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Review of the foundations of time-dependent
density-functional theory (TDDFT)

J. Schirmer

Time-dependent density-functional theory (TDDFT) is deemed to be a formally rigorous way of dealing

with the time-evolution of a many-electron system at the level of electron densities rather than the

underlying wavefunctions, which in turn provides an, in principle, exact density-based approach to the

treatment of electron excitations in atoms and molecules. This claim has not remained unchallenged,

and a detailed account of the relevant criticism is given in this paper. In view of our analysis one has to

face the conclusion that there is currently no valid foundation for TDDFT, and expectations of finding a

remedy here are hardly justified.

I. Introduction

Time-dependent density-functional theory (TDDFT) is a promi-
nent approach to the treatment of electronic excitations in
many-electron systems. For comprehensive presentations and
references, the reader is referred to a selection of more recent
review articles1–7 and books.8,9 A list of various TDDFT compu-
ter codes can be found in App. O of the latter textbook. The
computational performance of TDDFT variants has been exam-
ined in several benchmark studies.10–12

From a pragmatic point of view, the TDDFT computational
scheme can be seen as a time-dependent extension of the
Kohn–Sham (KS) equations of ground-state (static) DFT.13,14

In fact, TDDFT was originally introduced in this way.15 How-
ever, a much bigger ambition is at stake here. In their famous
1984 paper, E. Runge and E. K. U. Gross (RG)16 have attempted
to lay a rigorous foundation for the theory, thereby establishing
the claim that, like DFT, TDDFT represents, in principle, an
exact formulation for the time-evolution of an interacting
many-electron system at the level of density functions.

The enormity of that claim, still widely considered valid
today, should provoke profound scepticism. After all, in the
time-evolution of quantum systems the phases of the wave
functions are crucial, as indicated by the presence of the
imaginary factor i in the time-dependent Schrödinger equation.
The positive definite real density functions, by contrast, are
devoid of any phases, excluding even an innocent (�1). Of
course, in the time-dependent KS equations orbital-level phases
come in through the backdoor, but the essential potential-
functionals depend exclusively on the phase-free density

functions. In view of this situation, it should be the natural
reaction to ask where the error lies. On the other hand, any
attempt to defend the status of TDDFT as an, in principle, exact
theory should be based on rigorous mathematical and physical
arguments, rectifying and transcending the original RG paper,
which has been found defective. Regrettably, an actual follow-
up founding paper is still outstanding.

In 2007, a critical analysis was presented by Andreas Dreuw
and the present author17 of the RG foundation of TDDFT and,
moreover, of what was then considered a valid update of the RG
concept, in which even a stationarity principle was no longer
needed. This elicited a Comment by Maitra, van Leeuwen, and
Burke18 and a subsequent Reply,19 further affirming and clar-
ifying the original criticism. A certain conclusion was reached
with a two-page paper in 2012,20 which, however, received little
attention so far. Altogether, the main points of our criticism
have been set out, albeit in a somewhat scattered and partly
abridged form. Clearly, a comprehensive, consistent, and,
moreover, pedagogical account of our survey would be desir-
able – and this paper attempts to fill that gap. It is based on a
presentation given in May last year at the Joint Physical
Chemistry Seminar at the Heidelberg University.

In the ensuing Section II we consider the physics of electron
excitations in many-electron systems, review the RPA (random-
phase approximation) method and its benefit as a computa-
tional tool, and then take a closer look at the RPA-type linear-
response (LR) TDDFT equations used in practice. In Section III,
the DFT essentials are briefly recapitulated, discussing, in
particular, an utmost simplified (radical) Kohn–Sham scheme,
which proves to be a useful analytical tool for DFT as well
as TDDFT. After these preliminaries, the actual criticism
of the present TDDFT foundations is set out in Section IV.
A brief summary and concluding remarks are given in the final
Section V.
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A methodological remark in advance may be appropriate.
The intention of this paper is not to disprove the existence of
TDDFT – indeed an impossible task, but rather identify and
discuss unexpected gaps that invalidate its present foundation.
Obviously, one does not need to strive for mathematical rigour
to this end. By contrast, utmost rigour is required if one
attempts to justify the validity of TDDFT – the burden of proof
lies with the proponent of such an extraordinary claim.

II. Electronic excitations and the
RPA paradigm

Before dealing with the foundation of TDDFT and, in particular, the
justification of the time-dependent Kohn–Sham (td KS) equations,
it is advisable to take a look at the computational procedure used in
practice. Formally, the standard TDDFT scheme, referred to as
linear response (LR) TDDFT is equivalent to the RPA (random-
phase approximation) pseudo-eigenvalue problem. This suggests to
briefly recapitulate the RPA mathematics and its performance in
the application to electron excitations in molecules.

A. Excited state physics

In the one-particle picture, a singly excited state is obtained by
promoting an electron from an occupied orbital, say k, to an
unoccupied (or virtual) orbital, say a:

|Faki = c†
ack|F0i (1)

Here, |F0i is the ‘unperturbed’ Hartree–Fock (HF) ground state
and c†

a, ck are the familiar Fermion field operators for the spin-
orbitals a, k. Obviously, |Faki is an eigenstate,

Ĥ0|Faki = E(0)
ak |Faki (2)

of the HF (or zeroth-order) Hamiltonian

Ĥ0 ¼
X

epcypcp (3)

where ep denote the HF orbital energies; E(0)
ak is the zeroth-order

contribution to the total energy of the excited state.
The full Hamiltonian can be partioned according to

Ĥ = Ĥ0 + ĤI (4)

into the zeroth-order part Ĥ0 and an interaction part, ĤI = Ĥ �
Ĥ0, which constitutes the starting point for perturbation-
theoretical (PT) procedures.

More expedient than the total energy, Eak, is the excitation
energy,

DEak = Eak � E0 (5)

where E0 denotes the (exact) ground-state energy. DEak can be
evaluated through first order from the zeroth-order wave func-
tions according to

DEak(1) = hFak|Ĥ|Faki � hF0|Ĥ|F0i = ea � ek � Vakak + Vakka

(6)

The zeroth-order contribution is simply given by the difference
of the HF orbital energies, which, however, refer to the HF

ground state. Accordingly, ea incorporates the Coulomb and
exchange interaction with the orbital k, being vacant in the
excited state. This is corrected by the first-order contribution,
where the Coulomb integral Vakak accounts for the electron
repulsion between the charge distributions of the a and k
orbitals. The exchange integral, Vakka, leads to an energy-
splitting of the singlet and triplet final states, being 2Vakka

(for a, k with same spin) at the first-order level.
The exact state |Caki associated with |Faki can be computed

via the standard procedure referred to as configuration inter-
action (CI) in quantum chemistry. Here, the excited states are
written as linear combinations

Cnj i ¼
X
J

xJn FJj i (7)

of HF configurations

|FJi = ĈJ|F0i (8)

where ĈJ denote excitation operators of the expansion manifold

{ĈJ} = {1; c†
bcj; c†

bc†
ccicj, b o c, i o j; . . .} (9)

comprising single, double, triple, . . . excitations. Note that the
CI configurations also include the HF ground state, |F0i.

