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Restructuring of surfaces and interfaces plays a key role in the activation and/or deactivation of a wide

spectrum of heterogeneous catalysts and functional materials. The statistical ensemble representation

can provide unique atomistic insights into this fluxional and metastable realm, but constructing the

ensemble is very challenging, especially for the systems with off-stoichiometric reconstruction and

varying coverage of mixed adsorbates. Here, we report GOCIA, a versatile global optimizer for exploring

the chemical space of these systems. It features the grand canonical genetic algorithm (GCGA), which

bases the target function on the grand potential and evolves across the compositional space, as well as

many useful functionalities, with implementation details explained. GOCIA has been applied to various

systems in catalysis, from clusters to surfaces and from thermal to electrocatalysis.

1 Introduction

Understanding the catalyst’s surface structure under reaction
conditions is crucial for deciphering the reaction mechanism
and further design or optimization. In the recent decade, with
the development of in situ and operando characterization techni-
ques, many common thermal and electrocatalysts have been
found to undergo highly non-trivial restructurings during
operation.1 Moreover, the ‘‘restructuring’’ is oftentimes not a
single well-defined transformation but a collective phenomena
which involves multiple coexisting catalyst states, pathways, time
scales, and intricate interplay with adsorbates and environments.2

Molecular dynamics (MD) based methods, when combined
with enhanced sampling techniques3 and/or machine learning
interatomic potentials,4,5 have become a powerful tool to model
many dynamical behaviors in catalysis. However, they typically
focus on the potential energy landscape of a fixed-composition
system and hence are often insufficient for exploring the
chemical space of off-stoichiometric restructuring systems with
a fluctuating composition and without any well-defined collec-
tive variable.

Another approach is to revise the representation of a catalyst
as a statistical ensemble of catalyst states instead of a single or
a few selected structures.6,7 By extending to a grand canonical

(GC) ensemble representation, all reaction-relevant global
minimum (GM) and local minimum (LM) catalyst states with
varying geometry and composition (including both the surface
itself and adsorbate/adatom coverage) can be included in the
representation, with their individual contributions to reactivity
or spectroscopic signals properly evaluated.8 By probing the
response of GC free energetics of the states to external factors
(i.e., reaction conditions), the ensemble becomes condition-
dependent in nature and can be used to understand and
predict structural evolution during operation9 or to better
simulate properties or spectra by ensemble averaging.10

Despite the simplicity of the ensemble representation theory,
obtaining such an ensemble – including the ab initio thermo-
dynamics of all relevant surface phases – is rather computation-
ally challenging.11 The difficulty lies in exponentially growing
chemical space of off-stoichiometric restructuring versus the
system size and number of elements. Indeed, constructing a
realistic ensemble requires inclusion of all relevant states, which
means searching extensively the global and local minima on the
potential energy surface (PES), for all relevant stoichiometries.
Note that the global optimization minima search at the density
functional theory (DFT) level, even for small clusters with a fixed
composition, is highly nontrivial.12,13

A recently emerging family of GO techniques is to directly
use the grand canonical free energy (O, also named grand
potential), which is a function of the system’s composition at
a given set of chemical potentials, as the target function of the
minima search. This allows for GC global optimization, in
which the stoichiometry is also treated as a set of discrete
variables to optimize. In this way, we do not need to extensively
sample each possible stoichiometry in a grid-search fashion,
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but can efficiently sample into relevant stoichiometries on the
grand canonical free energy surface (FES) and produce a dis-
tribution of stoichiometries in the resultant states. Due to the
discrete nature of the compositional degrees of freedom, the
fluctuating system size (not on a single PES), and the unavail-
ability of analytical Hessians in plane-wave electronic structure
codes, it is not straightforward to adapt many global optimiza-
tion algorithms that are previously successful for canonical
minima search of clusters and crystal structures,14–18 for ab
intio GC global optimization of surface systems under periodic
boundary conditions (PBC). In recent years, there have been
some successful applications of GC treatments to cluster or
surface systems, within algorithms such as GC basin hopping
(BH),19,20 GC Monte Carlo (MC),21 and the GC genetic algo-
rithm (GA).22,23 However, in the context of PBC surface systems
and ab initio minima searches, the available algorithms are
usually tailored for a specific set of systems or components,
considering either cluster isomerization, surface reconstruction,
or adsorbate configurations, but not all of them. A derivative-free
and PBC-compatible GC global optimizer that addresses all
mentioned aspects of interfacial complexities has been lacking.

