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Mesoscopic theory for a double layer capacitance
in concentrated ionic systems

A. Ciach *a and O. Patsahan b

The effect of oscillatory decay in charge density in concentrated ionic solutions and ionic liquids on the

double-layer capacitance is studied within the framework of a mesoscopic theory. Only Coulomb and

steric forces between the ions that are present in all ionic systems are taken into account. We show that

the charge oscillations lead to a rescaled distance between the electrode and the virtual monolayer of

counterions in the Helmholtz capacitance, and the scaling factor depends on the period of the charge

oscillations. Our very simple formula for large density of ions and small voltages can serve as a reference

point for the double layer capacitance in concentrated ionic solutions and ionic liquids, and can help to

disentangle the universal and specific contributions to the capacitance in particular systems.

I. Introduction

Understanding the fundamental properties of a double-layer in
concentrated electrolytes and room temperature ionic liquids is
of great importance for designing fuel cells, batteries, super-
capacitors and energy storage devices. In the early model of the
double layer, the counterions form a layer separated from the
electrode by a distance L that was first approximated by the
ionic diameter a. In this model, the Helmholtz capacitance is
simply CH = e/(4pa), where e is the dielectric constant. In a more
accurate model of the double layer,1 thermal motion of the ions
is taken into account, and in the screening cloud of ions the
charge density decays with the distance from the electrode with
the Debye screening length lD.1,2 In the Debye capacitance, the
diffuse layer of counterions is taken into account, and L = lD.
The Debye capacitance CD = e/(4plD) is a reference point for
dilute electrolytes at very small voltages.

In concentrated electrolytes and ionic liquids (IL), however,
the charge density decays with the distance from the electrode
in an oscillatory way, and the decay length differs significantly
from lD. The simple picture of dilute electrolytes where the
average distance between the ions is much larger than their
diameter is no longer valid, and the assumption of point-like
ions is not justified.

A lot of effort has gone into experimental, theoretical and
simulation studies of the structure of concentrated electrolytes
and IL.3–22 On the one hand, universal behavior was observed
by the Perkin group for the decay length ls of the force between

charged objects immersed in concentrated electrolytes or
IL.4–6,8 ls determined in these experiments obeys the scaling
ls/lD B (a/lD)n with n = 3 for all ionic systems confined between
crossed mica cylinders.4–6,8 This result indicates increasing
charge–charge correlation length for increasing concentration
of ions. In theoretical and simulation studies of concentrated
ionic solutions as well as in recent SAXS experiments,10–23 the
increasing ls for increasing concentration of ions was con-
firmed, but different values of n were obtained in different
works. The underscreening observed in the above experimental,
simulation and theoretical studies was not confirmed by the
AFM experiments with ionic systems confined between silica
surfaces,24 and the issue remains controversial.

On the other hand, specific effects play an important role in
determining the capacitance, especially in the case of polar
solvents, where e may exhibit strong dependence on r and on
the distance from the electrode.25–28 In general, the perfor-
mance of the double layer capacitance is determined by a
combination of many factors that include the concentration
of ions in the electrolyte solution, size and nature of the ions,
solvent polarity, electrode material, electrolyte–surface interac-
tions, pore geometry, temperature, etc.28–41 In particular, elec-
trode surface morphology modifies the structure of the electric
double layer and can either break or enhance overscreening
depending on the relationship of the surface roughness to the
electrostatic correlation length and the ion size-asymmetry.42,43

It is not easy to disentangle different effects on the capaci-
tance. In this work, we consider the simplest model of ionic
systems with the size of the ions taken into account, namely the
restricted primitive model (RPM) of charged hard spheres with
equal diameter a and opposite charges in a structureless
solvent characterized by the dielectric constant e. In this model,
the Coulomb and steric interactions lead to the oscillatory
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decay of the charge density with the distance from a charged
boundary.44–46 We can thus determine the effect of the charge
layering near the electrode on the capacitance that should be
common for many concentrated ionic solutions. In particular
cases, specific interactions and the dielectric constant depen-
dence on the local environment can play important roles. Our
purpose, however, is to find a reference point for the capaci-
tance in concentrated ionic solutions at very small voltages, in
analogy with the Debye capacitance for dilute electrolytes. To
achieve this goal, we use the theoretical approach developed in
our previous works for the description of systems with sponta-
neous inhomogeneity in the bulk, near a charged wall and in a
slit geometry.17,22,45,47,48

In Section II, we briefly summarize the mesoscopic theory
developed in ref. 17,22,45,47 and 48. In Section III.A, we present
results for dilute electrolytes to test the mesoscopic theory
predictions for the capacitance. In Section III.B, we derive our
results for the capacitance of systems with large density of ions.
We discuss our results in Section IV, and conclude in Section V.