The representation of the Hamiltonian, or rather the shifted
Hamiltonian, Ĥ � E0, in terms of the CI expansion manifold
yields the CI secular matrix H with the elements

HIJ = hFI|Ĥ|FJi � E0dIJ (10)

and the solution of the Schrödinger equation is equivalent with
solving the CI eigenvalue problem,

HX = XX, X†X = 1 (11)

Here, X is the matrix of eigenvectors, and X is the diagonal
matrix of the eigenvalues, representing the excitation energies

On = En � E0 (12)

Spectral intensities are related to the transition moments for a
suitable operator D̂, e.g., a component of the dipole operator,

Tn ¼ Cn D̂
�� ��C0

� �
¼
X
J

X�Jn FJ D̂
�� ��C0

� �
(13)

Fig. 1 shows the block structure of the CI secular matrix and
the PT order of the matrix elements in the diagonal (0,1) and
non-vanishing non-diagonal blocks (1). The coupling matrix
elements HIJ vanish if the configurations I and J differ by more
than two excitation classes. For example, a single excitation
such as |Faki can have non-zero coupling matrix elements with
p–h, 2p–2h, and 3p–3h configurations but not with configura-
tions of higher excitation classes. This, in turn, implies that the
second-order contribution to the excitation energy takes on
the form

DEak
(2) = Uak

(2)(p�h) + Uak
(2)(2p�2h) + Uak

(2)(3p�3h) � E0
(2)

(14)

Here, the first term, Uak
(2)(p–h), is due to admixtures of other

single excitations, possibly effecting a better adapted virtual
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orbital a (as well as the occupied orbital k), or even reflecting a
genuine mixed p–h composition of the final state. The second
term, Uak

(2)(2p–2h), is of particular physical significance, as it
accounts for the relaxation and polarization effects accompany-
ing the k - a excitation. The remaining electrons ‘‘relax’’ upon
the removal of an electron from the orbital k; and the electron
in the virtual orbital a ‘‘polarizes’’ the charge distribution of the
ionic core. Together, these two response effects lead to a
substantial lowering of the first-order excitation energy. For
an explicit PT analysis of the relaxation and polarization
energies the reader is referred to ref. 21.

The third term,

Uak
ð2Þð3p�3hÞ ¼ �

X
bo caa
io jak

Vbc½ij�
�� ��2

eb þ ec � ei � ej
(15)

where Vpq[rs] denotes anti-symmetrized Coulomb integrals,
accounts for the correlation effect in the excited state. It is of
the same form as the familiar second-order PT expression, E0

(2),
for the ground state energy, though with restrictions for the
orbital summation indices. Obviously, the second-order corre-
lation energy is larger in the ground state than in the excited
state, so that together the last two terms, giving rise to the
explicit expression

Uak
ð2Þð3p�3hÞ � E0

ð2Þ ¼
X
b;io j

Vab½ij�
�� ��2

ea þ eb � ei � ej

þ
X
j;bo c

Vbc½kj�
�� ��2

eb þ ec � ek � ej

�
X
j;b

Vab½kj�
�� ��2

ea þ eb � ek � ej

(16)

are positive, effecting an increase of the excitation energy. Note
that the negative third contribution on the right-hand side,
called �C for short, compensates for the fact that a positive

counterpart, +C, is comprised both in the first and second
contribution in eqn (16).

An adequate description of the first- and second-order
physics just outlined should be considered a standard require-
ment that any reliable computational approach to electron
excitations must fulfill. In the case of the CI method, this
means that the expansion manifold must not be truncated
before the 3p�3h (triple) excitations, which entails rather large
configuration spaces (compactness problem). However, the
inclusion of the triples causes another problem inherent to
truncated CI expansion (as opposed to full CI) schemes, that is,
the well-known size-consistency problem (see e.g. ref. 22).

In this section we have considered the case of single excita-
tions. It should be noted, however, that double and higher
excitations can be addressed in a similar fashion.

B. Random-phase approximation (RPA)

In theoretical terms, the RPA is a highly interesting
concept,23–25 whereas its computational benefit in the applica-
tion to electron excitations in molecules is rather modest. For a
detailed presentation and references the reader may consult
chapter 15 of ref. 22. There are various independent derivations
of the RPA, one of which is of particular interest in the present
context, namely the derivation based on the time-dependent
Hartree–Fock (TDHF) approach. For a presentation of the
TDHF route to the RPA equations, the reader is referred to
the textbook by Ring and Schuck.26

The RPA secular equations constitute a pseudo-eigenvalue
problem of the form

A B

B� A�

 !
xm

y
m

0
@

1
A ¼ om

xm

�y
m

0
@

1
A (17)

Here A and B are sub-blocks of a hermitian matrix M defined
with respect to a configuration manifold of p–h excitations and
h–p ‘de-excitations’. The matrix elements are given by

Aak;bl ¼ ea � ekð Þdabdkl � Valbk þ Valkb

Bak;lb ¼ � Vablk þ Vabkl

(18)

The p–h/p–h block A can readily be identified with the CI-S
(singles) secular matrix. The role of the B block and the
unfamiliar coupling between p–h and h–p configurations will
be discussed below.

There is a manifold of excitation (pseudo-) eigenvalues,

om = Em � E0 (19)

representing physical excitation energies and a manifold of
redundant de-excitation solutions, o�m ¼ �o�m. The transition
moments are obtained according to

Tm ¼
X
a;k

x�ak;mdak þ y�ka;mdka

� �
(20)

from the p–h and h–p eigenvector components of the excitation
solutions and transition operator matrix elements, dpq.

Fig. 1 Block structure of the CI secular matrix H (disregarding coupling to
the HF ground state). The entries 0 and 1 refer to matrix elements involving
Ĥ0 and ĤI, respectively.
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To gain some insight into the essence of the RPA pseudo-
eigenvalue problem it is instructive to consider the 2 � 2 RPA-
type eigenvalue problem

a b

b a

 !
x

y

 !
¼ o

x

�y

 !

where a and b are real numbers. The two eigenvalues are
given by

o� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2
p

¼ �jaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=a2ð Þ

q
The corresponding RPA eigenvectors can easily be determined
as well. In the case |b| 4 |a|, complex eigenvalues result.
Supposing |b| o |a| the square root can be expanded in powers
of b2/a2, yielding the PT expansion

oþ ¼ a� b2

2a
þ . . .

for the positive root, here supposing a 4 0. Note that the PT
denominator is given by the sum of the diagonal elements.

As in the preceding Section II.1, the RPA results can be
further analyzed by inspecting their PT expansions through
second-order. The RPA excitation energy for the k - a single
excitation reads

DERPA
ak = ea � ek � Vakak + Vakka + Uak

(2)(p�h) + Uak
(2)(h�p) + O(3)

(21)

The comparison with eqn (6) and (14) shows that the RPA
excitation energy is consistent through first order (which also
applies to the transition moment), whereas in second order
only a subset of the full expression is recovered. While the
Uak

(2)(p–h) term is accounted for, the physically more important
Uak

(2)(2p–2h) term is absent, which means that the relaxation
and polarization effects are disregarded. The other second-
order RPA term, Uak

(2)(h–p), arises due to the unusual coupling
of the considered a–k excitation with h–p de-excitation config-
urations. The explicit expression, given by

Uak
ð2Þðh�pÞ ¼ �

X
b;j

Vab½kj�
2

ea þ eb � ek � ej
(22)

is identical with the third term on the right-hand side of
eqn (16). This means that the RPA scheme accounts for the
negative correction term, referred to as �C, in the overall
positive correlation contribution to the excitation energy. While
the lowering of the excitation energy thereby entailed may to a
certain extent compensate for the lack of the (negative) relaxa-
tion and polarization shift, the resulting improvement of the
computational results is not based on physical grounds.