This article is aimed to introduce our recent efforts in
developing a global optimizer of clusters, interfaces, and
adsorbates (GOCIA)24 – a versatile Python package featuring
GC global optimization of off-stoichiometric restructuring sur-
face systems at the ab initio level – with a detailed dissection of
its components, and to showcase its previous successful appli-
cations, applicability, and a roadmap to future developments.

2 Overview of features

GOCIA is built to achieve efficient global optimization of
periodic systems and can handle internally many nuances that
come under the periodic boundary conditions such as over-
lapping of boundary atoms and breaking of polyatomic
fragments.

The main feature of GOCIA is the grand canonical genetic
algorithm (GCGA) which can efficiently explore the relevant
regions in the chemical space of varying compositions, by using

grand canonical free energy as the search target, and it elim-
inates the need for grid search for every possible composition.
Built on the basis of a gradient-embedded GA,12,13 the GCGA
can achieve extremely efficient exploration of geometric and
compositional space, as compared to MD- or Monte Carlo (MC)-
based approaches, and yield a GC ensemble of exclusively
minima states.

GOCIA was initially built to handle amorphous layers
without directional or well-defined bonding modes, where every
atom in the sampling region was allowed to form any type of
bond (as individual adatoms). A recent update enabled our
implementation of the GCGA to handle the coverage of polya-
tomic and mixed adsorbates while maintaining their intactness,
which is rather relevant to study the reaction intermediate-
relevant surface phenomenon and the complex interplay
between surface atoms and multiple types of surface species.

The random structure generator of GOCIA, whose primary
role is to make the initial population for the GCGA, can also
work as a good one-shot sampler for smaller systems such as
smaller subnanometer clusters supported on surfaces and
adsorbate configurations at low coverage.25

GOCIA also provides a toolkit and a streamlined workflow
for grand canonical density functional theory (GCDFT) calcula-
tions using the surface charging approach. This is useful for
sampling of electrified interfaces, such as those used in
electrocatalysis.

Every mentioned component of GOCIA is highly versatile
and can be customized to meet a broadness of needs in the
areas of catalysis, materials science, surface science, and so on.

GOCIA has been applied to study the structure, reactivity,
and spectroscopy of many surface systems ranging from clus-
ters to amorphous over-layers and to reconstruction of crystal-
line metal electrodes, in thermal- and electro-catalysis.26 A few
representative systems shown in Fig. 1a–c are: fluorine-doped
tin oxide (FTO) supported Ptn (n = 1–8) clusters under varying
H coverage during the electrochemical hydrogen evolution
reaction (HER);10 partial boron oxide/hydroxide over-layer
formed on hexagonal boron nitride (hBN) under conditions of
oxidative dehydrogenation of propane (ODHP);27,28 restructur-
ing of crystalline Cu facets induced by H and CO coverage

Fig. 1 Examples of previous applications of GOCIA on catalytic systems. (a) H-covered Ptn clusters supported on hydroxylated F-doped tin oxide under
electrochemical conditions. (b) Partially oxidized and hydroxylated over-layer of hexagonal boron nitride. (c) Restructuring of the crystalline Cu(100)
surface under the coverage of a mixture of H and CO adsorbates.
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under CO2 reduction reaction (CO2RR) conditions.29 Other
notable applications include restructuring of Cu under acidic
HER conditions,9,30 metal–support contact angle of small
nanoparticles (NPs),25 and the structure of amorphous nickel
oxide/hydroxide on the Pt surface.31

3 Code architectures
3.1 The interface class

Central to GOCIA is the interface class which is a representa-
tion of the system of study.

The interface class is based on the atom class (from the ASE
module32) with some additional structure-related metadata as
is illustrated in Fig. 2. There are two atomistic parts within
an interface object, a constrained region and a relaxed region.
The constrained region is usually the bottom few layers of the
slab and can mimic the behaviour of the bulk. The relaxed
region is the part of the surface that can interact with the
external environment but cannot change its own composition,
usually the top few layers of the slab or supported surface
species such as subnanometer clusters or adatoms.

The user would also need to define a rectangular sampling
box (by the coordinates of its vertices) which intersects with the
top few layers of the relaxed region. Compositional changes are
only allowed within the sampling box.

In the case of sampling polyatomic adsorbates, one would
also need to supply a list of atomic indices for each adsorbate,
so that GOCIA can keep track of the connectivity and make sure
that every adsorbate is intact during the local and global
optimizations, with a similar practice to ref. 13.

A number of useful functions are built-in under the interface
class for easy access, modification, and geometric analysis of
each individual component.