II. The mesoscopic theory

In this section, we briefly summarize the key concepts, assump-
tions, approximations and results of the mesoscopic theory that
can be applied to dilute as well as to concentrated electrolytes.
The theory developed and described in detail in previous
studies17,22,47,48 allows the determination of the differential
capacitance of the double layer in terms of the structure of
the ionic solution. In principle, different levels of approxi-
mation in this theory are possible, but in this work, we limit
ourselves to the simplest approximation to highlight the under-
lying effect of the structure, i.e., the distribution of the ions, on
the capacitance.

In order to calculate the capacitance of the double layer, we
consider the electrolyte in contact with a planar metallic
electrode, and assume that the charge of the electrode is
distributed over its flat surface. In the case of concentrated
ionic solutions, for example water in the salt electrolyte, IL, or
IL mixture with a neutral solvent, the assumption of point
charges is not valid. The simplest model that takes the size of
the ions into account is the restricted primitive model (RPM) of
charged hard spheres with equal diameter a and opposite
charges in a structureless solvent characterized by the dielectric
constant e. If the sizes of the positive and negative charge ions,
a+ and a�, are somewhat different, we assume a = (a+ + a�)/2.
We adopt this model, and assume in addition monovalent ions
with the charge homogeneously distributed over the whole
volume of the ion. For the same valency n of the cations and
the anions, all our results apply when e is replaced by ne, where
e is the elementary charge. For different valences of the anions
and the cations, the theory becomes more difficult because of
the lack of symmetry.49,50 We should mention that significantly
different sizes of ionic cores together with specific interactions
can lead to spontaneous formation of relatively large charged
domains,51,52 as well as an asymmetric shape of the electric

double layer capacitance.53–55 The cases of significant size
disparity, different valences of the cations and the anions and
strong specific interactions require separate study.

Our theory56 is based on the local mesoscopic volume
fraction zi of the ith component of the mixture. The mesoscopic
volume fraction is defined by analogy with its macroscopic
counterpart, namely, zi(r) is equal to the fraction of a meso-
scopic volume with the center at r that is occupied by the
particles of the considered species. In general, it depends on
the scale of the coarse graining.

We assume that, near a flat electrode, zi depends only on the
distance z from the solid–liquid interface. As illustrated in
Fig. 1, for the IL in contact with a flat solid surface, we identify
the mesoscopic regions with layers of thickness a that are
parallel to the solid surface. The mesoscopic volume fraction
of the anions or the cations at the center of the layer is equal to
the fraction of the volume of that layer that is occupied by the
anions or the cations, respectively. With this definition, we
obtain continuous functions of the distance from the electrode.
Dimensionless mesoscopic densities are defined by ri(z) =
6zi(z)/p, and in the ionic system, i = +, �. It is convenient to
introduce the local dimensionless number density of ions,
r(z) = r+(z) + r�(z) and the local dimensionless charge,

Fig. 1 Cartoon explaining the mesoscopic densities in our theory in the
case of IL. The yellow shaded region represents the solid wall with fixed
charge or fixed voltage. The red and gray circles represent the negatively
and positively charged ions. The mesoscopic density is ri(z) = 6zi(z)/p,
where zi(z) is the fraction of the volume of the layer centered at z and of
the thickness a that is covered by the ith type ions. A typical layer with the
center at z = z0 is bounded by the dashed lines. With this construction, ri(z)
are continuous functions. The charge at the surface of the solid wall is
included in the considered system. We choose z = 0 at the distance a/2
from the surface of the electrode inside the solid, as shown in the cartoon.
With this choice, the mesoscopic charge density c(0) = r+(0) � r�(0)
contains only the charge from the wall, i.e. the charge included in the liquid
does not contribute to c(0). When the charge of the metallic electrode is
confined to the surface at z = a/2, a layer of the thickness a with the center
at z o 0 contains no charge; therefore, c(z o 0) = 0. With this formulation
of the mesoscopic theory, we assume that the charge in the electrode of
area A is equal to ec(0)A, and the overall charge neutrality condition isÐ1
0 dzcðzÞ ¼ 0.
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c(z) = r+(z) � r�(z). For monovalent ions, the local charge
density is ec(z), where e is the elementary charge.

