k excited in the homogeneous system, and ¢(k) is
the amplitude of this wave. V¢(k) < 0 and the energy decreases
when the charge wave with k > n/2 is excited. It takes a
minimum for k, &~ 2.46 (in 1/a units), consistent with energe-
tically favorable oppositely charged close neighbors.

The charge-charge correlation function in Fourier represen-
tation takes in this theory the form

. 177!
ﬂWPW:%W®+—} )

Pr

where pr = p in the MF approximation and for p « 1. In
concentrated solutions, however, pr < p. The renormalized
density of ions in the mesoscopic theory follows from the
energetically favorable charge waves that play a similar role as
the neutral clusters observed in concentrated electro-
lytes,"®*”® je., they lead to a smaller density of free ions.
Equations for py are developed and discussed in ref.17 and 56.

The charge-charge correlations in real space are obtained by
the inverse Fourier transform of (¢(k)é(—k)), and the decay
lengths are obtained from simple poles of (¢(k)¢(—k)) extended
to the complex g plane. In general, the imaginary pole q = ia;
gives a monotonic decay with the decay length 1/a;, and the
complex poles g = iy £ o4 give an oscillatory decay with the
decay length 1/0 and the period 2m/a;.

In the presence of the electrode, the excess density over the
bulk value, Ap(z) = p(2) — pb, and ¢(z) # 0 minimizes the
functional AQ[c,Ap] = Q[c,pb + Ap] — Qpun0,0p). When the bulk
is in thermal equilibrium, the terms linear in Ap and ¢ in Taylor
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expanded AQ[c,Ap] vanish, and AQ[c,Ap] contains terms of the
second and higher orders in the fields,

BAQ[c,Ap] = %sz {c(z) <IB Ve (—i%) + i)c(z)
+ 4906) (R = R ) 8002 ®

T Ben(per (), Ap(z»} ,

where the parameters R, and R, come from the entropic

contribution to Q and from the correlations between fluctua-

tions of the local charge.”>*® The differential operator

5 dy . . .

Ve (fid—) is defined through the Taylor expansion, and the
V4

last term in eqn (9) is given by

anl+nﬂﬁ1 Api’ﬂcn (9)
OAp™dc" min!’

ﬁgh(pbv () Ap) = Z

m+n>2

where fifj, is the free energy density of a mixture of hard spheres
in kgT units. Minimization of the functional (8) leads to the
ordinary differential Euler-Lagrange (EL) equations

(e(-igy) + 5 )ete) + PP g qag
(RO _ RZ(;L;) Ap(z) + aﬂgh(pg:AiEzis Ap(z)) -0, (11)

that should be solved under boundary conditions (fixed charge
or fixed voltage). Note that the above equations are nonlinear.
In addition, the second terms on the LHS lead to a coupling
between the charge and the number density profiles. This
makes the problem technically difficult. However, gu(pn,¢,Ap)
is of a higher order in the fields ¢ and Ap; therefore, Ogy/0c
becomes a negligible correction for a sufficiently small charge,
i.e. for small voltages of the electrode. Unfortunately, unless the
full set of equations is solved, it is not possible to accurately
determine the range of the voltage for which the derivatives of
gn in the above equations can be neglected. We can expect that
the voltage is certainly too strong and the derivatives of gj, have
to be included when the obtained dimensionless charge is
c(z) > 1.

When the derivatives of fig;, can be neglected, the EL
equations for Ap and c are linear and decoupled. The linearized
EL equation for ¢(z) is

(zB Ve <fi£) + i) c(z) =0.

A solution of a linear equation is a sum of exponential terms
oc exp(4z). In our case, 1 = —ig, where complex g is a solution of

(12)

A 1
the equation /3Vc(q) +p—: 0. For our purpose here, it is
R

important that the linearized EL equation leads to ¢(z) decaying
at large distances with the same decay lengths as the charge-
charge correlation function (compare eqn (12) and (7)). The
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solution of eqn (12) must satisfy the charge neutrality
condition (1).

Eqn (12), (1), (2) and ¢(0) = a®q, allow for the calculation of
the differential capacitance in the case of small voltages, and
with the specific effects of the solvent neglected.

