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Accurate incorporation of hyperfine coupling in
diabatic potential models using the effective
relativistic coupling by asymptotic representation
approach†

Maik Vossel, Iordanis Tsakontsis, Nicole Weike and Wolfgang Eisfeld *

The accurate treatment of relativistic couplings like spin–orbit (SO) coupling into diabatic potential

models is highly desirable. We have been developing the effective relativistic coupling by asymptotic

representation (ERCAR) approach to this end. The central idea of ERCAR is the representation of the sys-

tem using an asymptotic diabatic direct product basis of atom and fragment states. This allows to treat

relativistic coupling operators like SO coupling analytically. This idea is extended here to the incorpora-

tion of hyperfine (HF) coupling into the diabatic potential model. Hyperfine coupling is due to the mag-

netic dipole–dipole and the Fermi contact interaction as well as the electric quadrupole interaction. The

corresponding operators can be expressed in terms of the angular momentum operators for nuclear

spin Î and for total angular momentum Ĵ of the atomic fine structure states. The diabatic basis of an

existing ERCAR model is complemented by nuclear spinors and the HF coupling operators are easily

evaluated in that basis. Diagonalization of the resulting full diabatic ERCAR model yields the HF energies

and states for any molecular geometry of interest. The new method is demonstrated using an existing

accurate diabatic potential model for hydrogen iodide (HI) [N. Weike, A. Viel and W. Eisfeld, Hydrogen–

iodine scattering: I. Development of an accurate spin–orbit coupled diabatic potential energy model,

J. Chem. Phys., 2023, 159, 244119] to see the effects of hyperfine coupling. The HF coupling effect of

the 2P3/2 ground state and spin–orbit excited 2P1/2 state of iodine combined with the 2S1/2 ground state

of hydrogen are added to the ERCAR Hamiltonian. It is shown that each fine structure state is split by

the hyperfine interactions into sets of seven hyperfine states. The fine structure ground state at the glo-

bal minimum is split into three degenerate groups of hyperfine states with splittings of 152 and 76 MHz.

I. Introduction

Spin in chemistry, at first glance the fundamental electron
spin, often is considered of little relevance in the vast majority
of chemical reactions. However, the nuclear spin of many
isotopes is used widely for the investigation of chemical struc-
tures utilizing nuclear magnetic resonance (NMR) spectro-
scopy. On the other hand, the field of ‘‘spin chemistry’’
evolved over the past few decades and it turns out that many
technologically highly interesting applications can be realized
using chemical spin systems like radical pairs, charge-transfer
complexes, or excited states.1–8 Spin chemistry is also consid-
ered relevant in biology and biochemistry. A particularly
fascinating question for that matter is magnetoreception as a

means of orientation of migrating birds and possibly other
animals.3,9–13

Many emerging nano technologies are based on nuclear
spins in confined nanostructures like quantum dots, defect
centers, and molecular magnets and there is a general interest
in understanding the underlying effects in detail.14 E.g., mole-
cular magnets might be used in spintronics devices.15–17 One
proposition is to use the electron spin for the intended device
and in that case hyperfine (HF) coupling can cause decoherence
limiting the applicability.16,18 However, organic molecular
materials are discussed as very promising because of their
weak spin–orbit (SO) and HF interactions.19 Furthermore, HF
coupling also can be utilized intentionally in quantum comput-
ing. E.g., clock transitions due to HF couplings can be used in
qubits.20 One advantage might be the many available HF states,
which are easily tunable.21 Among the already realized devices
are storage devices22,23 and multi-qubit spin registers.24,25 An
overview of electron spin dynamics in quantum dots for quan-
tum information applications can be found in ref. 26. Another
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effect related to decoherence due to HF coupling is intersystem
crossing (ISC) but this can be an appreciated process. Inter-
system crossing is particularly important to enhance the inter-
nal quantum efficiency in organic light emitting devices
(OLEDs).27 HF coupling is postulated to possibly play a role
in ISC in thermally activated delayed fluorescence (TADF)
molecules (modern OLEDs).28 It is also considered relevant in
HF driven ISC in charge-transfer complexes with possible use as
phosphorescence materials and photosensitizers.29 The rele-
vance of HF coupling in such charge-transfer complexes
has been proposed because the usually stronger SO
coupling is strongly distance dependent while HF coupling is
relatively constant.30 Another interesting application might be
HF enhanced magnetic cooling by nuclear adiabatic
demagnetization.31–34 Magnetic manipulation of HF states is
widely applied in the field of ultracold chemistry and physics.

Besides the possible impact of HF coupling on technologi-
cally interesting applications, there are also more fundamen-
tally scientific questions, particularly in astrochemistry and
astrophysics. E.g. the spin temperature corresponding to the
21 cm HF transition of H (I) in interstellar space is of great
interest because it is highly relevant for the interpretation of
many measurements.35 In general, collisional (de)excitation of
interstellar species is of great interest in the astrochemisty and
astrophysics community. Due to low collision energies and
collision probabilities, transitions between rotational levels
and HF levels are of particular interest.36,37 Since many of the
interstellar species are rather exotic and hard to investigate
experimentally, it seems highly desirable to utilize theoretical
quantum dynamics simulations for this purpose. However, this
requires the availability of accurate potential energy models
accounting for all relevant coupling effects, including HF
coupling. In the present work, we present a new way to account
for the HF coupling by an accurate diabatic potential model.