There are some ambiguities in defining the mathematical
surface representing the solid–liquid interface at the micro-
scopic and mesoscopic levels. We choose the origin of the
coordinate frame, z = 0, inside the solid at the distance a/2
from the solid surface at which the electrode charge with the
surface charge density es0 is homogeneously distributed (see
Fig. 1). From Fig. 1, it can be clearly seen that in our mesoscopic
approach, c(0) is equal to the dimensionless surface charge
density s�0 ¼ a2s0. For z o 0, we have c(z) = 0 when the charge of
the electrode is confined to the surface of the solid, since this
surface is now outside the layer with the center at z o 0. For
0 o z o a, both the electrode and the liquid contribute to c(z).
Finally, for z 4 a, the only contribution to the charge density
ec(z) comes from the electrolyte. The charge-neutrality condi-
tion of the whole system in this theory takes the simple formð1

0

dzcðzÞ ¼ 0: (1)

The electrostatic potential at z = 0 is given by the Poisson
equation in the integral form,

Cð0Þ ¼ �4pe
ea

ð1
0

dzzcðzÞ; (2)

and can be calculated once the shape of c(z) is known. Here and
below, the distance is in a units. All the characteristic lengths
will be in a units as well, i.e. we will consider dimensionless
quantities.

Determination of the equilibrium shape of c(z) is the main
difficulty of the theory. From thermodynamics, we know that in
a system with fixed volume and fixed temperature T that is in
contact with a bulk reservoir of ions, the grand thermodynamic
potential O takes a minimum. Thus, we should consider the
grand potential for different forms of r(z) and c(z), and find the
functions that minimize the functional

O[c,r] = U[c] � TS[c,r] � mN, (3)

where m and N are the chemical potential and the number of
the ions, respectively. The internal energy U[c] depends only on
the charge c if the specific interactions are neglected, and takes
in kBT = 1/b units, the form

bU½c� ¼ lB

2

ð
dr1

ð
dr2c r1ð Þ

gðrÞ
r

c r2ð Þ (4)

where lB = be2/ae is the Bjerrum length in a units, r = |r1 � r2|,
and g(r) is the pair distribution function. The entropy S[c,r]
consists of the entropy of mixing of the anions and the cations,
and of a contribution associated with packing of the hard
spheres representing the ionic cores.

The exact expressions for O[c,r] (including the precise form
of g(r) and S[c,r]) are not known, and different approximate
theories were developed. In the bulk, the position independent
r is a function of the chemical potential and temperature. The
average charge density is c = 0 because it is equally probable to
find an anion or a cation in a given microscopic volume in the

absence of external fields. If an ion is kept at a given position,
however, then it is more probable to find an oppositely charged
ion in its vicinity than an ion of the same charge because the
energy in the former case is lower. The charge–charge correla-
tion function is a result of the competition between the energy
favoring oppositely charged close neighbors and the entropy
favoring the random distribution of the ions in the whole
volume.

In our mesoscopic theory,17,56 we assume that the ions
cannot overlap; therefore, g(r) = 0 for ro1 (r is in a units),
and g(r) - 1 for r - N, since at very large distances the ions
are not correlated. In the mean-field (MF) approximation, the
correlations are neglected for r 4 1, and g(r) E y(r � 1), where
y(r � 1) = 1 for r 4 1 and y(r � 1) = 0 for r o 1. In this
approximation,

bU½c� �lB
2

ð
dr1

ð
dr2c r1ð Þ

yðr� 1Þ
r

c r2ð Þ

¼ lB

2

ð
dkĉðkÞV̂CðkÞĉð�kÞ;

(5)

where

V̂CðkÞ ¼
4p cosðkÞ

k2
(6)

is the energy per unit amplitude of a charge wave with the
wavelength 2p/k excited in the homogeneous system, and ĉ(k) is
the amplitude of this wave. V̂C(k) o 0 and the energy decreases
when the charge wave with k 4 p/2 is excited. It takes a
minimum for k0 E 2.46 (in 1/a units), consistent with energe-
tically favorable oppositely charged close neighbors.