[ll. Results
IIILA Capacitance of dilute electrolytes

In our mesoscopic theory, there are two inverse decay lengths,
a, > a, for large T and small p, because there are two solutions
of the equation (see eqn (7))

cosh(a;) 1

—4751372 +—= 0,
aj Pr

(13)

and the asymptotic decay of correlations at large distances is
monotonic. For p — 0, we get 1/a, — A, where Aj =
1/\/Anlgp = Ap/a is the dimensionless Debye screening length
(recall that /g and p are dimensionless), and a, is of order of
unity (in 1/a units). a; and a, merge at the so-called Kirkwood
line on the (p,T) diagram,* and at lower T they transform to a
pair of complex inverse decay lengths that lead together to an
oscillatory decay of the charge-charge correlations. This result
agrees with previous theories and simulations,’*®* and is
consistent with dominant roles of the entropy and energy at
high and low T, respectively.

Because the decay lengths of the charge density are the same
as the correlation lengths, the charge-density profile satisfying
the charge-neutrality condition has on the high-T small p side
of the Kirkwood line the form

o= (e o)

: (19
where the length unit is the ion diameter a. The dimensionless
inverse decay lengths are determined numerically based on
ref. 17 and 59. Similar values were obtained in different
theories.”" A representative c¢(z) is shown in Fig. 2, for
gy =0.01, Iy =2 and p = 0.01.

The physical meaning of the two decay lengths in the context
of the mesoscopic theory can be understood by comparing
Fig. 2 for the representative charge density and Fig. 1 illustrat-
ing the construction of the theory. For large z, the decay of the
charge is monotonic and the sign of ¢(z) is opposite to the sign
of the electrode. The decay length is 1/a, — A}, for p — 0, as
discussed above. By construction of the mesoscopic theory,
however, for z increasing from z = 0 to z = 1, there is a
contribution to ¢(z) from the charge of the electrode and an
increasing contribution from the opposite charge of the ions in
the electrolyte (see Fig. 1 for 0 < z < 1). Thus, ¢(z) must change
sign for z < 1. The two terms in eqn (14), one with the same
sign as the sign of the charge of the electrode and small decay
length 1/a; and the other one with the opposite sign and large
decay length 1/a,, are consistent with the above physical
picture.

This journal is © the Owner Societies 2025


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp04669b

Open Access Article. Published on 03 April 2025. Downloaded on 1/12/2026 11:53:11 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

PCCP
0.010
0,008 p=0.01, 1;=2
a,=5.474, a,=0.537
c"=0.01
0.006 -
—_
N
N
©  0.004
0.002
0.000 +\———
0 2 4 6 8
z

Fig. 2 The dimensionless charge density in the case of dilute electrolytes
with p = 0.01, [z = 2 and dimensionless surface charge density o5 = 0.01 as
obtained in the mesoscopic theory. The decay lengths satisfy the
equation 4nlgpgrcosha; = a,z, and pr < p satisfies the equations presented
in ref. 17. z is in units of the ion diameter a.

The surface-charge density in the mesoscopic theory is

ec(0) edy(ay! —ar")ay
2 a '

eg) = (15)

For the potential at z = 0, we obtain from eqn (14) and (2)

B 4me A, (a[' — af')

U=Y0) wara

(16)

The capacitance C = d(eo,)/dU is easily obtained from
eqn (15) and (16) and is given by
(17)

For dilute electrolytes, a,/a — 1/ip that can be easily seen
from the equation l;Vc(ia,) + 1/p = 0 for the imaginary simple

0.010
p=0.4, 1;=2
c"=0.01
0.005 - 0,=0.928, 0,=2.184
_ pr=0.185
N
o
0.000 N
-0.005 ] . ]
0 2 4 6
z
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pole and V(ia,) — —4n/a,® for p « 1 (see eqn (7) and (6)),
giving a,” = 4nlyp. Thus, for dilute electrolytes, we obtain

éay
Ciit = ——,
D

(18)
where the dimensionless parameter @, in our theory is larger
than 2 and increases with increasing (Izp) ", but remains of
order of unity. The precise value of this inverse microscopic
length should be determined in a more exact microscopic
theory. Thus, in the limit of dilute electrolytes, we obtain the
Debye capacitance up to a parameter a; = O(1).