As the PT analysis shows, the RPA method can hardly be
seen as a satisfactory approach to electron excitations. The
treatment is restricted to single excitations, and here the
resulting excitation energies and transition moments are con-
sistent only through first order of PT. Due to the absence of
double excitations, the essential effects of relaxation and polar-
ization are not taken into account. And, finally, there is an
improper consideration of ground and final-state correlation

effecting a reduction rather than an increase of the excitation
energies.

C. LR-TDDFT computational scheme

Analogous to the connection of the RPA with TDHF, the LR-
TDDFT computational scheme is based on the time-dependent
KS equations. Supposing the almost exclusively used adiabatic
approximation (time-dependence via time-dependent density
functions), LR-TDDFT equations can be derived in an obvious
modification of the TDHF/RPA procedure, as, e.g., discussed in
ref. 26. Of course, independent derivations within the TDDFT
framework have been reported as well.27

The LR-TDDFT computational scheme (in the adiabatic
approximation) is formally equivalent to the RPA pseudo-
eigenvalue method discussed above. The excitation energies,

om = Em � E0 (23)

and transition moments,

Tm ¼
X
b;l

x�bl;mdbl þ y�lb;mdlb

� �
(24)

are given by the eigenvalues and eigenvector components,
respectively, of the RPA-type secular equations

~A ~B

~B� ~A�

0
@

1
A xm

y
m

0
@

1
A ¼ om

xm

�y
m

0
@

1
A (25)

Here, the matrix elements of the Ã and B̃ blocks read

~Aak;bl ¼ eKS
a � eKS

k

� 	
dabdkl þ f xcalkb þ Valkb

~Bak;lb ¼ f xcabkl þ Vabkl

(26)

These expressions differ from their RPA counterparts by using
the KS orbital energies rather than HF energies and by repla-
cing the Coulomb integrals �Valbk in A by the matrix elements

fxc
alkb = hfafl|fxc[n0]|fkfbi (27)

and, similarly, �Vablk in B by fxc
abkl. Here

f xc½n�ðr; r0Þ ¼ dvxc½n�ðrÞ
dnðr0Þ (28)

denotes the so-called xc kernel, that is, the functional derivative
of the xc potential functional, vxc[n](r), and n0(r) is the initial
density of the system (before the onset of the td perturbation).
Explicit expressions for adiabatic xc functionals have been
given, for example, by Bauernschmitt and Ahlrichs.28

It should be noted that the LR-TDDFT expressions (26)
suppose the so-called adiabatic approximation, in which the
xc functionals depend on time only via the time-dependence of
the densities, n(t). This allows one to resort to potential func-
tionals associated with the ground-state energy functionals,
Exc[n]. For local functionals, such as LDA (local density approxi-
mation) or GGA (generalized gradient approximation) func-
tionals, the functional derivatives become local quantities
as well,

f xc[n0](r,r0) B f (r)d(r � r0) (29)
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so that the matrix elements fxc
pqrs are reduced to one-particle

integrals.
Again, the LR-TDDFT results can be inspected via RPA-type

PT for the excitation energy through second order, yielding

DETDDFT
ak = eKS

a � eKS
k + fxc

akka + Vakka + Ũak
(2)(p�h)

+ Ũak
(2)(h�p) + O(3) (30)

The comparison with eqn (6) shows that already the simple
first-order physics is compromised, as there is no longer the
crucial Coulomb repulsion term, �Vakak, accounting for the
Coulomb repulsion of the electrons in the orbitals a and k.
Whether fxc

akka can be seen as an appropriate replacement is
questionable. At least, for local functionals the approximate 1/R
dependance of the original Coulomb integral on the distance R
between localized orbital a and k cannot be recovered.
Obviously, this is the cause for the problems arising in the
LR-TDDFT treatment of Rydberg-type excitations29,30 and
charge transfer (CT) excitations.31–34 The problem of the RPA
in dealing with the response effects accompanying the a�k
excitation, that is, relaxation and polarization, seems to affect
also the LR-TDDFT results. There are no double excitations,
and it can hardly be expected that their default can otherwise
be compensated for. Finally, one may wonder whether the
Ũak

(2)(h–p) term may be any better than the RPA analogue in
dealing with the ground- and final state correlation energies.

In conclusion, the LR-TDDFT can be seen as a modification
of the RPA computational scheme, providing physically reason-
able excitation energies (and transition moments) for singly
excited states. However, one can probably argue whether LR-
TDDFT affords a significant improvement over the RPA descrip-
tion and whether eventual improvements are based on physical
grounds. Of course, the more profound question is: Where do
the td KS equations actually come from in the first place?

III. Review of DFT

Conceptually, TDDFT draws largely upon the well-established
DFT approach to the ground-state energy and density. This
warrants a brief recapitulation of the DFT essentials. In parti-
cular, we will discuss an elementary form of the Kohn–Sham
(KS) scheme, which can also be used as an analytical tool in the
case of TDDFT. For thorough and detailed presentations of DFT
the reader is referred to monographs,8,35 as well as review
articles (see e.g. Nagy36 and references therein).

A. Hohenberg–Kohn theorems

Specifically, we consider an N-electron system with the Hamil-
tonian given by

Ĥ = T̂ + V̂ + Û (31)

where T̂ is the kinetic energy, V̂ is the electron repulsion, and Û
denotes a local one-particle potential, e.g., the electron-nuclei

interaction potential,

Û ¼
XN
i¼1

u rið Þ; uðrÞ ¼ �e2
XK
a¼1

Za

Ra � rj j (32)

Let

C = C(r1s1,. . .,rNsN) (33)

denote an antisymmetrized and normalized wave function,
where ri and si are the spatial coordinates and spin variable,
respectively, of the i-th electron. The associated energy can be
obtained as the expectation value,

E[C] = hC|Ĥ|Ci (34)

The ground-state energy, E0, is given by the lowest eigenvalue of
the (static) Schrödinger equation,

ĤC0 = E0C0 (35)

which, in turn, is fully equivalent with a variational principle
according to

dE[C0] = 0, hC0|C0i = 1 (36)

The DFT approach is based on the much simpler (one-
particle) density functions, n(r), deriving from the original N-
electron wave functions according to

nðrÞ ¼ N
X

s1;...;sN

ð
� � �
ð
C rs1; r2s2; . . .ð Þj j2dr2 � � � drN (37)

Obviously, the density functions are positive definite, n(r) Z 0,
and normalized according toð

nðrÞdr ¼ N

Can the energy directly be deduced from the density func-
tion n(r) rather than the underlying wave function C? Indeed, it
is the basic DFT tenet that an energy functional can be
established,

E = E[n] (38)

mapping a given density function to the corresponding energy.
However, ‘establish’ here means a proof of existence of such a
functional, whereas a definite construction procedure is not
available and one ultimately has to resort to appropriate
guesses. Let us inspect the individual constituents of the
Hamiltonian. Obviously, the energy contribution associated
with the local one-particle potential Û, also referred to as the
external potential, can directly be computed from the density
function:

U½n� ¼
ð
uðrÞnðrÞdr (39)

This does not apply to the kinetic energy part T[n], as here a
density-based evaluation would require the one-particle density
matrix. In the electron repulsion energy V[n] one may
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distinguish the classical Coulomb energy

J½n� ¼ 1

2
e2
ðð

nðrÞnðr0Þ
jr� r0j drdr

0 (40)

of a charge distribution en(r) and a (non-classical) remainder

Vxc[n] = V[n] � J[n] (41)

accounting for the exchange effect (anti-symmetrization of
the N-electron wave function) and the correlation effect (devia-
tion of the wave function from the Slater product form). Like
the kinetic energy, this exchange–correlation (xc) energy con-
tribution cannot directly be derived at the one-particle
density level.