The charge–charge correlation function in Fourier represen-
tation takes in this theory the form

ĉðkÞĉð�kÞh i ¼ lBV̂CðkÞ þ
1

rR

� ��1
(7)

where rR = r in the MF approximation and for r { 1. In
concentrated solutions, however, rR o r. The renormalized
density of ions in the mesoscopic theory follows from the
energetically favorable charge waves that play a similar role as
the neutral clusters observed in concentrated electro-
lytes,16,57,58 i.e., they lead to a smaller density of free ions.
Equations for rR are developed and discussed in ref.17 and 56.

The charge–charge correlations in real space are obtained by
the inverse Fourier transform of hĉ(k)ĉ(�k)i, and the decay
lengths are obtained from simple poles of hĉ(k)ĉ(�k)i extended
to the complex q plane. In general, the imaginary pole q = iai

gives a monotonic decay with the decay length 1/ai, and the
complex poles q = ia0 � a1 give an oscillatory decay with the
decay length 1/a0 and the period 2p/a1.

In the presence of the electrode, the excess density over the
bulk value, Dr(z) = r(z) � rb, and c(z) a 0 minimizes the
functional DO[c,Dr] = O[c,rb + Dr] � Obulk[0,rb]. When the bulk
is in thermal equilibrium, the terms linear in Dr and c in Taylor
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expanded DO[c,Dr] vanish, and DO[c,Dr] contains terms of the
second and higher orders in the fields,

bDO½c;Dr� ¼ 1

2

ð
dz cðzÞ lBV̂C �i

d

dz

� �
þ 1

rR

� �
cðzÞ

�

þ DrðzÞ R0 � R2
d2

dz2

� �
DrðzÞ

þ bgh rb; cðzÞ;DrðzÞð Þ
�
;

(8)

where the parameters R0 and R2 come from the entropic
contribution to O and from the correlations between fluctua-
tions of the local charge.22,48 The differential operator

V̂C �i
d

dz

� �
is defined through the Taylor expansion, and the

last term in eqn (9) is given by

bghðrb; c;DrÞ ¼
X

mþn4 2

@mþnbfh
@Drm@cn

Drmcn

m!n!
; (9)

where bfh is the free energy density of a mixture of hard spheres
in kBT units. Minimization of the functional (8) leads to the
ordinary differential Euler–Lagrange (EL) equations

lBV̂C �i
d

dz

� �
þ 1

rR

� �
cðzÞ þ @bgh rb; cðzÞ;DrðzÞð Þ

@cðzÞ ¼ 0 (10)

R0 � R2
d2

dz2

� �
DrðzÞ þ @bgh rb; cðzÞ;DrðzÞð Þ

@DrðzÞ ¼ 0; (11)

that should be solved under boundary conditions (fixed charge
or fixed voltage). Note that the above equations are nonlinear.
In addition, the second terms on the LHS lead to a coupling
between the charge and the number density profiles. This
makes the problem technically difficult. However, gh(rb,c,Dr)
is of a higher order in the fields c and Dr; therefore, qgh/qc
becomes a negligible correction for a sufficiently small charge,
i.e. for small voltages of the electrode. Unfortunately, unless the
full set of equations is solved, it is not possible to accurately
determine the range of the voltage for which the derivatives of
gh in the above equations can be neglected. We can expect that
the voltage is certainly too strong and the derivatives of gh have
to be included when the obtained dimensionless charge is
c(z) 4 1.

When the derivatives of bgh can be neglected, the EL
equations for Dr and c are linear and decoupled. The linearized
EL equation for c(z) is

lBV̂C �i
d

dz

� �
þ 1

rR

� �
cðzÞ ¼ 0: (12)

A solution of a linear equation is a sum of exponential terms
p exp(lz). In our case, l = �iq, where complex q is a solution of

the equation lBV̂CðqÞ þ
1

rR
¼ 0. For our purpose here, it is

important that the linearized EL equation leads to c(z) decaying
at large distances with the same decay lengths as the charge–
charge correlation function (compare eqn (12) and (7)). The

solution of eqn (12) must satisfy the charge neutrality
condition (1).

Eqn (12), (1), (2) and c(0) = a2s0 allow for the calculation of
the differential capacitance in the case of small voltages, and
with the specific effects of the solvent neglected.