In order to understand the origin of the difference between
eqn (18) and the Debye capacitance, recall that the Debye
capacitance was obtained for point charges. The point charges
can be at the distance z = 0 from the electrode surface, and ¢(z)
is monotonic for the whole range of z > 0. If the size a of the
ions is taken into account, microscopic details such as the
charge distribution over the volume of the ion, the definition of
the position of the electrode surface, etc. start to play a role, and
some ambiguities in the definition of the capacitance in terms
of the charge distribution appear. In our mesoscopic theory, the
charge density ¢(z) is averaged over the layers of the thickness a
(Fig. 1), and as discussed above, the charge profile is nonmo-
notonic and changes sign for z ~ 1. This leads to a smaller
value of ¥(0) defined in eqn (2), and as a result to a larger value
of the capacitance, with the coefficient a; associated with the
charge distribution in the close neighborhood of the electrode
surface. To compare our predictions with the results of simula-
tions or experiments on the quantitative level, we should take
into account that formulas (17) and (18) contain the factor a;
that in the theory with the microscopic structure averaged over
the region with the linear size ais 2 < a; < 6 rather thana, =1
present in the Debye capacitance for point charges.

IILLB Capacitance of concentrated electrolytes

The solution of the EL eqn (12) at the low-T side of the
Kirkwood line has the form

00109 p=0.7, 1,=4
c"=0.01
0.005 0=0.118, a1, =2.454
/\ pg=0.154
-
N
S 0.000 \//\\/\\/\V/\V/\V/\
-0.005 - \/
-0.010 : [ , .
5 10 15 20 25
z

Fig. 3 The dimensionless charge density in the case of the concentrated electrolyte with p = 0.4, [ = 2 and pr &~ 0.185 (left)and p = 0.7, [g = 4 and pr ~
0.154 (right) for dimensionless surface charge density ; = 0.01, as obtained in the mesoscopic theory. ag and o, satisfy the equations (® — p?) +
4nlgprcoshagcosay = 0 and ayog — 2nlgprsinhagsinag = 0. z is in units of the ion diameter a.
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c(z) = Ace"**sin(oyz + 0). (19)

The above dimensionless charge density profile agrees with
the fixed surface charge density o, and satisfies the charge-
neutrality conditions (1) when

2
aop o
A. =—— 0O =arctan| — .
sin 6 o

(20)

A typical dimensionless charge density near a weakly
charged electrode is shown in Fig. 3. Predictions of the meso-
scopic theory for the charge profile®® agree with simulation
results of the RPM model in the case of large density of ions.**
Namely, the electrostatic potential f¥(z) was very similar in the
simulations and in our mesoscopic theory for two values of the
surface charge studied in the simulations and for the same
thermodynamic states and parameters of the model. In addi-
tion, as shown for example in ref. 46, eqn (19) perfectly fits the
charge density in atomistic simulations of IL — alcohol mixture
for z > 2m/oy. The atomistic simulations give different shapes
of ¢(z) for z < 2m/oy; because the microscopic charge density
obtained in the simulations is compared with the charge
density averaged over the layers of the thickness a in the
mesoscopic theory.

The electrostatic potential (2) at z = 0 for the charge density
given by eqn (19) and (20) is

74rreACoq cos(6)

U=Y0)=—FF—~
(0) eaog (o + 042)

(21)
The capacitance can be easily calculated using es, = €A, sin
0/a® with eqn (20) and (21), and the result is

s(aoz + oclz) &0ér (a02 + oclz)
C = =
4na a

) (22)

where ¢ = 4ne.&o, with &. and &, ~ 9 x 10~° pF m ™" denoting the
relative dielectric constant and the vacuum permittivity,
respectively.

The dimensionless wavenumber o, < k, ~ 2.46 of the
damped charge oscillations decreases slightly for increasing
(Isp) " in the concentrated electrolyte.’® As found recently®®>°
in concentrated electrolytes, the dimensionless inverse decay
length is ¢y « 1. In the lowest order approximation, we keep
only the terms quadratic in Ap and ¢, and follow the steps
described in ref. 45 and 48. We can assume that in concen-
trated electrolytes and IL a,”> « o4, and

eoarac]z
P

C (23)

Formulas (22) and (23) relating the capacitance with the
period 2mna/oa; of the damped charge oscillations near the
electrode are the main result of this work. We should empha-
size, however, that the smoothed shape of the mesoscopic ¢(z)
near the electrode leads to a smaller value of the electrostatic
potential at z = 0, hence to a larger value of the capacitance, as
already discussed in detail in Section IILA.
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IV. Discussion

The expressions for the capacitance of dilute and concentrated
electrolytes in the RPM near a flat metallic electrode, eqn (17)
and (22), are significantly different. They become identical,
however, at the Kirkwood line separating the monotonic and
oscillatory asymptotic decays of the charge density because at
the Kirkwood line a; = a, = oy and «; = 0. Thus, we obtained a
continuous function for the whole range of the density of ions.
Comparison of C with Cy = g¢y/a and Cp = &/(4nip) for the
density of ions 0 < p < 0.7 and for fixed Bjerrum lengths Iy =2
and i = 4 is shown in Fig. 4.