3.2 Data structure

During the global optimization, a large number of structures
are generated, and each must be fully optimized to a local
minimum before it can be added to the ensemble. GOCIA will
make a dedicated sub-directory to each structure, so that the
local optimization jobs would be performed in separate sub-
directories and not the interfere with each other. After a local

optimization job finishes, the results will be updated to the
project database file in the main directory.

The project database file (a SQL database in the ASE format)
stores all optimized structures along with their metadata
(calculator, energy, magnetic moments, fragment lists, labels,
population information, etc.), to allow for easy query and
manipulation.

All structures in a global optimization search share the same
definition of the constrained region, the relaxed region, and the
sampling box. These information are stored in a substrate.vasp
file (it can be in any format that supports periodic structures
with constraints) which is one of the required input files.

The other variables needed to set up a global optimization
run, such as the dictionary of chemical potentials, control
parameters of GA, and paths/commands to initiate software,
can be provided as a separate input.py file in the main directory
or included in the main ‘‘manager’’ script (vide infra).

3.3 Parallel scheme

The overall parallelization efficiency of the global optimization
depends on two factors. (i) The scaling performance of the local
optimization calculation: for most electronic structure codes,
the scaling performance versus the number of nodes is rather
poor, and the optimal parallelism setting is usually within
20 nodes per instance.33 (ii) The population updating of the
GA: to avoid too drastic a change of the population, it is more
beneficial to add new structures to the population one-by-one
or in small batches (similar to the population size), instead of
in large batches.

Depending on the job requirements and queuing policy of
the high performance computer (HPC), GOCIA users can
choose from two different workflows: (i) if the HPC allows
submission of a large number of small jobs from a single user:
submit a manager job of long wall time, as a single-core process
on the login node or interactive session (the manager sleeps
periodically and is not resource intensive at all). The manager
job will automatically make and submit many worker jobs, each
performing a series of local optimization calculations on a
structure to which the worker is assigned. The manager will
check the queue constantly and resubmit a new worker job if an
old one has finished (Fig. 3a). (ii) If the HPC strongly
encourages large jobs by measures such as limiting the wall
time of smaller jobs: use the multiprocessing module of Python
to maintain a pool of many worker processes. The main script
will automatically spawn a new worker process to the idle nodes
whenever an old one has finished. This should be submitted as
a single large bundled job (Fig. 3b).

3.4 Extensibility

GOCIA currently supports VASP the best, covering all function-
alities described in this article. In principle, GOCIA can inter-
face with any code via the ASE Calculator class to perform the
core functionalities. It is noted that, although the ASE calcu-
lator class interface is easy to use, it comes with some compro-
mise in computational efficiency (charge density and/or wave
function IO or re-initialization from the use of a PythonFig. 2 Schematic of the components of the interface class.
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wrapper per force call) and some advanced functionalities
(GCDFT). A workaround is to define the calculator such
that it runs a local optimization internally using the code’s
own optimizer, and then GOCIA calls it for a single point,
which conserves the conveniences of using the ASE calculator
class while suffering no bottleneck. Since GC global optimiza-
tion is a highly computationally intensive task, we plan to
ultimately make an individual optimized interface for each
popular plane-wave electronic structure and semi-empirical
methods.

4 Grand canonical genetic algorithm

Before going into the details of the GCGA, we first discuss the
challenges in exploring the off-stoichiometric restructuring. In
the context of thermal and electro-catalytic surfaces, we assume
that the system is always in the electronic ground state for a
given set of nuclear positions. Finding the stable and metastable
structures of a certain stoichiometry is then equal to locating the
global minimum and local minimum of the ground state
potential energy surface (PES) defined by a non-convex function,
E(r), where r is the atomic coordinate. For a system containing N
atoms, there are 3N variables, spanning a vast high-dimensional
space. Moreover, there is no analytical expression of E(r) due to
its quantum mechanical nature, and all values (energy) and
gradients (forces) need to be computed numerically for ab initio
methods, which is extremely resource-intensive.

Abstraction, such as treating surface adsorption configura-
tions as lattices or graphs, and describing adsorbate coverages in
a mean-field manner, could help reduce the dimensionality of
the problem. However, these abstraction will only hold when the
surface itself is relatively rigid regardless of the adsorbate/
adatoms on it. In other words, the coupling between surface
species coverage/configuration and the arrangement of surface
atoms is negligible. This might be actually the case for some
systems, but it is quite dangerous to assume so universally, with
the growing collection of reports on non-trivial restructurings of
surfaces and clusters.34 For the latter, there exists no shortcut.

The picture further complicates when we allow the composi-
tion to vary—the system becomes a collection of many

constant-composition potential energy hyper-surfaces, each
with different dependence on external factors/conditions. Let
us consider a system where the number of X and Y atoms, nX

and nY, can vary. In the discrete compositional space, each grid
point defined by (nX,nY) entails a full PES.