III. Results
III.A Capacitance of dilute electrolytes

In our mesoscopic theory, there are two inverse decay lengths,
a1 4 a2 for large T and small r, because there are two solutions
of the equation (see eqn (7))

�4plB
coshðaiÞ

ai2
þ 1

rR
¼ 0; (13)

and the asymptotic decay of correlations at large distances is
monotonic. For r - 0, we get 1=a2 ! l�D, where l�D ¼
1
� ffiffiffiffiffiffiffiffiffiffiffiffi

4plBr
p

¼ lD=a is the dimensionless Debye screening length
(recall that lB and r are dimensionless), and a1 is of order of
unity (in 1/a units). a1 and a2 merge at the so-called Kirkwood
line on the (r,T) diagram,59 and at lower T they transform to a
pair of complex inverse decay lengths that lead together to an
oscillatory decay of the charge–charge correlations. This result
agrees with previous theories and simulations,60–62 and is
consistent with dominant roles of the entropy and energy at
high and low T, respectively.

Because the decay lengths of the charge density are the same
as the correlation lengths, the charge-density profile satisfying
the charge-neutrality condition has on the high-T small r side
of the Kirkwood line the form

cðzÞ ¼ A1 e�a1z � a2

a1
e�a2z

� �
; (14)

where the length unit is the ion diameter a. The dimensionless
inverse decay lengths are determined numerically based on
ref. 17 and 59. Similar values were obtained in different
theories.61 A representative c(z) is shown in Fig. 2, for
s�0 ¼ 0:01, lB = 2 and r = 0.01.

The physical meaning of the two decay lengths in the context
of the mesoscopic theory can be understood by comparing
Fig. 2 for the representative charge density and Fig. 1 illustrat-
ing the construction of the theory. For large z, the decay of the
charge is monotonic and the sign of c(z) is opposite to the sign
of the electrode. The decay length is 1=a2 ! l�D for r - 0, as
discussed above. By construction of the mesoscopic theory,
however, for z increasing from z = 0 to z = 1, there is a
contribution to c(z) from the charge of the electrode and an
increasing contribution from the opposite charge of the ions in
the electrolyte (see Fig. 1 for 0 o z o 1). Thus, c(z) must change
sign for z o 1. The two terms in eqn (14), one with the same
sign as the sign of the charge of the electrode and small decay
length 1/a1 and the other one with the opposite sign and large
decay length 1/a2, are consistent with the above physical
picture.
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The surface-charge density in the mesoscopic theory is

es0 ¼
ecð0Þ
a2
¼

eA1 a2
�1 � a1

�1� 	
a2

a2
: (15)

For the potential at z = 0, we obtain from eqn (14) and (2)

U ¼ Cð0Þ ¼
4peA1 a2

�1 � a1
�1� 	

ea1a
: (16)

The capacitance C = d(es0)/dU is easily obtained from
eqn (15) and (16) and is given by

Cdil ¼
ea1a2
4pa

: (17)

For dilute electrolytes, a2/a - 1/lD that can be easily seen
from the equation lBV̂C(ia2) + 1/r = 0 for the imaginary simple

pole and V̂C(ia2) - �4p/a2
2 for r { 1 (see eqn (7) and (6)),

giving a2
2 = 4plBr. Thus, for dilute electrolytes, we obtain

Cdil ¼
ea1
4plD

; (18)

where the dimensionless parameter a1 in our theory is larger
than 2 and increases with increasing (lBr)�1, but remains of
order of unity. The precise value of this inverse microscopic
length should be determined in a more exact microscopic
theory. Thus, in the limit of dilute electrolytes, we obtain the
Debye capacitance up to a parameter a1 = O(1).

In order to understand the origin of the difference between
eqn (18) and the Debye capacitance, recall that the Debye
capacitance was obtained for point charges. The point charges
can be at the distance z = 0 from the electrode surface, and c(z)
is monotonic for the whole range of z 4 0. If the size a of the
ions is taken into account, microscopic details such as the
charge distribution over the volume of the ion, the definition of
the position of the electrode surface, etc. start to play a role, and
some ambiguities in the definition of the capacitance in terms
of the charge distribution appear. In our mesoscopic theory, the
charge density c(z) is averaged over the layers of the thickness a
(Fig. 1), and as discussed above, the charge profile is nonmo-
notonic and changes sign for z B 1. This leads to a smaller
value of C(0) defined in eqn (2), and as a result to a larger value
of the capacitance, with the coefficient a1 associated with the
charge distribution in the close neighborhood of the electrode
surface. To compare our predictions with the results of simula-
tions or experiments on the quantitative level, we should take
into account that formulas (17) and (18) contain the factor a1

that in the theory with the microscopic structure averaged over
the region with the linear size a is 2 r a1 r 6 rather than a1 = 1
present in the Debye capacitance for point charges.