Over the last decade, we have been developing an approach
to construct diabatic potential models including such cou-
plings called the effective relativistic coupling by asymptotic
representation (ERCAR).38–45 The fundamental idea of this
approach is to represent the electronic Hamiltonian of the
system in a diabatic basis defined at the asymptote at which
all atoms causing significant relativistic couplings (SO or HF)
are separated from a remaining non-relativistic fragment. This
corresponds to a direct product basis of fragment and atom
states. Thus, the relativistic couplings can be represented by
geometry-independent matrices in this diabatic basis, which
can be derived analytically. Only the non-relativistic Coulomb
Hamiltonian needs to be evaluated for each nuclear configu-
ration of the system and thus requires a geometry-dependent
diabatic potential model to be developed. We recently improved
the ERCAR method such that it becomes suitable for accurate
scattering calculations.44 The method was applied to represent
the relevant fine structure states of the H+I system for scatter-
ing dynamics with very high accuracy. With this goal, the final
H+I SO coupled ERCAR model consists of 104 fine structure
states. The corresponding ERCAR diabatic model then was
utilized in studying the scattering dynamics within the close-

coupling formalism.46 In the present work, we extend that
existing ERCAR model by incorporating HF coupling for the
H 2S1/2 ground state and the two lowest fine structure states of
I (2P3/2 and 2P1/2).

II. Theory
A. Theoretical background

The ERCAR model is a diabatic potential model, which has
been developed to account for relativistic couplings, in parti-
cular spin–orbit coupling. This approach is extended for the
treatment of hyperfine (HF) coupling in the present work. For a
proof of principle it is sufficient to account for the HF cou-
plings of the 2S1/2 ground state of hydrogen as well as for the
2P3/2 and 2P1/2 fine structure states of iodine. The basic idea of
the ERCAR method is the diabatic representation of the full
electronic Hamiltonian in an asymptotic basis where all atoms
with strong relativistic effects are separated from the approxi-
mately non-relativistic molecular fragment. This separation is
key due to the fact, that the relativistic effects are heavily atom
centered. This specific diabatic basis representation is utilized
in the ERCAR method as given in the following.

The full diabatic electronic molecular states |cd
j (Q)i can be

expanded in the above mentioned direct product basis of the
asymptotic states of the relativistic atom |cat

b( j)i with the
remaining molecular fragment states |cfrag

að jÞ(Q)i. For simplicity,
only a single relativistic atom is assumed in the following but
the approach is easily expanded to multiple relativistic atoms.45

The jth diabatic state can be written as

|cd
j ðQÞi = |cfrag

að jÞðQÞi#|cat
bð jÞi, (1)

where Q contains all nuclear coordinates. It becomes clear, that
the asymptotic atom states do not depend on the geometry of
the entire system, whereas the diabatic fragment states are only
approximately independent of the geometry of the full mole-
cular system. The remaining coordinate dependence of the
fragment states can be neglected by diabatizing the molecular
orbitals in the non-relativistic electronic structure calculations
with respect to the fragment states determined at an asymptotic
reference point for a specific geometry of the molecular frag-
ment with the relativistic atom at infinite distance. The adia-
batic states can then be written as

ca
k

�� �
¼
X
j

ujkðQÞ cfrag
að jÞ

��� E
� cat

bð jÞ

��� E
: (2)

The full electronic Hamiltonian Ĥel can be separated into a
geometry dependent Coulomb Hamiltonian ĤC and a geometry
independent Hamiltonian Ĥrel, which describes all the relati-
vistic couplings

Ĥel(Q) = ĤC(Q) + Ĥrel. (3)

Representing the full electronic Hamiltonian in the diabatic
direct product basis eqn (1) yields the matrix elements

hcd
j |Hel(Q)|cd

ki = hcd
j |HC(Q)|cd

ki + hcat
bð jÞ|Hrel|c

at
b(k)i = wd

jk(Q) + hrel
jk

(4)
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in which the first matrix element on the right-hand side is
geometry dependent and simply a diabatic potential matrix
element of the standard Coulomb Hamiltonian. This diabatic
potential matrix Wd(Q) is represented by an analytic model and
the model parameters are determined by diabatizing non-
relativistic ab initio data obtained from standard electronic
structure calculations.47–51 By contrast, the basis representation
of the relativistic Hamiltonian yields a constant coupling
matrix Hrel, which can be derived analytically for the pure
atomic states of the relativistic atoms. The geometry depen-
dence of the relativistic effects is imposed onto the full mole-
cular system through the diabatic potential model and the full
ERCAR model accounts accurately for all couplings at arbitrary
molecular geometries.

By far the strongest relativistic coupling effect is spin orbit
coupling and the ERCAR method was developed primarily to
account for SO coupling in diabatic potential models for the
quantum dynamics simulation of spectroscopy and reactive
scattering processes in excited states. For this purpose, the
atomic basis states are expressed in a basis of Slater determi-
nants of spinor orbitals as

cat
b

��� E
¼
X
l

gbl w1ðlÞw2ðlÞw3ðlÞ . . .
��� E

SD
(5)

The number of spinor orbitals in the determinants depends on
the system. For example, the uncoupled atomic ground state of
iodine has a valence configuration of 5s25p5 of which the
electrons in the 5s orbital do not contribute to the SO coupling.
Thus, this state can be expressed by the Slater determinant of
five spinor orbitals wk. Each wk is represented by the four
quantum numbers for orbital and spin angular momenta as

|wki = |l, ml ; s, msi. (6)

The SO interaction is treated by the effective n-electron operator

ĤSO ¼
X
a;b

labP̂
y
aP̂b

Xn
k¼1

l̂k � ŝk (7)

where the one-electron operators l̂k�ŝk act on the kth spinor
orbital. The pair of projectors ensures that the couplings are
determined for the corresponding atomic states a and b with
the corresponding coupling constant lab, which in many cases
can be obtained from experiment or otherwise is computed by
ab initio methods. Especially the use of experimental coupling
constants for the atomic states is a great advantage of ERCAR
because the ab initio computed SO splittings are way less
accurate. E.g., the splitting between the first two fine structure
states of the iodine atom, 2P3/2 and 2P1/2, computed ab initio is
roughly 10% too small. The representation of ĤSO in the spinor
determinant basis eqn (5) yields the final SO coupling matrix to
be combined with the diabatic model for the Coulomb Hamil-
tonian. The treatment of HF coupling follows the same pattern
with the appropriate spinor basis and effective operators.