The most straightforward approach to explore this chemical
space is the grid search (Fig. 4a)—performing a canonical global
optimization on the corresponding constant-composition PES of
each (nX,nY). This approach would in theory yields the most
uniform sampling distribution over the whole chemical space;
however, it is extremely inefficient as the vast majority of the
(nX,nY) grids are in the irrelevant regime to the ambient or
operating conditions of the catalyst. In addition, the composi-
tional space is infinite, and the initial definition of the grid (i.e.,
the upper and lower bounds) is arbitrary.

Stochastic sampling into random compositional grids, using
techniques such as the bond length distribution algorithm
(BLDA),35 can provide a bird’s-eye view of the GC free energy
landscape at a very low cost (Fig. 4b). For smaller systems, the
one-shot stochastic samples may sometime suffice as a (sub-
)ensemble.36 However, for larger systems, it is as inefficient as
the grid search approach because, again, the majority of the
compositional space is catalytically irrelevant.

To steer the search towards the relevant regions in the compo-
sitional space, one can adopt the GC free energy O, within the GC
ensemble (mVT), as the basis of the target function. The composi-
tion is then treated as an additional set of variables to optimize. In
a typical iterative GC global optimization search, the initial sto-
chastic samples inform the searcher about the ‘‘promising’’
regions, and the search direction is adaptively updated throughout
the search to sample denser and denser into the relevant minima
regions (Fig. 4c). We illustrate the power of the GCGA with the
example of amorphous non-stoichiometric BxOyHz over-layer on
borides (Fig. 1b). The GCGA, even if starting from a bad initial
guess of compositions, can evolve self-adaptively and progressively
toward the final GM region and discover many low-lying regions
along the way (Fig. 5a). As a result, the GCGA significantly outper-
forms BLDA in sampling both GM and low-lying LMs for this
complex ternary B–O–H system (Fig. 5b).

Fig. 3 A parallel scheme of GOCIA on computing clusters. (a) The dis-
tributed scheme where each master or worker job is submitted as separate
jobs on each allocated node. (b) The bundled scheme where one master
job manages all tasks within a large bundled job on all allocated nodes.

Fig. 4 Schematic comparison of different approaches to explore off-
stoichiometric restructuring involving elements X and Y. The grand cano-
nical free energy landscape is shown as a contour plot depending on the
number of X and Y atoms. (a) The grid search within a defined range of
compositions, performing a canonical global optimization at each grid.
The inset bar shows the energetic distribution of states of the same
composition. (b) Stochastic one-shot sampling, with representing the
samples. (c) Grand canonical global optimization with an iterative scheme.
Lighter and deeper colors represent samples in earlier and later iterations,
respectively.
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4.1 Calculation of the grand canonical free energy

Now we introduce the calculation of the main thermodynamic
metric used in GC global optimization, GC free energy O. In the
context of off-stoichiometric surface restructuring under a
certain reaction condition, we divide the atoms into two
groups: group A includes species (blue spheres in Fig. 2) that
the system can freely exchange with the reservoir, such as
adatoms and adsorbates and group B are atoms in the substrate
(relaxed and constrained regions in Fig. 2). The whole system is
labeled as AB. The number of atoms in group B is constant,
while those in the group A can fluctuate. The GC free energy of
a certain AB configuration with respect to the group A species
can then be written as:

OA ¼ UAB � TSAB �
X

A

miNi �
X

B

mjNi (1)

Because the number of group B atoms does not change, the
fourth term is a constant for all states in the ensemble and does
not influence the relative energetics. Here, we take the bare
surface as a reference state for group B atoms and set the value
of
P

B miNi as the electronic energy of a bare surface slab, EB.

OA ¼ UAB � TSAB �
X

A

miNi � EB (2)

In a strict sense, the calculation of UAB and TSAB terms requires
vibrational analysis, which is unaffordable in the context of ab
initio global optimization involving tens of thousands of con-
figurations. Hence, we approximate the value of UAB � TSAB to
the electronic energy of the whole system, EAB. The lost thermal
correction terms related to group A species are then absorbed
into the chemical potential as a new m0 term. The GC free energy
with respect to group A species can then be expressed as:

OA � EAB � EB �
X

A

ðmi � dEiÞNi

¼ EAB � EB �
X

A

m0iNi (3)

where dE denotes the thermal correction terms to the free
energy related to the group A species, including the zero point
energy, constant pressure heat capacity, and vibrational
entropy. It should be note that, for consideration of costs,
we assume that any group A species in any configuration
has the same dE to avoid explicit vibrational analysis for every
configuration.