III.B Capacitance of concentrated electrolytes

The solution of the EL eqn (12) at the low-T side of the
Kirkwood line has the form

Fig. 2 The dimensionless charge density in the case of dilute electrolytes
with r = 0.01, lB = 2 and dimensionless surface charge density s�0 ¼ 0:01 as
obtained in the mesoscopic theory. The decay lengths satisfy the
equation 4plBrR cosh ai = ai

2, and rR r r satisfies the equations presented
in ref. 17. z is in units of the ion diameter a.

Fig. 3 The dimensionless charge density in the case of the concentrated electrolyte with r = 0.4, lB = 2 and rR E 0.185 (left) and r = 0.7, lB = 4 and rR E
0.154 (right) for dimensionless surface charge density s�0 ¼ 0:01, as obtained in the mesoscopic theory. a0 and a1 satisfy the equations (a1

2 � a0
2) +

4plBrR cosh a0 cos a1 = 0 and a1a0 � 2plBrR sinh a0 sin a1 = 0.17 z is in units of the ion diameter a.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 8

/2
/2

02
5 

3:
26

:5
2 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp04669b


9148 |  Phys. Chem. Chem. Phys., 2025, 27, 9143–9151 This journal is © the Owner Societies 2025

c(z) = Ace�a0z sin(a1z + y). (19)

The above dimensionless charge density profile agrees with
the fixed surface charge density s0 and satisfies the charge-
neutrality conditions (1) when

Ac ¼
a2s0
sin y

; y ¼ arctan �a1
a0

� �
: (20)

A typical dimensionless charge density near a weakly
charged electrode is shown in Fig. 3. Predictions of the meso-
scopic theory for the charge profile45 agree with simulation
results of the RPM model in the case of large density of ions.44

Namely, the electrostatic potential bC(z) was very similar in the
simulations and in our mesoscopic theory for two values of the
surface charge studied in the simulations and for the same
thermodynamic states and parameters of the model. In addi-
tion, as shown for example in ref. 46, eqn (19) perfectly fits the
charge density in atomistic simulations of IL – alcohol mixture
for z 4 2p/a1. The atomistic simulations give different shapes
of c(z) for z o 2p/a1 because the microscopic charge density
obtained in the simulations is compared with the charge
density averaged over the layers of the thickness a in the
mesoscopic theory.

The electrostatic potential (2) at z = 0 for the charge density
given by eqn (19) and (20) is

U ¼ Cð0Þ ¼ �4peAca1 cosðyÞ
eaa0 a02 þ a12ð Þ: (21)

The capacitance can be easily calculated using es0 = eAc sin
y/a2 with eqn (20) and (21), and the result is

C ¼
e a02 þ a12
� 	

4pa
¼

e0er a02 þ a12
� 	

a
; (22)

where e = 4pere0, with er and e0 E 9 � 10�6 mF m�1 denoting the
relative dielectric constant and the vacuum permittivity,
respectively.

The dimensionless wavenumber a1 r k0 E 2.46 of the
damped charge oscillations decreases slightly for increasing
(lBr)�1 in the concentrated electrolyte.59 As found recently4,6,56

in concentrated electrolytes, the dimensionless inverse decay
length is a0 { 1. In the lowest order approximation, we keep
only the terms quadratic in Dr and c, and follow the steps
described in ref. 45 and 48. We can assume that in concen-
trated electrolytes and IL a0

2 { a1
2, and

C � e0era12

a
: (23)

Formulas (22) and (23) relating the capacitance with the
period 2pa/a1 of the damped charge oscillations near the
electrode are the main result of this work. We should empha-
size, however, that the smoothed shape of the mesoscopic c(z)
near the electrode leads to a smaller value of the electrostatic
potential at z = 0, hence to a larger value of the capacitance, as
already discussed in detail in Section III.A.