B. Hyperfine coupling operators

The HF couplings are due to various magnetic and electric
interactions between a nucleus and the electronic wave func-
tion. The Fermi contact term and the magnetic dipole–dipole
interaction are in complete analogy to the magnetic interac-
tions between two electrons represented by the Breit–Pauli
Hamiltonian. The only difference is that one electron spin
must be replaced by the nuclear spin. The third kind of
coupling is the electric quadrupole interaction due to the
non-isotropic charge distribution within the nucleus. This
interaction of course is not present in the Breit–Pauli Hamilto-
nian but is easily represented by a corresponding operator. The
physical background and derivation of these operators can be
found in many textbooks like ref. 52 and 53. We now have a
look on each of the three coupling operators.

The Fermi contact term has no classical analogon although
it often is interpreted as the magnetic interaction between
electronic and nuclear magnetic moments of an electron pene-
trating a finite-sized nucleus. Thus, only electrons in s orbitals
contribute to this interaction represented by the operator

Ĥ
fc

an ¼
e2�h2

mempc2
gage

8p
3
Î aŝnd ranð Þ: (8)

Here, e is the unit charge, me the electron mass, mp the proton
mass, c, the speed of light, and ga and ge the nuclear and
electron g-factors, respectively. Îa represents the nuclear spin
operator for nucleus a and ŝn is the spin operator for electron n.
The Dirac Delta-function ensures that this interaction only
contributes if both particles are at the same position. For
electrons not in a s orbital there is no Fermi contact term but
the magnetic dipole–dipole interaction is non-vanishing. The
corresponding operator reads

Ĥ
md

an ¼
e2�h2

mempc2
gage

Îa � ‘̂n � ŝn

� �
ran3

þ
3 Î a � ran
� �

ŝn � ranð Þ
ran5

8<
:

9=
;: (9)

Here, ‘̂n is the orbital angular momentum operator for electron
n and ran is the position vector of electron n with respect to the
center of nucleus a. Nuclei with spin greater than 1 also possess
an electric quadrupole moment which interacts with the elec-
trons and yields an electric quadrupole term to the full HF
interaction Hamiltonian. In general, this can be expressed by

Ĥeq ¼ �4p
5
e2
XZ
p¼1

XNe

n¼1

X2
m¼�2

Rp
2

rn3
Ym

2
� ��

Yp;Fp

� �
Ym

2 yj ;fn

� �
(10)

in which the interaction between each proton p at position
(Rp, Yp, Fp) and each electron n at position (rn, yn, jn) is treated
explicitly and is expressed by the second spherical harmonics.

All these operators in principle could be evaluated numeri-
cally by suitable ab initio methods. However, the aim of the
ERCAR approach is to yield an analytic diabatic potential
model, which requires an analytic evaluation of the couplings
for well-defined atomic states. To this end, the operators need
to be cast into a form in which they can be evaluated on the
basis of spin and angular momentum quantum numbers. The
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operator Ĥfc is easily represented by a corresponding effective
operator because only S states can contribute and the
result reads

Ĥfc;eff ¼
X
a

X
n

bPðL¼0Þan Afc
an
bI � bJ: (11)

The first sum runs over the HF coupling nuclei, in the present
study a = {H, I}, the second sum runs over all basis states n, and
the projector bPðL¼0Þan ensures that the nuclear spin and total
angular momentum operators act on a specific atomic state
with orbital angular momentum L = 0 and with the corres-
ponding coupling constant Afc

an. In the present case, such states
are only present for the ground state hydrogen atom and thus
jH = 1/2. Ĥmd is in complete analogy to the spin–orbit operators
and thus can be represented in the same way by an effective
operator, yielding

bHmd;eff ¼
X
a

X
n

bPðL4 0Þ
an Amd

an
bI � bJ: (12)

Here, the projector bPðL4 0Þ
an ensures that only atomic states with

non-vanishing orbital angular momenta contribute. In the
present case, only the first two iodine fine structure states with
jI = 3/2 and jI = 1/2 are accounted for.

Finally, the operator for the electric quadrupole coupling
also needs to be re-cast such that it can be expressed entirely in
the Î and Ĵ operators with eigenvalues i and j. This is possible
with help of the Wigner–Eckart theorem and yields the effective
operator52

Ĥeq ¼
X
a

X
n

bPð j4 1=2Þ
an

Beq
an

2ið2i � 1Þjð2j � 1Þ

� 3 bI � bJ� �2
þ3
2
bI � bJ� �

� bI2 bJ2

� 	
:

(13)

The projector bPð j4 1=2Þ
an ensures that only atomic states with

j 4 1/2 can contribute, which in the present case is only
fulfilled for the iodine ground state with jI = 3/2.

The ERCAR basis states |k, J(k), M(k)
J i from ref. 44 are fine

structure eigenstates with well-defined electronic angular
momentum quantum numbers J(k), M(k)

J for each asymptotic
basis state k. This is important because the HF coupling
constants are specific for each atomic fine structure state.
However, this basis is insufficient to evaluate the HF coupling
operators. Therefore, this basis is transformed first such that
the states are eigenstates with respect to the total angular
momentum operators ĵ2 and ĵz of each atom and thus can be
given as {|k, jI, mI

j, jH, mH
j i}. Then, the basis is expanded by the

nuclear spinors for each nucleus, which contributes to the HF
coupling in a direct product form, thus reading

|cki = |k, jI, mI
j, jH, mH

j i# |iI, mI
ii# |iHmH

i i. (14)

In this final basis, the above effective operators are easily
represented analytically.