However, according to the first theorem of Hohenberg and
Kohn (HKI),13 one can, at least, establish the existence of the
needed functionals. The argument goes as follows. There is an
obvious mapping of (local) external potentials, v(r), to one-
particle densities as indicated in the following mapping
scheme:

v(r) - Ĥ[v] - C[v] - n[v](r) (42)

Here,

Ĥ½v� ¼ T̂ þ V̂ þ
XN
i¼1

v rið Þ (43)

is the N-electron Hamiltonian associated with the external
potential v(r); C[v] is the ground-state wave function of Ĥ[v],
and n[v](r) is the one-particle density function associated with
C[v]. Now, the crucial point is that this mapping is essentially
one-to-one: if two potentials are mapped to the same density
function, they must be identical up to a constant. As a con-
sequence, the mapping (42) can be inverted,

n(r) - v[n](r) + c (44)

Mathematical strictness demands to mention that here the
domain of eligible densities may be restricted to so-called v-
representable densities. Continuing the inverse mapping with
the original mapping sequence (42) according to

n(r) - v[n](r) + c - Ĥ[n] + C - C[n] (45)

establishes a mapping between the densities n(r) and the wave
functions C[n], being the ground-state wave function of the
Hamiltonian Ĥ[n] = Ĥ[v[n]] with the external potential v(r) =
v[n](r). This allows one, in particular, to establish the universal
HK functional according to

F[n] = hC[n]|T̂ + V̂|C[n]i (46)

Herewith the desired energy functional for the considered
system becomes

E½n� ¼ F ½n� þ
ð
nðrÞuðrÞdr (47)

This functional is subject to a variational principle,

E0 = E[n0] r E[n] (48)

where E0 and n0(r) are the ground-state energy and density
function, respectively. This is the essence of the second Hohen-
berg–Kohn theorem (HKII).

The variational principle can be translated into Euler–
Lagrange equations briefly considered below. This offers a
shortcut to E0 and n0 bypassing the Schrödinger equation.
Again, it must be emphasized that the HKI theorem establishes
the existence of E[n] without providing a means for its
construction.

It is worth noting that the energy functionals can also be
established in a more direct way referred to as Levy’s con-
strained search (LCS – see Parr and Yang35). According to the
definition

E½n� ¼ min
C!n
hCjĤjCi ¼ min

C!n
hCjT̂ þ V̂jCi þ

ð
uðrÞnðrÞdr (49)

one samples the energy expectation values with respect to all
(normalized) N-electron wave functions compatible with a given
density function n(r) and takes the minimal value limit. The
universal HK functional, for example, is given by

F ½n� ¼ min
C!n
hCjT̂ þ V̂ jCi

Note that according to the LCS definition the variational
principle,

E0 = E[n0] r E[n] (50)

is manifest. The densities are required to be N-representable,
which is supposed to be less restrictive than the v-
representability required in the HK mapping approach.

Supposing the exact or an approximate energy functional is
available, the variational principle,

E0 ¼ E n0½ � � E½n� for

ð
nðrÞdr ¼ N (51)

allows one to determine the ground-state density, n0(r), and
energy, E0, via the Euler–Lagrange equation

dE½n� � m
ð
dnðrÞdr ¼ 0 (52)

where m is a Lagrange parameter. The variation dE[n] can be
expressed in terms of the functional derivative,

dE½n� ¼
ð
dE½n�
dnðrÞdnðrÞdr (53)

Consequently, eqn (52) can be written in the form

dE½n�
dnðrÞ ¼ m (54)

According to eqn (41), (46) and (47) the energy functional
comprises four parts,

E½n� ¼ T ½n� þ Vxc½n� þ J½n� þ
ð
uðrÞnðrÞdr (55)

which is reflected by a corresponding partitioning of the total
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functional derivative:

dE½n�
dnðrÞ ¼

dT ½n�
dnðrÞ þ

dVxc½n�
dnðrÞ þ J½n�ðrÞ þ uðrÞ (56)

Here,

J½n�ðrÞ ¼ e2
ð
nðr0Þ
jr� r0jdr

0 (57)

is the explicit functional derivative of the classical Coulomb
energy J[n].

As a computational scheme, eqn (54) is hardly of practical
use. It represents a 3-dimensional integral equation, which, like
the Thomas–Fermi equation, may be tractable for atoms, where
the rotational symmetry can be exploited, but the application to
molecules would be a serious challenge. Moreover, as density
functions do not constitute a Hilbert space (as the difference of
two density functions may no longer be a density function), one
has to forgo basis set expansions and other mathematical
conveniences. This is where the Kohn–Sham concept comes
into play.

B. Kohn–Sham method

The basic measure in the Kohn–Sham (KS) version of DFT is to
introduce an orbital level beneath the densities.14 According to
the mapping

F ¼ c1c2 . . .cNj j ! nðrÞ ¼
X
i;s

ciðr; sÞj j2 ¼ 2
XN=2
k

fkðrÞj j2

(58)

a given density can be obtained from the Slater determinant
|c1c2. . .cN| of the spin-orbitals ci = fkwg, k = 1,. . .,N/2; g = a,b,
or, directly, via the spatial orbitals fk, k = 1,. . .,N/2. By defini-
tion, the representation

n = n{ci} (59)

herewith established, applies to ‘non-interacting N-
representable densities’, which, however, is hardly a restriction
at all. It should be noted, though, that the representation is not
necessarily unique.

The recourse to the orbital level allows one to define an
approximate kinetic energy expression according to

TKS n cif g½ � 	
X
i;s

ð
c�i ðr; sÞ �

1

2
r2


 �
ciðr; sÞdr

¼ 2
XN=2
k

ð
f�kðrÞ �

1

2
r2


 �
fkðrÞdr

(60)

and lump the remainder, T[n] � TKS[n] and the xc energy
contribution (eqn (41)) together,

Exc[n] = V[n] � J[n] + T[n] � TKS[n] (61)

which is referred to as the exchange–correlation functional.
Accordingly, the original energy functional can be written as

E n cif g½ � ¼ TKS n cif g½ � þ J½n� þ Exc½n� þ
ð
uðrÞnðrÞdr (62)

and the task of finding the minimum E[n0] can now be
performed at the orbital level, that is, in Hilbert space. Like
in the familiar derivation of the Hartree–Fock (HF) or self-
consistent field (SCF) equations, the variation with respect to
the spin-orbitals ci, or likewise, the spatial orbitals fk, main-
taining their orthonormality,

dE[n{ci}] = 0, hci|cji = dij (63)

gives rise to the set of Kohn–Sham equations, which in spin-
free form read

�1
2
r2 þ uðrÞ þ J½n�ðrÞ þ vxc½n�ðrÞ

� 

fkðrÞ ¼ ekfkðrÞ;

k ¼ 1; . . . ;N=2
(64)

Here,

vxc½n�ðrÞ ¼
dExc½n�
dnðrÞ (65)

is the exchange–correlation potential (more precisely, xc
potential functional), obtained as the functional derivative of
the xc energy functional. Like the SCF equations, the KS
eqn (64), together with the relation

nðrÞ ¼ 2
XN=2
k

fkðrÞj j2 (66)

establish an iterative computational scheme, devised to con-
verge to the ground-state density, n0(r), marking the minimum
of the energy functional. The ground-state energy is obtained as
E0 = E[n0] via eqn (62). Mathematically, this represents a fixed-
point iteration (FPI), where n0(r) is the fixed-point.