Our general analytical formulas (17) and (22) were obtained
from the linearized EL eqn (12); therefore, they are valid only
for very small voltages. Nevertheless, they highlight the effect of
the charge distribution on the capacitance for the whole range
of the density of ions on a general qualitative level. For large
voltages, the charge density is no longer small, and the coupled
nonlinear EL equations for ¢ and Ap (see eqn (10) and (11) and
ref. 56) have to be solved to determine C. This is possible only
numerically for particular cases, and will be a subject of our
future study.

The formulas for the capacitance become particularly simple
for very dilute and very dense electrolytes. In the former case,
we obtain the well-known Debye capacitance Cp, = ¢/(4nip) up to
a dimensionless coefficient of order unity (see eqn (18)). For the
very concentrated electrolyte or IL, we obtain formula (23) that
is strikingly similar to the Helmholtz capacitance Cy(L) =
¢/(4nL) in the early model of the double layer, where L is the
distance between the electrode and the surface occupied by the
counterions. We take into account the whole oscillatory charge
profile such as the ones shown in Fig. 3, and find that the
alternating oppositely charged layers have the same effect as a
single layer of counterions located at the distance L = a/«,> from
the electrode. This shows that the simplest model of the double

O T T T T T T

0.3
p

Fig. 4 The capacitance C/Cy obtained from (17) and (22) (solid lines) and
Cp/Cy (dashed lines) as a function of the dimensionless density of ions for
the Bjerrum length [z = 2 and (g = 4 in a-units.

0.4
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layer works well even in the case of a rather complex structure,
but with the distance of the virtual monolayer of counterions
from the electrode, L, depending on the dimensionless wave-
number o; & 2.46 of the charge oscillations.

As shown in Fig. 4, C/Cy increases quickly for increasing
p < 0.15, and slowly for p > 0.3, whereas Cp/Cy increases with
p gradually, with almost constant slope. For the two considered
values of lg, C/Cy > 5 if p > 0.3. Moreover, C > Cp, but C — Cp
decreases with increasing p, and for Iy =4, C = Cp for p ~ 0.7.
Let us compare predictions of the mesoscopic theory for the
charge-density profiles shown in Fig. 3 with the classical Debye
capacitance in more detail. For p = 0.4 and /3 = 2, and the
diameter of hydrated ions a ~ 0.5 nm corresponding to
~2.65 M NaCl,q, we get oy =~ 0.93 and o, =~ 2.18, and obtain
from eqn (22)

C ~ 10¢ pF cm 2. (24)

From /p = a/\/4nlB , we get in this case Ap & 0.16 nm, and the
formula valid for dilute electrolytes gives

Cp X 5.6¢; UF cm™ 2, (25)

The Debye length in this case differs from the physically
relevant lengths a/ay ~ 0.54 nm and 2mna/oy; =~ 1.44 nm,
however. In another example shown in Fig. 3 with p = 0.7 and
Iy = 4, we obtain assuming a = 0.9 nm

C ~ 6¢ UF cm™>. (26)
The Debye length is Ap & 0.15 nm, and
Cp ~ 5.9¢;, uF cm ™2, (27)

The values of C and Cp, are very similar in this case, but the
interpretation is quite different. For the oscillatory decay of the
charge density, the key factor is the period of the charge
oscillations near the electrode, and the Debye length is not
associated with characteristic lengths of the charge distribu-
tion. These examples show that care must be taken in inter-
preting experiments and simulations because correct numbers
can follow from incorrect formulas.

In order to verify the accuracy of C given in eqn (22) and (23)
on the quantitative level, we should compare the theoretical
and simulation results for the same model. In ref. 44, C was
obtained by simulations of the RPM with a =1 nm, T = 450 K,
& =2and p ~ 0.6 nm >, and the result of simulations was
C/Cp =~ 0.15. For the above parameters, we obtain ip =~
0.084 nm and eqn (23) gives C/Cp, = a,*Apla ~ 0.5, where we
used oy = 2.45. Recall that the capacitance obtained in the
mesoscopic theory for dilute electrolytes was overestimated by
the factor 2 < a; < 6. In the case of p = 0.6 nm > and large Iz,
the theoretical result is about three times larger than the
simulation result, i.e. a systematic overestimation of the capa-
citance by a factor ~ 3 is present in the mesoscopic theory for
the whole density range.