III. Results
A. Atomic hyperfine coupling matrices

We first treat the H 2S1/2 ground state, which is a particularly
simple case. The nuclear spin iH = 1/2 is coupled to the total
angular momentum jH = 1/2. The orbital angular momentum is
zero and therefore only the contact term needs to be evaluated. The
corresponding basis for the H atom can be specified by the four
quantum numbers | jH, mH

j , iH, mH
i i and consists of four spinors

1

2
;
1

2
;
1

2
;
1

2

����


;
1

2
;
1

2
;
1

2
;
1

2
;�1

2

����


;
1

2
;�1

2
;
1

2
;
1

2

����


;
1

2
;�1

2
;
1

2
;�1

2

����

� �

yield-

ing the coupling matrix

Hfc ¼ Afc
H

1

4
0 0 0

0 �1
4

1

2
0

0
1

2
�1
4

0

0 0 0
1

4

0
BBBBBBBB@

1
CCCCCCCCA
: (15)

This matrix has three degenerate eigenvalues of
1

4
and one non-

degenerate eigenvalue of �3
4
; which is the well-known result. Of

course, this is also in agreement with the expectation value for the
HF eigenstates

F ; i; jh jHfc F ; i; jj i ¼ Afc

2
FðF þ 1Þ � iði þ 1Þ � jð j þ 1Þ½ �; (16)

were F is the quantum number for the total angular momentum
of the atomic hyperfine state in consideration. This allows to
reproduce the experimentally known 21 cm HF transition of
hydrogen.

Next, the coupling matrices for the I 2P3/2 fine structure
ground state are evaluated. Since the orbital angular momen-
tum of this state is l = 1, the contact term does not contribute
but the magnetic dipole–dipole interaction does, which struc-
turally leads to the same coupling matrix. The 127I nucleus has a
spin of iI = 5/2 and together with the electronic angular
momentum of jI = 3/2 this yields a hyperfine basis of 24 spinors.
The representation of the effective magnetic dipole–dipole
operator eqn (12) in this spinor basis yields the corresponding
coupling matrix, which is given in the supplemental material.

The corresponding eigenvalues are
15

4
; �1

4
; �13

4
and �21

4
in

agreement with eqn (16) and the corresponding degeneracy
numbers.

The spin of iI = 5/2 of the 127I nucleus corresponds to a
quadrupole moment, giving rise to electric quadrupole inter-
action. This interaction is evaluated by use of eqn (13) in terms
of the full atomic spinor basis and yields the corresponding
coupling matrix given in the supplemental material. Diagona-

lization of this matrix yields the eigenvalues
7

10
;
1

4
; � 1

10
and

�11
20

corresponding to values of F = 1, 4, 2, 3. Both eigenvalues

and degeneracies are in agreement with the known expectation
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values given by

F ; i; jh jHeq F ; i; jj i ¼ Beq

2ið2i � 1Þjð2j � 1Þ

� 3

4
xðx� 1Þ � iði � 1Þjð j � 1Þ

� 	 (17)

with

x = i(i + 1) + j( j + 1) � F(F + 1). (18)

Since the eigenvalues of the magnetic dipole–dipole and elec-
tric quadrupole operators are not identical, the correct level
structure will depend on the values of the corresponding
coupling constants. These values are taken from experiments
by Ashok et al. who measured and fitted a large number of
atomic HF transitions for neutral 127I atoms.54–56 We repro-
duced the experimental spectrum for the transitions between
the fine structure states with a splitting of 7602.967 cm�1. The
experimental values of Amd

I ( jI = 3/2) = 27.59 � 10�3 cm�1 and
Beq

I = 38.18 � 10�3 cm�1 are verified by our model and will be
used in the following. The use of experimentally determined HF
coupling constants (as well for the SO coupling constants) is a
major advantage of the ERCAR method regarding accuracy. The
above analysis also requires the evaluation of the HF coupling
for the jI = 1/2 spin–orbit excited state of iodine. Only the
magnetic dipole–dipole interaction contributes to this fine
structure state and the corresponding coupling matrix for the
I 2P1/2 state is given in the supplemental material. Diagonaliza-

tion of the above matrix yields the eigenvalues
5

4
and�7

4
and the

coupling constant from experiment, needed to reproduce the
observed spectrum, is Amd

I ( jI = 1/2) = 219.75 � 10�3 cm�1.

B. Hyperfine coupling for H+I

The results from Section IIIA need to be combined with the
existing ERCAR model for H+I to yield the HF coupled model
for H+I. This is achieved easily by using the full spinor direct
product basis eqn (14) and evaluating the corresponding
operators eqn (11)–(13). The resulting full HF coupling matrix
of dimension 1248 � 1248 is then added to the ERCAR
potential model expanded to the same basis. Diagonalization
of the fully HF coupled ERCAR model finally yields the HF
eigenstates and energies for the full H+I system for any nuclear
distance of interest. The results will be analyzed first for the
asymptote of the non-interacting atoms. A qualitative level
scheme for the lower asymptote corresponding to jI = 3/2 is
given in Fig. 1. The splittings are not to scale for clarity.

The observed pattern can be rationalized by the results for
the individual atomic states. First, a splitting into two levels is
seen, which corresponds to the well-known HF splitting of the
ground state hydrogen atom. Each of the two levels for FH = 0
and FH = 1 are then split up by HF interactions in the iodine
atom into four levels corresponding to FI = 1–4. The degeneracy
for each of the levels is given by the small numbers in Fig. 1. For
scattering calculations, the individual HF eigenstates of the
atoms need to be coupled to a new total angular momentum

JHF. For instance, the uppermost level in Fig. 1, which results
from FH = 1 and FI = 4, yields JHF values of 3, 4, and 5. It is easily
seen that the corresponding MHF degeneracies of 7, 9, and 11
add up to the 27 given in Fig. 1. This analysis is quite helpful
because as soon as the two atoms start interacting, these
degeneracies will be split and the only good electronic quantum
number remaining will be OHF = |MHF| (OSO = |MSO| in case of
fine structure states). Note that we label the hyperfine states by
the OHF quantum numbers in complete analogy to the well-
established nomenclature for fine structure states as explained
for instance by Herzberg in Chapter VI of ref. 57. Subscripts HF
and SO are added to distinguish between hyperfine and fine
structure states, respectively. Thus, the above single level with
degeneracy 27 will split into 15 levels characterized by OHF = 0�,
1, 2, 3, 0+, 1, 2, 3, 4, 0�, 1, 2, 3, 4, 5. All other asymptotic levels
will split following an analogous pattern.