To summarize once again, the KS formulation must be seen
as a mathematical artifice rather than a physically motivated
construction. This means, in particular, that the KS orbitals
and orbital energies have no theoretically founded physical
meaning (except perhaps for the highest occupied orbital37);
they may acquire a certain significance due to the similarity
between the KS and SCF computational procedures, which
extends to the respective orbitals.

C. Radical Kohn–Sham scheme

In the preceding section, we have characterized the KS method
as a mathematical device for determining the minimum of the
DFT energy functional at the orbital level, allowing one to
operate in Hilbert space. Once this has been understood, one
needs not to stop at the original KS variant with its representa-
tion of the density in terms of N non-interacting particles. Any
particle number is admitted, even N = 1, that is, the representa-
tion of the density associated with a single (spinless) particle!
The whole KS machinery can readily be transferred to such a
representation referred to as radical Kohn–Sham (rKS) scheme
in ref. 17. Under different designations, such KS modifications
have previously been considered by Levy et al.37 and Holas and
March.38
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Any given density n(r) can trivially be assigned to an orbital,

fðrÞ ¼ nðrÞ
N


 �1=2

(67)

and the density, in turn, is related to that orbital according to

n(r) = Nf(r)2 (68)

This establishes an explicit one-to-one mapping of density
functions and (real) orbitals.

An obvious choice for the kinetic energy at the orbital level is

~TKS½nffg� ¼ N

ð
fðrÞ �1

2
r2


 �
fðrÞdr (69)

Using the correspondingly modified xc functional

Ẽxc[n] = V[n] � J[n] + T[n] � T̃KS[n] (70)

the original energy functional can be written as

E½n� ¼ ~TKS½n� þ J½n� þ ~Exc½n� þ
ð
uðrÞnðrÞdr (71)

Via eqn (68) and (69), the energy functional is defined at the
orbital level, E[n] = E[n{f}], and the variational principle can be
exploited with respect to f,

dE[n{f}] = 0, hf|fi = 1

This results in the single KS equation

�1
2
r2 þ uðrÞ þ J½n�ðrÞ þ ~vxc½n�ðrÞ

� 

fðrÞ ¼ efðrÞ (72)

where

~vxc½n�ðrÞ ¼
d ~Exc½n�
dnðrÞ

is the modified xc potential functional. As in the regular KS
scheme, the single rKS eqn (68) and (72) establish a fixed-point
iteration (FPI) scheme for the ground-state density n0(r) and
energy E0 = E[n0].

As the usual KS method, the rKS formulation is, in principle,
exact. In the rKS version the essentially mathematical nature of
the KS concept is manifest, which applies also to the signifi-
cance of the KS orbitals: there is only a single ‘occupied’
KS orbital here. In view of its large deviation from the SCF
computational scheme, the rKS cannot be recommended
for practical use. However, it proves to be a useful tool for
analytical and pedagogical purposes. In this capacity, its td
extension will be instrumental to clarify certain issues of the
TDDFT venture.

IV. Foundations of TDDFT
A. Original design by Runge and Gross

The basic constituent of the TDDFT foundation by Runge and
Gross16 is a theorem (RG1) which establishes a time-dependent
analogue to the HK1 theorem, namely, a mapping of time-
dependent densities to time-dependent potentials. This, in
turn, allows one to define an action-integral functional (AIF).

Together with a stationarity principle, to be seen as a reason-
able postulate, a density-based equation-of-motion (EOM) can
be established governing the time-evolution of the N-electron
system under consideration.

Let us inspect the RG1 theorem. For a given time-dependent
density, n(r,t), in a time interval, say t0 r t r t1, there is a time-
dependent ‘external’ potential,

n(r,t) - vext[n](r,t) + c(t), t0 r t r t1 (73)

defined up to a purely time-dependent function, c(t), such that
the corresponding N-electron time-dependent (td) Schrödinger
equation (SE)

i
@

@t
C½n�ðtÞ ¼ T̂ þ V̂ þ V̂ext½n�ðtÞ

� �
C½n�ðtÞ;

V̂ext½n�ðtÞ ¼
X
i

vext½n� ri; tð Þ þ CðtÞ
(74)

reproduces the original density:

C[n](t) - n(r,t) (75)

Obviously, the mapping depends on the initial conditions at t =
t0, which, however, can be assumed to be appropriately speci-
fied, e.g., according to C[n](t0) = C[n0], where n0(r) = n(r,t0) and
C[n0] conforms to the HKI mapping. The external potential
V̂ext[n] is uniquely determined up to a purely time-dependent
function, C(t), and consequently C[n](t) is only defined up to a
phase factor, e�ia(t).

Now, we again consider a specific N-electron system, where
the Hamiltonian,

Ĥ(t) = T̂ + V̂ + Û(t) (76)

features also a time-dependent local (external) potential, Û(t). It
may be supposed that the time-dependent contribution sets in
at t0, that is, the one-particle potential is of the form

u(r,t) = u(r) + y(t � t0)w(r,t) (77)

Starting from a given wave function C0, e.g., the ground-state
wave function of the static part of the Hamiltonian, the solution
of the td SE provides the time-dependent wave function, C0(t),
and thereof the corresponding density trajectory, n0(r,t). This is
the standard procedure of quantum theory. TDDFT, by con-
trast, claims that n0(r,t) can be obtained without solving the td
SE. How is that supposed to work?

There are two steps in the RG foundation. The first is the
definition of an action-integral functional (AIF) for the system
under consideration based on the RG1 theorem:

A½n� ¼
ðt1
t0

dt C½n�ðtÞ i @
@t
� ĤðtÞ

����
����C½n�ðtÞ

� �
(78)

Here, C[n](t) is the wave function associated with the density
function n(t) according to the RG1 mapping eqn (73)–(75). And,
second, there is a stationarity principle postulating that A[n] is
stationary at the sought density function n0(r,t),

dA½n� ¼
ðt1
t0

dt

ð
dr

dA½n�
dnðr; tÞdnðr; tÞ ¼ 0 (79)
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This implies the equation

dA½n�
dnðr; tÞ ¼ 0 (80)

for the time-dependent functional derivative of A[n], which is
supposed to be the desired EOM for the density trajectory
n0(r,t).

In their 1984 paper, RG do not elaborate on that time-
dependent Euler-type equation, but move on to establish a
‘practical scheme’, that is, time-dependent KS equations. How-
ever, as a closer examination has revealed, there is a fatal
problem with the AIF as defined in eqn (78).20 According to
the RG1 construction, C[n](t) fulfills the td SE (74),

i
@

@t
C½n�ðtÞ ¼ T̂ þ V̂ þ V̂ext½n�ðtÞ

� �
C½n�ðtÞ (81)

Using this in eqn (78), the AIF simply becomes

A½n� ¼
ðt1
t0

dt C½n�ðtÞ i @
@t
� ĤðtÞ

����
����C½n�ðtÞ

� �

¼
ðt1
t0

dt C½n�ðtÞ V̂ext½n�ðtÞ � ÛðtÞ
�� ��C½n�ðtÞ� �

¼
ðt1
t0

dt

ð
dr vext½n�ðr; tÞ � uðr; tÞf gnðr; tÞ

(82)

This explicit form shows that the RG AIF is an essentially trivial
construct. The time derivative has disappeared, which means
that the stationarity principle (79) cannot result in a time-
dependent EOM. Moreover, there is no longer any direct
reference to the kinetic energy, T̂, and the Coulomb repulsion,
V̂, of the considered system. The remaining content is what is
already implied by the RG1 mapping theorem, namely,

vext[n0](r,t) = u(r,t) + c(t) (83)

so that A[n0] = 0, supposing here that the undefined time
function c(t) can be ignored. Obviously, the particular RG1
mapping result is not a means to determine the desired density
n0(r,t).