IV. Discussion

The expressions for the capacitance of dilute and concentrated
electrolytes in the RPM near a flat metallic electrode, eqn (17)
and (22), are significantly different. They become identical,
however, at the Kirkwood line separating the monotonic and
oscillatory asymptotic decays of the charge density because at
the Kirkwood line a1 = a2 = a0 and a1 = 0. Thus, we obtained a
continuous function for the whole range of the density of ions.
Comparison of C with CH = ere0/a and CD = e/(4plD) for the
density of ions 0 o r o 0.7 and for fixed Bjerrum lengths lB = 2
and lB = 4 is shown in Fig. 4.

Our general analytical formulas (17) and (22) were obtained
from the linearized EL eqn (12); therefore, they are valid only
for very small voltages. Nevertheless, they highlight the effect of
the charge distribution on the capacitance for the whole range
of the density of ions on a general qualitative level. For large
voltages, the charge density is no longer small, and the coupled
nonlinear EL equations for c and Dr (see eqn (10) and (11) and
ref. 56) have to be solved to determine C. This is possible only
numerically for particular cases, and will be a subject of our
future study.

The formulas for the capacitance become particularly simple
for very dilute and very dense electrolytes. In the former case,
we obtain the well-known Debye capacitance CD = e/(4plD) up to
a dimensionless coefficient of order unity (see eqn (18)). For the
very concentrated electrolyte or IL, we obtain formula (23) that
is strikingly similar to the Helmholtz capacitance CH(L) =
e/(4pL) in the early model of the double layer, where L is the
distance between the electrode and the surface occupied by the
counterions. We take into account the whole oscillatory charge
profile such as the ones shown in Fig. 3, and find that the
alternating oppositely charged layers have the same effect as a
single layer of counterions located at the distance L = a/a1

2 from
the electrode. This shows that the simplest model of the double

Fig. 4 The capacitance C/CH obtained from (17) and (22) (solid lines) and
CD/CH (dashed lines) as a function of the dimensionless density of ions for
the Bjerrum length lB = 2 and lB = 4 in a-units.
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layer works well even in the case of a rather complex structure,
but with the distance of the virtual monolayer of counterions
from the electrode, L, depending on the dimensionless wave-
number a1 E 2.46 of the charge oscillations.

As shown in Fig. 4, C/CH increases quickly for increasing
r o 0.15, and slowly for r 4 0.3, whereas CD/CH increases with
r gradually, with almost constant slope. For the two considered
values of lB, C/CH 4 5 if r4 0.3. Moreover, C 4 CD, but C � CD

decreases with increasing r, and for lB = 4, C E CD for r E 0.7.
Let us compare predictions of the mesoscopic theory for the
charge-density profiles shown in Fig. 3 with the classical Debye
capacitance in more detail. For r = 0.4 and lB = 2, and the
diameter of hydrated ions a E 0.5 nm corresponding to
B2.65 M NaClaq, we get a0 E 0.93 and a1 E 2.18, and obtain
from eqn (22)

C E 10er mF cm�2. (24)

From lD ¼ a
� ffiffiffiffiffiffiffiffiffiffiffiffi

4plBr
p

, we get in this case lD E 0.16 nm, and the
formula valid for dilute electrolytes gives

CD E 5.6er mF cm�2. (25)

The Debye length in this case differs from the physically
relevant lengths a/a0 E 0.54 nm and 2pa/a1 E 1.44 nm,
however. In another example shown in Fig. 3 with r = 0.7 and
lB = 4, we obtain assuming a = 0.9 nm

C E 6er mF cm�2. (26)

The Debye length is lD E 0.15 nm, and

CD E 5.9er mF cm�2. (27)

The values of C and CD are very similar in this case, but the
interpretation is quite different. For the oscillatory decay of the
charge density, the key factor is the period of the charge
oscillations near the electrode, and the Debye length is not
associated with characteristic lengths of the charge distribu-
tion. These examples show that care must be taken in inter-
preting experiments and simulations because correct numbers
can follow from incorrect formulas.

In order to verify the accuracy of C given in eqn (22) and (23)
on the quantitative level, we should compare the theoretical
and simulation results for the same model. In ref. 44, C was
obtained by simulations of the RPM with a = 1 nm, T = 450 K,
er = 2 and r E 0.6 nm�3, and the result of simulations was
C/CD E 0.15. For the above parameters, we obtain lD E
0.084 nm and eqn (23) gives C/CD = a1

2lD/a E 0.5, where we
used a1 = 2.45. Recall that the capacitance obtained in the
mesoscopic theory for dilute electrolytes was overestimated by
the factor 2 r a1 r 6. In the case of r = 0.6 nm�3 and large lB,
the theoretical result is about three times larger than the
simulation result, i.e. a systematic overestimation of the capa-
citance by a factor B3 is present in the mesoscopic theory for
the whole density range.