The corresponding level splitting situation for the H 2S1/2 + I 2P1/2

asymptote is given in Fig. 2. The qualitative analysis is in complete
analogy to the lower asymptote but less levels are observed because
FI can only take values of 2 and 3.

C. Distance dependence of the hyperfine eigenstates of H+I

The asymptotic situation is reproduced correctly by the present
model, which verifies that the full HF coupling is incorporated
correctly into the expanded ERCAR model. This is further

Fig. 1 Qualitative level scheme of the asymptotic HF splittings corres-
ponding to H 2S1/2 + I 2P3/2.
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confirmed by plotting the HF eigenvalues in comparison with
the known fine structure eigenvalues from the original ERCAR
model. This plot over the distance range from 2 to 10 a.u. is
presented in Fig. 3.

The energies of the lowest 12 fine structure states and 144
HF states along the H–I inter-atomic distance are shown. The
HF splittings are not discernible on the scale of that figure
because they are five to six orders of magnitude smaller than
the fine structure splittings. However, Fig. 3 gives a good
overview over the potential curves and demonstrates that the
expansion of the ERCAR model to the full 1248 dimensional HF
basis was carried out correctly. The two asymptotic fine struc-
ture levels due to the I 2P3/2 ground and I 2P1/2 SO excited state
are clearly visible. The ground state minimum for the bound HI
molecule correlates to the lower asymptote corresponding to a
non-degenerate OSO = 0+ fine structure state. Similarly, the
OSO = 0+ fine structure state arising from the SO excited asymptote
also forms a shallow minimum and at shorter distance crosses
the uppermost OSO = 1 fine structure state of the lower state
manifold. These general features are not visibly modified by the
HF coupling on this scale. Next we will have a closer look at the
long-range region of the I 2P1/2 SO excited asymptote.

The energy scale in Fig. 4 is chosen such that the effect of HF
coupling on the different fine structure states is visible. On this
scale one can see that all fine structure states form shallow

minima but the ones corresponding to OSO = 0�, 1 are much
more shallow with well depths of around 20 to 24 cm�1. The
well of the OSO = 0+ state is an order of magnitude deeper
(760 cm�1) and the H–I distance of the minimum much shorter
so that it is not visible in Fig. 4 but can be seen easily in Fig. 3.

Between 11 and 12 a.u. one can distinguish the expected
four different hyperfine structure bands. The lowest band
aligns with the OSO = 0+ fine structure state with decreasing
H–I distance while the other three bands are more located
around the OSO = 0�, 1 fine structure states. Furthermore, the
HF splittings corresponding to the OSO = 0+, 0� fine structure
states depend strongly on the H–I distance and are so small
below 9 a.u. that no splittings are discernible anymore on the
scale of Fig. 4. However, the splittings can be analyzed numeri-
cally. The minimum of the OSO = 0� state is located at
7.96109 a.u. and is split into seven hyperfine states with
OHF = 0+, 1, 0�, 2, 1, 3, 2. The state assignments and splittings
between the successive HF states are listed in Table 1. These
splittings vary between 14 and 339 MHz, respectively. The
OHF = 0+, 0� states are distinguished by their eigenvector sign
characteristics. The minimum of the OSO = 0+ fine structure
state is also split into seven hyperfine states with OHF = 2, 3, 1,
2, 0+, 1, 0� with significantly smaller splittings between

Fig. 2 Qualitative level scheme of the asymptotic HF splittings corres-
ponding to H 2S1/2 + I 2P1/2.

Fig. 3 Overview of the low-lying fine structure (SO in colour depending
on OSO) and hyperfine (HF in black) energies for H+I plotted along the
inter-atomic distance.
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consecutive states compared to the OSO = 0� manifold (see
Table 1). By contrast, the HF splittings around the minimum of
the OSO = 1 state are clearly visible in Fig. 4 because the HF
splittings are much larger (see Table 1) with an energy differ-
ence between the lowest and the highest hyperfine state of
around 0.56 cm�1 (16 745.3 MHz). The HF states around the
OSO = 1 state are magnified in Fig. 5.

The HF splittings of the OSO = 1 state at 8.29576 a.u. are
clearly visible in Fig. 5 and show some regularities. Because the
OSO = 1 state is degenerate, the state splits into 24 HF compo-
nents corresponding to 14 distinguishable HF states. In ascend-
ing energy order one can assign the HF states with OHF = 2, 1, 1,
0+, 0�, 0�, 0+, 1, 1, 2, 2, 3, 3, 4. As can be seen in Fig. 5 the HF
states are not split symmetrically around the OSO = 1 state. The
average energy of the HF states is slightly above the energy of
the OSO = 1 fine structure state, which is due to couplings to the
lower lying fine structure states, in particular those with
OSO = 0+, 0�. One interesting feature is that most of the
splittings can be grouped into two groups, one around 568–
700 MHz and one around 2247–2745 MHz (see Table 1). The
only exception to these groupings are the small splittings of the
four OHF = 0+, 0� states which are not degenerate but still follow
the regular grouping pattern seen in Fig. 5. Additionally, one

pattern is already clearly visible, namely that the HF states
always come in sets of seven states with two non-degenerate
(OHF = 0�, 0+) and five degenerate states. This is easily under-
stood by the nuclear spin multiplicities of 2 � 6 = 12, splitting a
given fine structure level into the corresponding HF states. For
degenerate fine structure states 24 HF components are
observed with 4 non-degenerate and 10 degenerate states. We
now will focus on the lower state manifold resulting from the
H 2S1/2 + I 2P3/2 asymptote and the corresponding levels are
plotted in Fig. 6 for the beginning interaction region on a
similar energy scale as above.