Problems associated with the RG AIF were realized as early
as 1996, as one encountered the so-called causality paradox,
that is, the finding that the kernel of the xc functional is not
consistent with causality.39–42 Regrettably, the cause of the
failure was not ultimately analysed and communicated.
Instead, several explanations emerged. As suggested by van
Leeuwen,43 the problem is due to the arbitrary td phase in
C[n](t) that renders the AIF ill-defined. This stance was also
adopted in our 2007 paper17 – though now being outshone by
the finding in ref. 20. Vignale44 located the problem in the
boundary conditions of the variation and proposed a corres-
ponding remedy. The view that together with the Vignale
correction the RG AIF is still viable can be found in the recent
TDDFT literature.7 One also comes across the view that ulti-
mately there are no problems here at all.8

In fact, a clarification of the AIF issue was no longer seen a
topmost priority. The general position adopted by the TDDFT
architects was that the AIF concept is dispensable, since a

rigorous foundation of the theory could be based entirely on
RG1-type mapping theorems. A rigorous foundation of a
density-based theory for the time-evolution of quantum sys-
tems without a stationarity principle? This calls for a closer
examination.

B. TDDFT based only on RG1-type mappings?

Via the RG1 mapping a potential functional is established,
by which an external potential is assigned to a given (td v-
representable) density,

n(r,t) - vext[n](r,t)

so that the td SE for the interacting many-electron system
reproduces the density n(r,t) (in a given interval t0 r t r t1,
supposing appropriate initial conditions). A corresponding
mapping scheme can also be constructed for a system of non-
interacting particles:45

n(r,t) - vKS[n](r,t) (84)

Here, vKS[n](r,t) is referred to as KS potential (functional). Using
vKS[n](r,t) in the one-particle td Schrödinger equations,

i
@

@t
ckðr; tÞ ¼ �1

2
r2 þ vKS½n�ðr; tÞ

� 

ckðr; tÞ;

k ¼ 1; . . . ;N=2
(85)

reproduces the density according to

nðr; tÞ ¼ 2
X
k

ckðr; tÞj j2 (86)

(Note that here the initial conditions for the orbitals can be
chosen according to ck(r,0) = fk(r), where fk(r) are the KS
orbitals associated with the density n(r,0).)

So there are two RG1-type mapping schemes: one for inter-
acting and the other for non-interacting particles. It is believed
that a valid foundation of TDDFT can be obtained as the result
of a particular interplay of these two RG1 variants. Before
taking a closer look at this in the following Section IV.D, we
shall consider a time-dependent extension of the rKS scheme
discussed in Section III.C for static DFT. Here, the (non-
interacting) mapping,

n(r,t) - w[n](r,t) (87)

being based on a single orbital td equation, can explicitly be
constructed and analyzed, as will be discussed in the following.

C. Time-dependent radical KS scheme

Let n(r,t) be a density in the time interval t0 r t r t1. A time-
dependent orbital c(r,t) associated with n(r,t), that is, n(r,t) =
N|c(r,t)|2, is of the general form

c½n�ðr; tÞ ¼ fðr; tÞeikðr;tÞ; fðr; tÞ ¼ nðr; tÞ
N


 �1=2

(88)

Here, the modulus of c(r,t) is directly established by n(r,t), but
even the phase function, k(r,t), is determined by the density up
to a purely time-dependent function. The latter follows from
the requirement that c(r,t) is the solution of a one-orbital td SE
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of the type

i
@

@t
cðr; tÞ ¼ �1

2
r2 þ wðr; tÞ

� 

cðr; tÞ (89)

and therefore the continuity equation applies (see ref. 17):

:
n(r,t) + r�j(r,t) = 0 (90)

Here, :n denotes the time derivative of n, and j(r,t) is the current
density given by

j(r,t) = n(r,t)rk(r,t) (91)

The first of the latter two equations allows one to determine (via
vector field analysis) j(r,t) in terms of :n. The second equation
then leads to rk, which, in turn, determines k(r,t) up to a
constant at a given time, or, overall, up to a purely time-
dependent function, a(t). Altogether, this establishes a direct
and essentially explicit mapping,

nðr; tÞ $ c½n�ðr; tÞ ¼ nðr; tÞ
N


 �1=2

eik½n�ðr;tÞeiaðtÞ (92)

between density trajectories, n(r,t), and time-dependent orbi-
tals, c[n](r,t). It should be noted that this also relates to the
initial state, c[n](r,t0).

This mapping of densities and orbitals can readily be used
to formulate the first stage of the RG1-type mapping,

n(r,t) 2 w[n](r,t) (93)

that is, the mapping between densities and td KS-type poten-
tials, here for a single orbital td SE,

i
@

@t
c½n�ðr; tÞ ¼ �1

2
r2 þ w½n�ðr; tÞ

� 

c½n�ðr; tÞ (94)

To this end, one can simply insert the expression given in
eqn (92) for c[n](r,t). The real part can be solved for w[n](r,t),

w½n�ðr; tÞ ¼ r
2f½n�
2f½n� �

1

2
ðrk½n�Þ2 � _k½n� � _aðtÞ (95)

whereas the imaginary part reproduces the continuity eqn (90).
Using the latter expression for w[n] in the single-orbital td

SE (94),

i
@

@t
cðr; tÞ ¼ �1

2
r2 þ w½nðtÞ�ðr; tÞ

� 

cðr; tÞ (96)

reproduces the density according to

n(r,t) = N|c(r,t)|2 (97)

where the time-dependent orbital, c(r,t), is consistent with the
expression (88).

The explicit construction of the RG1-type mapping for a one-
orbital system shows some interesting features. Foremost, we
note that the potential functional, w[n](r,t), is non-
instantaneous. To construct the phase function k[n](r,t) at a
given time t, both the density, n(t), and its time derivative, :n(t),
are required (at time t). According to eqn (95), the time
derivative

:
k[n] enters the expression for w[n](r,t). This means

that n(t), :n(t), and n̈(t) are needed in the construction of the rKS

potential w[n](r,t) at a given time t. This feature must be
expected as well in the KS potential functional vKS[n(t)] arising
in the context of a non-interacting many-particle system.

Another observation, pertaining both to the KS and rKS case,
is that the KS potential functionals are trivial insofar as they
reproduce (via the orbital td SE) any given density, including
the desired density n0(r,t) of the system under consideration:

vKS[n0(t)](r,t) - n0(r,t) (98)

Obviously, this is not a means to determine n0(r,t), since the
latter density trajectory (together with its first and second time
derivatives) must be available in order to construct the needed
potential vKS[n0(t)](r,t).