Our results show the effect on the capacitance of the charge
ordering in the region extending to large distances from the
electrode. On the quantitative level, however, the capacitance

also depends on the details of the microscopic structure in the
vicinity of the electrode that should be determined within a
more exact microscopic theory. In our mesoscopic theory, the
effect of the microscopic structure can be taken into account by
additional scaling factor that based on the comparison with
simulations is about 1/3. As already discussed at the end of
Section III.A, the larger value of the capacitance in our theory
follows from the smaller value of the electrostatic potential at
z = 0 that in turn is a result of the smoothed shape of the
mesoscopic c(z) near the electrode.

Let us discuss consequences of eqn (23) on a general level.
The capacitance decreases with increasing size of the ions, in
agreement with experimental results for aqueous ionic solu-
tions and IL.27,63 The dimensionless period of the charge wave
in concentrated electrolytes depends rather weakly on density.
According to our mesoscopic theory, in IL or highly concen-
trated electrolytes, the dimensionless a1 = 2pa/lc is 2 r
a1 r 2.46, corresponding to the wavelength of the charge-
density wave 2.55a r lc r 3.14a. Hence, in IL, we have for
eqn (23) the approximation

4ere0
a
� C � 6ere0

a
: (28)

In the RPM, the dependence of er (and in turn of lB) on
the density of ions and on the distance from the electrode
is neglected, whereas in different solvents, especially in water,
this dependence can be quite strong. In aqueous solutions, er

decreases from about 80 in pure water to about 40 for 5 M
solution of NaCl.4 In the Stern layer, the orientations of
dipoles of water molecules in the hydration shells of ions are
almost fixed, and the dielectric constant may decrease to er B 5
or even less.55,64–66 Thus, quantitative predictions for the
capacitance in particular cases are not possible within the
RPM, especially for polar solvents such as water. Our results
show, however, the general relationship between the capaci-
tance and the period of the damped charge oscillations. The
complex charge distribution can be replaced by the simplest
model of the double layer, provided that the virtual single layer
of counterions is separated from the electrode by the distance
equal to the diameter of the ions re-scaled by the coefficient
proportional to a1

�2, where a1 is the wavenumber of the
damped charge oscillations in 1/a units and the proportionality
constant is B3.

Detailed comparison of our prediction with results of simu-
lations and experiments for particular systems goes beyond the
scope of this work because it would be necessary to disentangle
the universal properties captured by the RPM and the specific
properties such as the size and nature of the ions, polarity of
the solvent, the charge distribution and the roughness of the
electrode’s surface. Such an analysis should be done in future
studies.

V. Conclusions

Our goal was to determine on a very general level the effect of
charge ordering in concentrated electrolytes and IL on the
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capacitance of the double layer. We limited ourselves to the
restricted primitive model, RPM, where spherical ions with
equal diameters and opposite charges are dissolved in a struc-
tureless solvent characterized by the dielectric constant e. This
way we can determine the effect of the Coulomb and steric
interactions in the absence of specific effects that differ from
one system to the other. We obtained very simple expressions
for the capacitance in dilute and concentrated electrolytes in
the framework of the same mesoscopic theory. The main
conclusion is that the simplest early model of the double layer
works surprisingly well in the case of large density of ions,
provided that the distance between the virtual single layer of
counterions and the electrode is equal to the ion diameter re-
scaled by a coefficient determined by the period of the damped
charge oscillations. This conclusion agrees with recent simula-
tion results.66 Our formulas (22) and (23) should play for
concentrated ionic systems a similar role as the Debye capaci-
tance plays for dilute electrolytes. These equations can serve as
a reference point that allows to disentangle universal and
specific features of the capacitance.

Finally, it is worth mentioning that since our theory is
suitable for describing the structural properties of concentrated
electrolytes and their effect on capacitance, it is worthwhile to
extend it to nonequilibrium properties, because in energy
storage devices, the charging/discharging dynamics plays an
important role.67,68 The extension can be performed by analogy
with the DFT extension to the DDFT.69
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