The hyperfine states shown in Fig. 6, corresponding to the
2P3/2 fine structure states, show similar characteristics as the
HF states corresponding to the 2P1/2 fine structure states. Like
the OSO = 0+ fine structure state in the 2P1/2 manifold, the
OSO = 0+ fine structure state in the 2P3/2 manifold has a much
deeper minimum (�24 655 cm�1) (see Fig. 3) at a shorter H–I

Fig. 4 Long-range interaction region of the upper fine structure asymp-
tote H 2S1/2 + I 2P1/2.

Table 1 State assignments and HF splittings between consecutive HF
states corresponding to the four fine structure states resulting from the
2S1/2 + 2P1/2 asymptote of H+I

OSO 0+ 0� 1

r [a.u.] 5.08680 7.96109 8.29576

OHF DE [MHz] OHF DE [MHz] OHF DE [MHz]

2 0+ 2
3 0.15 1 35.50 1 700.26
1 27.06 0� 61.76 1 2745.49
2 0.09 2 121.18 0+ 662.59
0+ 13.45 1 21.09 0� 19.24
1 0.12 3 338.52 0� 2694.55
0� 0.05 2 14.38 0+ 203.98

1 568.54
1 2447.32
2 697.50
2 2351.46
3 701.98
3 2247.73
4 704.66

Fig. 5 Further magnification of the long-range interaction region of
the OSO = 1 state corresponding to the upper fine structure asymptote
H 2S1/2 + I 2P1/2.
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distance (3.06616 a.u.) than the other 2P3/2 fine structure states.
The remaining minima corresponding to this fine structure
asymptote are around 14 to 28 cm�1 deep and are located
between 7 and 9 a.u. as visible in Fig. 6. The HF states
corresponding to the lower OSO = 2, 1 states form clearly visible
bands around their fine structure states. The order of the HF
states characterized by OHF as well as the splittings between
consecutive states are given in Table 2 for each manifold
determined at the minimum distance of the respective fine
structure state. The energy difference between the highest and
lowest HF state in the OSO = 2 band is 6866.41 MHz with the
largest splitting between two consecutive states of 872 MHz.
The OHF = 0+/0� states form two essentially degenerate pairs
with a splitting of 183 MHz. The HF states corresponding to the
next fine structure state with OSO = 1 span an energy range of
6281.11 MHz with maximum splittings between two consecu-
tive states of 881 MHz. This is very similar to the OSO = 2
manifold. Again, the OHF = 0+/0� states show up in two pairs
but show small splittings. The HF states corresponding to the
upper fine structure states show significantly smaller splittings
and are not discernible on the scale of Fig. 6. The HF states of
the OSO = 0� manifold are spread over only 443.70 MHz while
those corresponding to OSO = 1 span a range of 2844.41 MHz.

In both cases, the OHF = 0+/0� states do not form (quasi)
degenerate pairs.

Inspection of the overview given in Fig. 3 reveals an inter-
esting feature with potential relevance for H+I scattering or
photodissociation. An allowed intersection between the upper
OSO = 1 fine structure state from the lower asymptotic channel
with the low-lying OSO = 0+ state from the upper asymptotic
channel is observed at a relatively short H–I distance of around
3.8 a.u. This is worth a closer look and a close-up of the region
of interest is presented in Fig. 7.

The clearly visible allowed crossing of the fine structure
states means that there is no coupling, which is due to
symmetry. Thus, in a scattering or reactive process there would
be no nonadiabatic population transfer possible between these
two states. Only overall rotation could couple these fine struc-
ture states but this is a rather slow process compared to a
collision or dissociation. The picture changes when looking at
the hyperfine states. Except for the OHF = 4, the highest OHF = 3,
and the middle OHF = 0+, 0� states, there are couplings between
the HF states corresponding to the two different fine structure
manifolds. As a result, seven states with OHF = 2, 1, 1, 0+, 0�, 2, 3
form weakly avoided crossings, which is the signature of
nonadiabatic coupling. Thus, in principle, this could lead to
some nonadiabatic population transfer between the fine struc-
ture state manifolds even without overall rotation of the system.
This will be an interesting feature to study in future scattering
and quantum dynamics studies for which the present model
has been developed.

We finally turn our attention to the global minimum region
and a corresponding close-up is presented in Fig. 8. The fine
structure state forming the single global minimum is a non-
degenerate OSO = 0+ state and conventional chemical wisdom
would tell that this is a closed-shell singlet state and not
involved in any coupling. However, the HF coupling is leading

Fig. 6 Long-range interaction region of the lower fine structure asymp-
tote corresponding to H 2S1/2 + I 2P3/2.

Table 2 State assignments and HF splittings between consecutive HF
states corresponding to the four fine structure states resulting from the
2S1/2 + 2P3/2 asymptote of H+I

OSO 0+ 2 1 0� 1

r
[a.u.] 3.06616 7.56731 8.21910 8.60331 8.68727

OHF

DE
[MHz] OHF

DE
[MHz] OHF

DE
[MHz] OHF

DE
[MHz] OHF

DE
[MHz]

2 1 1 2 2
3 0.00 0� 706.01 2 543.27 3 34.06 1 512.35
1 152.44 0+ 0.00 0� 299.46 1 134.35 1 317.05
2 0.00 0+ 182.72 0+ 0.71 0� 58.62 0+ 374.22
0+ 76.22 0� 0.01 1 479.08 2 34.07 0� 149.64
0� 0.00 1 706.01 1 669.25 1 137.12 0+ 92.96
1 0.00 1 353.38 0� 474.84 0+ 45.48 0� 178.58

2 706.02 0+ 7.80 1 248.11
2 524.91 2 569.94 1 152.10
3 706.02 1 541.18 2 138.36
3 697.59 3 729.06 3 140.12
4 706.02 2 543.62 2 134.80
4 871.70 4 881.33 3 272.53
5 706.02 3 541.57 4 133.59
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to the typical set of seven states as was discussed above and a
noticeable splitting is observed.