D. Time-dependent Kohn–Sham equations as a fixed-point
iteration scheme

Now we can come back to the issue addressed in Section IV.B:
How can, based on the RG1-type mapping theorems, the td KS
equations actually be established? Unfortunately, this issue has
not been spelled out with utmost clarity in the TDDFT litera-
ture. A common presentation is as follows (see e.g. ref. 2, 6, 9
and 46): all the ‘magic’ is already in the KS potential functional
(PF) established via the RG1-type mapping for non-interacting
systems. So one may simply rewrite it according to

vKS[n](r,t) 	 u(r,t) + J[n](r,t) + vxc[n](r,t) (99)

where u(r,t) is the one-particle potential of the system under
consideration and J[n](r,t) is the Hartree PF, and use it in the td
orbital equations,

i
@

@t
ckðr; tÞ ¼ �1

2
r2 þ uðr; tÞ þ J½n�ðr; tÞ

�

þ vxc½n�ðr; tÞgckðr; tÞ; k ¼ 1; . . . ;N=2

(100)

which then just look like the familiar td KS equations. However,
as we have seen, the KS PF is a trivial rather than a ‘magic’ PF,
that is, it reproduces any given density, but is not a means to
find the particular density n0(r,t) of the given system. How
could that change by simply rewriting the original PF? More-
over, eqn (99) seems to establish a definition of the xc PF,
vxc[n](r,t), which is a bit strange. The KS PF on the left-hand side
is a universal entity, as are vxc[n](r,t) and J[n](r,t) on the right-
hand side, whereas u(r,t) is the particular potential of the given
system.

Clearly, this version cannot be the answer, and, indeed,
there is a more satisfactory substantiation, as outlined, for
example, in ref. 5. Based on the RG1-type mappings for both the
interacting and the non-interacting systems, a non-trivial xc PF
can be defined according to

vxc[n](r,t) 	 vKS[n](r,t) � vext[n](r,t) � J[n](r,t) (101)
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Now, td KS equations of the form

i
@

@t
ckðr; tÞ ¼ �1

2
r2 þ uðr; tÞ þ J½n�ðr; tÞ

�

þ vxc½n�ðr; tÞgckðr; tÞ; k ¼ 1; . . . ;N=2

nðr; tÞ ¼ 2
XN=2
k

ckðr; tÞj j2

(102)

can simply be postulated. So what is the rationale here?
Actually, eqn (101) and (102) establish a sort of a fixed-point
iteration (FPI) scheme for td densities (t0 r t r t1), where the
sought density n0(r,t) is the fixed point.

This can be seen as follows. Using the definition (101) for
the xc PF, the td KS equations can be written more explicitly as

i
@

@t
ckðr; tÞ ¼ �1

2
r2 þ uðr; tÞ þ vKS½n�ðr; tÞ

�

� vext½n�ðr; tÞgckðr; tÞ; k ¼ 1; . . . ;N=2

(103)

Recall that for n0(r,t) the RG1 mapping yields

vext[n0](r,t) = u(r,t) + c(t) (104)

This means that, when in the course of the successive solutions
of eqn (102) the density trajectory approaches the sought
density, n(r,t) - n0(r,t), the external potential cancels the
specific potential u(r,t) so that the td KS equations take on
the form

i
@

@t
ckðr; tÞ ¼ �1

2
r2 þ vKS n0½ �ðr; tÞ

� 

ckðr; tÞ ! n0ðr; tÞ (105)

where finally the KS PF vKS[n0](r,t) reproduces n0(r,t).
So, at least formally, there seems to be a way to establish a

valid td FPI scheme based entirely on the RG1-type mappings,
featuring td KS equations to be solved iteratively in a given time
interval. However, where is the catch? The problem is that this
FPI scheme is an ad hoc construct, not backed by any varia-
tional or stationarity principle. This means that there is no
reason to expect that the FPI procedure converges, at least in
principle. Thus, the inevitable conclusion is that also the RG1-
type mapping based derivation of td KS equations does not
constitute a valid foundation of TDDFT. Let us note that an
analogous mapping based foundation could also be conceived
for the (static) KS equations of ordinary DFT, as is briefly
discussed in Appendix A.

Remarkably, the FPI concept has hardly been communi-
cated in the TDDFT literature and therefore not been exposed
to critical examinations. A notable exception, though, is a brief
discussion in the textbook by Ullrich.9 In fact, the FPI scheme
was not considered to be a practical computational tool,
let alone used in actual applications. A handy workaround
seemed available, namely, ‘on the fly’ (OTF) time propagation
of the td KS eqn (102), being not only a practical computational
procedure but also dispensing with the inconvenient conver-
gence issue of the FPI mode. So let us inspect the OTF
procedure, where the suppressed FPI problems reappear in a
different form.

On the first glance, eqn (102) look like a set of explicit first-
order differential equations amenable to OTF time propaga-
tion. However, as our analysis of the td rKS scheme has shown,
the determination of vKS[n](r,t) (and by extension also of
vxc[n](r,t)) at a time t requires besides n(r,t) also the first and
second time derivatives, :

n(r,t) and n̈(r,t). This means that,
strictly speaking, the td KS eqn (102) represent a set of implicit
second-order differential equations that cannot be propagated
in a first-order OTF fashion. Of course, in the adiabatic
approximation, where the xc PF depends on time only via the
time-dependence of the density, n(r,t), an OTF propagation
of the td KS equations is feasible – and, in fact, utilized in
the so-called real-time TDDFT treatment (see, e.g., Provorse and
Isborn47 and references therein). But here the question is: an
approximation to what exactly, as there is no underlying exact
approach? So, also the OTF procedure does not solve the
problem inherent to the FPI concept.

Let us note that in the FPI mode, starting the iterations with
a trial density trajectory, ñ0(r,t), t0 r t r t1, there is of course no
problem in using common propagation techniques to solve the
td KS equations at a given iteration step. At each step the entire
density trajectory of the preceding step is available and can be
used as input to determine the xc PF required in the current
step for any time within the given interval. As already stated,
the actual problem of the FPI procedure is the lack of a
convergence rationale. Thus, neither the original FPI scheme
nor the OTF shortcut salvage the lost cause of the mapping-
based foundation of td KS equations.

V. Summary and concluding remarks

The original foundation of TDDFT by Runge and Gross (RG)
from 1984 has proven to be invalid. Here a central pillar was a
stationarity principle for an action-integral functional (AIF)
established via the RG1 mapping theorem. According to our
analysis, this AIF must be seen as an irreparable misconstruc-
tion, a finding which, however, has not fully been recognized
so far.

That there were problems with the RG foundation was
realized almost 30 years ago, and it was subsequently aban-
doned, though without a conclusive analysis of the underlying
problems. What is offered as a substitute – though so far not
authoritatively communicated via a second rigorous founding
paper – is a direct route to td KS equations without involving a
stationarity principle. Based on two RG1-type mapping theo-
rems, namely the original RG1 mapping for interacting electron
systems and a corresponding mapping for non-interacting
particles, there is indeed a formally correct way to postulate
td KS equations in the form of a fixed-point iteration (FPI)
scheme supposed to converge to the density trajectory of the
system under consideration. But there is a catch: the FPI
scheme is merely an ad hoc construct not backed by a varia-
tional or stationarity principle as a guarantor of the conver-
gence of the FPI procedure. So also the mapping/FPI based td
KS concept cannot be seen as a valid reconstitution of the
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TDDFT foundations – though this view does not yet seem to
have reached the TDDFT community.