Our results show the effect on the capacitance of the charge
ordering in the region extending to large distances from the
electrode. On the quantitative level, however, the capacitance
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also depends on the details of the microscopic structure in the
vicinity of the electrode that should be determined within a
more exact microscopic theory. In our mesoscopic theory, the
effect of the microscopic structure can be taken into account by
additional scaling factor that based on the comparison with
simulations is about 1/3. As already discussed at the end of
Section III.A, the larger value of the capacitance in our theory
follows from the smaller value of the electrostatic potential at
z = 0 that in turn is a result of the smoothed shape of the
mesoscopic ¢(z) near the electrode.

Let us discuss consequences of eqn (23) on a general level.
The capacitance decreases with increasing size of the ions, in
agreement with experimental results for aqueous ionic solu-
tions and IL.>”** The dimensionless period of the charge wave
in concentrated electrolytes depends rather weakly on density.
According to our mesoscopic theory, in IL or highly concen-
trated electrolytes, the dimensionless o; = 2ma/i. is 2 <
oy < 2.46, corresponding to the wavelength of the charge-
density wave 2.55a < A, < 3.14a. Hence, in IL, we have for
eqn (23) the approximation

4.8 6¢.80

S O i

P P (28)

In the RPM, the dependence of ¢ (and in turn of Iz) on
the density of ions and on the distance from the electrode
is neglected, whereas in different solvents, especially in water,
this dependence can be quite strong. In aqueous solutions, &,
decreases from about 80 in pure water to about 40 for 5 M
solution of NaCL* In the Stern layer, the orientations of
dipoles of water molecules in the hydration shells of ions are
almost fixed, and the dielectric constant may decrease to & ~ 5
3564766 Thus, quantitative predictions for the
capacitance in particular cases are not possible within the
RPM, especially for polar solvents such as water. Our results
show, however, the general relationship between the capaci-
tance and the period of the damped charge oscillations. The
complex charge distribution can be replaced by the simplest
model of the double layer, provided that the virtual single layer
of counterions is separated from the electrode by the distance
equal to the diameter of the ions re-scaled by the coefficient
proportional to o, >, where «; is the wavenumber of the
damped charge oscillations in 1/a units and the proportionality
constant is ~ 3.

Detailed comparison of our prediction with results of simu-
lations and experiments for particular systems goes beyond the
scope of this work because it would be necessary to disentangle
the universal properties captured by the RPM and the specific
properties such as the size and nature of the ions, polarity of
the solvent, the charge distribution and the roughness of the
electrode’s surface. Such an analysis should be done in future
studies.

or even less.

V. Conclusions

Our goal was to determine on a very general level the effect of
charge ordering in concentrated electrolytes and IL on the

Phys. Chem. Chem. Phys., 2025, 27, 9143-9151 | 9149


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp04669b

Open Access Article. Published on 03 April 2025. Downloaded on 1/12/2026 11:53:11 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

capacitance of the double layer. We limited ourselves to the
restricted primitive model, RPM, where spherical ions with
equal diameters and opposite charges are dissolved in a struc-
tureless solvent characterized by the dielectric constant ¢. This
way we can determine the effect of the Coulomb and steric
interactions in the absence of specific effects that differ from
one system to the other. We obtained very simple expressions
for the capacitance in dilute and concentrated electrolytes in
the framework of the same mesoscopic theory. The main
conclusion is that the simplest early model of the double layer
works surprisingly well in the case of large density of ions,
provided that the distance between the virtual single layer of
counterions and the electrode is equal to the ion diameter re-
scaled by a coefficient determined by the period of the damped
charge oscillations. This conclusion agrees with recent simula-
tion results.®® Our formulas (22) and (23) should play for
concentrated ionic systems a similar role as the Debye capaci-
tance plays for dilute electrolytes. These equations can serve as
a reference point that allows to disentangle universal and
specific features of the capacitance.

Finally, it is worth mentioning that since our theory is
suitable for describing the structural properties of concentrated
electrolytes and their effect on capacitance, it is worthwhile to
extend it to nonequilibrium properties, because in energy
storage devices, the charging/discharging dynamics plays an
important role.®”°® The extension can be performed by analogy
with the DFT extension to the DDFT.%°
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