However, inspection of Fig. 8 shows some significant differ-
ences to the observations for the higher excited states. First of
all, only three different energies are found, which correspond to
three groups of degenerate states. The lowest group consists of
two states with OHF = 2, 3 followed by a degenerate group of two
states 152 MHz above with OHF = 1, 2. The latter two HF states
also seem to be almost coinciding with the OSO = 0+ fine
structure state. The third degenerate set of states consists of
states with OHF = 0+, 0�, 1 and is found 76 MHz above. The

splittings around the fine structure state are found to be exactly

of the ratio �2
3
: 0 :

1

3
.

The HF splitting of the global fine structure ground state
might seem counter intuitive at first glance. The usual assump-
tion would be that a simple closed-shell ground state molecule
such as HI has a total spin of S = 0 and no unpaired electrons to
interact with the nuclear spins. But that of course is a rather
simplified and non-relativistic view on the system. A closer and
relativistic view of course shows that spin is not a good
quantum number anymore and the ground state of HI does
not have a total spin exactly but only close to zero. Furthermore,
the simplified idea of a ‘‘closed-shell’’ molecule is based on the
Hartree–Fock picture of the electronic wave function, meaning
that the wave function is a single (closed-shell) Slater determi-
nant. But of course, electron correlation causes the state to be a
superposition of many Slater determinants and most of them
are open shell and thus would contribute to the relativistic
coupling. Spin–orbit coupling leads to a mixing of configu-
ration state functions of different total spin in the ground state
wave function causing the computed effect. Although this
might seem an unusual observation, it nevertheless is well
established and experimentally observable. Brown and Carring-
ton point out in the general introduction chapter of their book
on rotational spectroscopy of diatomic molecules that spin–
orbit coupling always mixes states of different angular momen-
tum and, thus, generating some orbital (and spin) angular
momentum in each state.53 This phenomenon was discussed
as early as 1951 by Van Vleck already.58 The ERCAR model
accounts for these effects in a straightforward way but using a
different basis representation. The diabatic model for the
‘‘spin-free’’ Coulomb Hamiltonian yields for the ground state
around the global minimum a mixture of closed-shell ionic
atom states (I� + H+) and various open-shell atomic states. This
corresponds to the electron correlation and correctly represents
the electronic wave functions from ab initio calculations. Add-
ing the fine structure coupling also mixes singlet and triplet
basis states as the ERCAR eigenvectors show clearly. The
observed non-vanishing splittings of the HF energies of the
fine structure ground state are due to the same effect that HF
active basis states are contributing to the fine structure state.
This means that non-vanishing HF splittings should be present
in any molecule that contains nuclei with non-vanishing
nuclear spin. In particular, all organic molecules, usually con-
taining many protons, might show this effect to some degree.

While the computed energy splittings cannot be measured
experimentally, the effect of HF coupling in closed-shell ground
state molecules is well known. The experimental manifestation
of this effect is observed in the highly resolved rotational
spectra of small molecules. One example of an organic closed
shell molecule showing this effect is the argon complex of
acetylene, Ar–HCCH.59 HF coupling was measured for the HI
molecule as well. The lowest rotational transition in the vibro-
nic ground state of HI shows two distinct hyperfine splittings of
roughly 160 and 385 MHz.60–62 These hyperfine splittings are
usually explained as nuclear quadrupole couplings with the

Fig. 7 Close-up visualization of the crossing between the OSO = 0+ state
from the upper and the OSO = 1 state from the lower fine structure
asymptote at a HI distance around 3.8 a.u. For a better visualization, the
average fine structure energy of the two states was subtracted for each
distance.

Fig. 8 Close-up of the global minimum region of the HI molecule
showing the splitting of the hyperfine states due to HF coupling compared
to the OSO = 0+ fine structure state.
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overall rotation and can be reproduced by appropriate effective
Hamiltonians.53 The present ERCAR model does account for
the nuclear quadrupole coupling of 127I but also for the
magnetic dipole interaction and the Fermi contact interaction
with the proton. In contrast to rotational effective Hamilto-
nians, there are no molecular free parameters in the ERCAR
model to be fitted with respect to experimental measurements.
The only parameters entering the ERCAR model (besides those
of the diabatic Coulomb model) are the atomic coupling
constants, which are taken from experimental data, which
ensures the highest accuracy possible within the ERCAR frame-
work. In the 2P3/2 ground state of the iodine atom, the hyperfine
splittings are dominated by the magnetic dipole rather than the
electric quadrupole interaction. The Fermi contact interaction
in the hydrogen atom is of a similar order of magnitude. This
raises the question why in the simulation of experimental
rotational spectra only the quadrupole moment seems to be
relevant. This can be investigated using the present model. We
studied the effect of the four different coupling constants on
the HF splittings of the molecular ground state at the global
minimum seen in Fig. 8. It turns out that indeed only the
quadrupole coupling contributes significantly to the splittings
and the effect of the other coupling constants is absolutely
negligible. By contrast, the same analysis yields for all other
fine structure states that always magnetic dipole interaction of
iodine and Fermi contact interaction of hydrogen contribute
heavily to the HF splittings and are not negligible at all. This
finding is consistent with the experimental observations53 and
gives quite some support that the present ERCAR model
represents the physics of the system correctly.

However, the main purpose of the ERCAR model is not to
simulate a single experimental feature like a rovibronic transition
but much rather to study many excited states and reactive processes
or scattering.46 The computed eigenvalues are not an experimental
observable and the ERCAR model is not meant to simulate a
rotational spectrum. Also note, that ERCAR represents the cou-
plings of the nuclear spins with the electronic wave function rather
than the overall molecular rotation. Thus, the observed hyperfine
splittings are not directly comparable. Nevertheless, the computed
splittings seem compatible with the experimental observations and
are in the right order of magnitude. This is quite promising
especially in the light of how tiny these energy splittings are.