In fact, the FPI mode of dealing with the td KS equations was
hardly ever discussed, let alone used in practice. ‘On the fly’
(OTF) propagation seemed to be a legitimate and viable com-
putational method, generating directly the desired fixed-point
density trajectory. However, the problem at the core of the FPI
scheme reappears here in another form. While OTF propaga-
tion is possible if the xc potential functional depends only on
the td density function, as is the case in the adiabatic approxi-
mation, one must realize that the putative exact xc potential
functional depends also on the first and second time derivative
of the density function, which means that the td KS equations
constitute a system of implicit second-order differential equa-
tions that cannot be solved by first-order type time propagation.
Obviously, OTF propagation does not offer a way out of the FPI
mode deficiency – again a view not yet taken into serious
consideration by the TDDFT architects.

In view of the critical review given here one has to face the
conclusion that there is currently no valid justification for
TDDFT, and any expectations of finding a remedy here are
unfounded. Rather, one should abandon the idea of a formally
exact method for dealing with the time-evolution of a many-
electron quantum system on the level of electron density
functions, and deriving thereof an, in principle, exact way of
extending the ground-state DFT approach to electron excita-
tions. This means that the LR-TDDFT computational schemes
must be seen as what they were in their beginning some
40 years ago: pragmatical modifications of the RPA obtained
by referring to the KS equations of static DFT augmented by a
time-dependent external potential rather than the corres-
ponding HF equations. While this may result in empirically
improved results for singly excited states, the physical signifi-
cance of such improvements is questionable.

Data availability

No primary research results, software or code have been
included and no new data were generated or analysed as part
of this review.
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Appendices
A: Mapping based derivation of the ordinary KS equations

The concept of a mapping-based foundation of the time-
dependent KS equations addressed in Section IV can be con-
trasted with an essentially analogous procedure in the more
transparent case of static DFT. This shall be discussed and
analysed in the following.

As discussed in Section III.B, the (spin-free) KS eqn (64),

�1
2
r2 þ uðrÞ þ J½n�ðrÞ þ vxc½n�ðrÞ

� 

fkðrÞ ¼ ekfkðrÞ;

k ¼ 1; . . . ;N=2
(A.1)

are obtained by applying the variational principle for the energy
density functional of the considered many-electron system at
the orbital level underlying the electron density. Here, u(r) is
the one-particle potential of the considered system, and

vxc½n�ðrÞ ¼
dExc½n�
dnðrÞ (A.2)

is the xc potential functional (PF) deriving from the xc energy
functional (61). Together with the relation

nðrÞ ¼ 2
XN=2
k

fkðrÞj j2 (A.3)

the KS equations establish an iterative computational scheme,
where the ground-state density n0(r) of the considered system is
the desired solution (‘fixed point’).

Now let us suppose that a HKII variational principle is not
available, and one has to resort, firstly, to the HKI mapping
theorem (44) for interacting many-electron systems,

n(r) - vext[n](r) + c (A.4)

(adapting here the notation of the PF to the TDDFT usage), and,
secondly, an analogous mapping for non-interacting particles,

n(r) - vKS[n](r) + c (A.5)

Using the KS PF, vKS[n], for a given density, n(r), in the KS-type
orbital equations

�1
2
r2 þ vKS½n�ðrÞ

� 

fkðrÞ ¼ ekfkðrÞ; k ¼ 1; . . . ;N=2 (A.6)

reproduces the density according to nðrÞ ¼ 2
PN=2
k

fkðrÞj j2.

It should be noted that the non-interaction concept could be
made even more stringent by limiting oneself to a single orbital
equation,

�1
2
r2 þ vKS½n�ðrÞ

� 

fðrÞ ¼ efðrÞ (A.7)

as is discussed in Section III.C under the designation rKS
(radical KS). Here, the corresponding PF can explicitly be
constructed, yielding the simple expression:17

vKS½n�ðrÞ ¼
r2

ffiffiffiffiffiffiffiffi
nðrÞ

p
2
ffiffiffiffiffiffiffiffi
nðrÞ

p þ c (A.8)

At this rKS level, the triviality of the KS PF and the non-
interaction mapping is manifest.

Equipped with these two mapping theorems and the asso-
ciated PFs one can define a non-trivial xc PF according to

ṽxc[n](r) 	 vKS[n](r) � vext[n](r) � J[n](r) (A.9)
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and postulate KS equations for the system under consideration,

�1
2
r2 þ uðrÞ þ J½n�ðrÞ þ ~vxc½n�ðrÞ

� 

fkðrÞ ¼ ekfkðrÞ;

k ¼ 1; . . . ;N=2
(A.10)

Together with eqn (A.3) these equations constitute a fixed-point
iteration (FPI) scheme supposed to yield the desired density
n0(r) of the considered system as the fixed point. To understand
the rationale here, eqn (A.10) can be written more explicitly as

�1
2
r2 þ uðrÞ þ vKS½n�ðrÞ � vext½n�ðrÞ

� 

fkðrÞ ¼ ekfkðrÞ;

k ¼ 1; . . . ;N=2 (A.11)

Consequently, when n(r) approaches n0(r), the external
potential cancels u(r), since vext[n0](r) = u(r) + c, and the
remaining potential vKS[n0](r) reproduces n0(r).

However, two questions remain. The first concerns the
convergence of that FPI procedure, the second is about the
relation between the ‘canonical’ and the mapping-based xc PF,
vxc[n](r) and ṽxc[n](r), respectively.

Let us first consider the second question. Here it is impor-
tant to note that any density, say ñ(r), can be made the FP
density in either variant of the KS equations by just replacing
the original potential u(r) with another specific potential,
vext[ñ](r), in eqn (A.1) and (A.10), respectively. The fact that
both KS variants have the same FP density for arbitrary den-
sities ñ(r) suggests the conclusion that they are in fact identical,
and that, in particular,

vxc[n](r) = ṽxc[n](r) = vKS[n](r) � vext[n](r) � J[n](r) (A.12)

This is an interesting finding, as it also establishes via
eqn (A.2) the connection to the (HKI based) energy functional
E[n], and, specifically, the energy, E[n0], associated with FP
solution n0(r) of the original system. But it should be recalled
that the canonical KS equations are based on the HKII varia-
tional principle, which here also furnishes the in-principle
convergence of the FPI procedure. On their own, without the
HKII or a related variational principle in the background, the
mapping-based KS equations are unfounded, as there is no
reason to expect the FPI scheme to converge.

Acknowledgements

Thanks are due to Krishna Nandipati for the incentive and
invitation to give a lecture on the status of the TDDFT founda-
tions at the Joint Physical Chemistry Seminar at the Heidelberg
University in May 2023. A critical reading of the manuscript and
helpful comments by Marco Bauer, Lorenz S. Cederbaum, and
Andreas Dreuw are gratefully acknowledged.

References

1 K. Burke, J. Werschnik and E. K. U. Gross, J. Chem. Phys.,
2005, 123, 062206.

2 P. Elliott, K. Burke and F. Furche, Rev. Comput. Chem., 2008,
26, 91.

3 M. E. Casida, J. Mol. Struct.:THEOCHEM, 2009, 914, 3.
4 E. K. U. Gross and N. T. Maitra, in Fundamentals of Time-

dependent Density Functional Theory, ed. M. A. L. Marques,
N. T. Maitra, F. M. S. Nogueira and E. K. U. Gross, Springer,
Heidelberg, 2012.

5 M. Ruggenthaler, M. Penz and R. van Leeuwen, J. Phys.:
Condens. Matter, 2015, 27, 203202.

6 N. T. Maitra, J. Chem. Phys., 2016, 144, 220901.
7 M. Huix-Rotllant, N. Ferré and M. Barbatti, in Quantum
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