Another take to assessing the reliability of the new model
would be comparison with computed data. The situation is
similar to experimental reference data. E.g., hyperfine coupling
constants can be computed but are very sensitive to molecular
geometry, one-electron basis sets, electron correlation, spin–
orbit coupling and so on.63,64 Most usually, they are only
computed for the electronic ground state of radicals at the
equilibrium geometry. This is the difference to spin–orbit
coupling and the corresponding energy splittings, which are
directly accessible from electronic structure calculations and
also measurable. For SO coupling we showed early on39 by
comparison with ab initio computed fine structure energies that
the errors introduced by the approximations of the ERCAR
method are an order of magnitude smaller than the effect of

atomic orbital basis sets or effective core potentials. The ab
initio computed SO splitting of the 2P3/2 ground and 2P1/2 SO
excited state of the iodine atom is roughly 10% too small while
the asymptotic splitting from the ERCAR model is accurate by
construction. We assume that the situation for the hyperfine
energies will be similar. State-of-the-art computations of HF
coupling constants like in ref. 63 also reach an accuracy of
roughly �10% of experimental values while at least the atomic
coupling constants of the ERCAR method are accurate because
they are the experimentally determined ones. Previous ERCAR
results for fine structure energies reach this accuracy not only
for the ground but also for excited states without additional
computational effort. This means that the method represents
the adiabatic electronic states very well in terms of the diabatic
asymptotic basis and thus the atomic coupling operators are
incorporated with high accuracy into the molecular framework.
Whether these atomic coupling operators represent spin–orbit
coupling or hyperfine coupling should not make any difference
regarding the accuracy of the final results. Finally, we note that
ERCAR does not require additional computational effort for the
incorporation of HF coupling. The coupling matrix is obtained
purely analytically and coupling constants are usually available
from experiment. At most the atomic coupling constants would
have to be computed if not known for an atomic state of
interest. Thus, all computational resources can be used for
obtaining the best possible reference data for the Coulomb
model. The other important point is that ERCAR by construc-
tion yields a fully coupled potential energy model for use in
quantum dynamics or scattering studies. Developing such a
model based on ab initio fine structure or hyperfine energies
seems rather unfeasible for most systems of chemical interest.

IV. Conclusions and outlook

Hyperfine (HF) couplings arising from interactions of nuclear
spin with the electronic wave function are of significant interest
in many fields and also for technological applications. Theore-
tical investigations of the quantum dynamics of a molecular
system, accounting for the HF interactions properly, requires to
incorporate these interactions into the full Hamiltonian of the
system. It is of advantage to do this by an analytic model for HF
couplings in the sense of a diabatic coupling model, which can
be used easily in any general quantum dynamics approach. The
Effective Relativistic Coupling by Asymptotic Representation
(ERCAR) method was developed exactly for this purpose and
yields an analytic diabatic potential energy surface (PES) model
including relativistic coupling effects. However, so far it has
been applied only to spin–orbit coupling. In this work, the
ERCAR approach is extended by the incorporation of HF
couplings and a proof of principle study is carried out. The
H+I benchmark system is chosen for this purpose since the HF
couplings can be added easily to an already existing ERCAR
model. The non-vanishing nuclear spins of both atoms, H and
I, lead to HF splittings of the fine structure states. The corres-
ponding HF coupling matrices are derived for the 2S1/2 state of
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H as well as the lowest two fine structure states 2P3/2 and 2P1/2

of I. This is sufficient at least for the present proof of principle
study. The relevant HF interactions are the Fermi contact,
magnetic dipole–dipole and electric quadrupole term. All these
interactions are represented by effective coupling operators,
expressed in the form of total nuclear spin Î and total angular
momentum Ĵ operators. These operators are represented in the
ERCAR basis, which is extended by the nuclear spinors. The
explicit expressions for the analytic HF couplings of the 2S1/2

state of H and the 2P3/2 and 2P1/2 states of I are given. The
corresponding coupling constants are determined such that the
HF model reproduces the experimental atomic hyperfine transi-
tions. The original H+I model containing 104 electronic states is
expanded to 1248 states by forming the direct product with the
nuclear spinor basis and the HF model is added. Diagonalization
of the full ERCAR model yields the HF energy levels and eigen-
vectors. The asymptotic as well as geometry dependent hyperfine
splittings are discussed in detail.

Though the overall picture is unchanged with respect to the
fine structure states, the HF coupling adds a lot of detail and
additional effects to the potential curves. One of these effects is
the appearance of additional avoided crossings between the
fine structure states, which are due to the HF couplings. First of
all, each degenerate fine structure state (OSO = 1, 2,. . .) is split
into two distinct sets of hyperfine states. Each of these sets
consists of seven hyperfine states, OHF = 0+, 0� and five
degenerate ones, with a total of 12 state components. This is
due to the 12 nuclear spinor basis states corresponding to the
spin multiplicities of 2 � 6 for the proton with iH = 1/2 and the
127I nucleus with iI = 5/2. The observed hyperfine splittings
within each set are geometry dependent and are particularly
large at the asymptote. They are much smaller in the inter-
action region and range between a few tens to a few thousands
of MHz. Quite remarkably, significant splittings of 152 and
76 MHz are observed even at the global minimum of the fine
structure ground state. These splittings are almost entirely due
to the quadrupole coupling of the 2P3/2 iodine ground state,
which is consistent with the interpretation of experimental
rotational spectra of closed-shell molecules like HI.

The present HF coupled ERCAR model is sufficient to study
the quantum dynamics within the manifold of the lowest two fine
structure asymptotes. However, adding the HF interactions for
higher asymptotes is straightforward and may improve the accu-
racy and extend the applicability of the model. We will study the
elastic and inelastic scattering dynamics next because this will
allow for a direct comparison with our previous study and will
reveal the impact of the HF coupling. Since HF couplings and the
corresponding splittings should be omnipresent in organic mole-
cules, a future goal will be to develop simple models to account
for these effects in more complex molecules.
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