m is a function of reaction conditions such as temperature,
partial pressure, concentration, pH, and electrode potential.
For example, the corrected chemical potential of H, m0H, can be
expressed as follows:

m0H ¼
1

2
E

gas
H2
þ dEgas

H � lnð10ÞkBTpH � jejUSHE � dEads
H (4)

where E
gas
H2

is the electronic energy of an optimized gas phase

H2 molecule. dEgas can be obtained from vibrational analysis of
the gas phase H2 molecule and thermochemistry calculations.
The pH effect is incorporated using the Nernst equation, and
the electrode potential effect is included using the computa-
tional hydrogen electrode model. dEads

H can be obtained from
vibrational analysis and thermochemistry calculations on one
or a set of relevant H adsorption configurations.

It is noted that the calculation of m for some elements or
species can be less straightforward for a lack of appropriate
reference state and/or the limitation of the electronic structure
method. The calculated m can be off by up to a few hundred
meV from the realistic condition, and in some cases, one may
only be able to estimate a relevant range of m for a specific
species. In these cases, it is advised to perform multiple
searches at various m values in the relevant range, so as to gain
a broader distribution of stoichiometry. If there are prior
experimental information on the surface composition or adsor-
bate coverage, one may also vary the m on a sub-ensemble (from
one-shot sampling or an unfinished search) and probe the
response of the GM stoichiometry by using the ensemble
analysis functions provided by GOCIA (vide infra). This will
help narrow down the m window relevant to the experiment.

Each GC global optimization run would yield likely a multi-
modal distribution of stoichiometries (Fig. 6, left panel). The
number of modes and the width of the distribution can be
highly system dependent, so it is recommended to always check
the stoichiometric distribution in the final ensemble merged
from multiple searches—they should ideally join and have a
more or less uniform density over the stoichiometric space of
interest (Fig. 6, right panel). If there is any discontinuity, then
more sampling is deserved at its corresponding m values. After
sufficient sampling, the final merged ensemble can be used for
further analysis at any m within the interpolated range among
the sampled m values.

Fig. 5 Results from ref. 27 showing (a) the progressive evolution of the
population across the B–O–H compositional space and (b) the compar-
ison between the GCGA and BLDA in sampling low O structures.

Fig. 6 The recommended practice for constructing a well-sampled GC
ensemble. Multiple GC global optimizations are performed at a series of
chemical potentials (mn, n = 1, 2, 3,. . .). The samples (sub-ensembles) from
multiple runs are then merged in to a total ensemble. If the sample
distribution is continuous over the compositional space of interest, the
merged ensemble can be used in the interpolated m range among mn.
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4.2 Initialization: random structure generation

To build the initial population for the GA search (Fig. 7), one
would perform a random structure generation starting from a
base surface which reflects the surface structure in a clean and
fresh state, usually a major facet or a putative GM configu-
ration, depending on the availability of prior knowledge of the
system. It is strongly recommended to randomly perturb the
base surface (using the rattle function of the interface class) to
impregnate sufficient geometric diversity into the initial popu-
lation. The optimal magnitude of the perturbation can be
system dependent: usually one would use a small magnitude
for more rigid and ordered systems and a large magnitude for
softer and more amorphous systems.

GOCIA offers three types of structure generation methods to
construct the over-layer or place adsorbates on the base surface:
(i) growth sampling: it first randomly selects an existing atom
from the relaxed region. A random unit vector will be generated
to be the direction of the ‘‘growth’’. The adatom/adsorbate is
then aligned to the ‘‘growth’’ direction and placed along it, with
the selected surface atom as the starting point. The distance
between the adatom/adsorbate and the selected surface atom is
then sampled from the bond length distribution algorithm
(BLDA),35 based on the covalent bond radii of the two atoms
that should form the surface-adsorbate bond. This methods
can generate new structures with the most reasonable intera-
tomic distances with high efficiency, but it may fail for some
corner cases where the growth direction is ambiguous, such as
the interface between a large cluster and the surface, or when

the surface is already quite crowded with adsorbates. (ii) Box
sampling: it directly makes attempts to place adatoms/adsor-
bates into the sampling box with random positions and orien-
tations. Since it is less dependent on the surface structure, it
works well on cases with irregular shapes and morphology,
non-directional and multi-center bonds, and very crowded
surfaces. It should be noted that this method can also be used
to generate molecular packing structures, such as the micro-
solvation slab,37 by applying connectivity constraints and
expanding the sampling box. (iii) Graph sampling: this method
constructs a connectivity graph of the top surface layer, and
then identify the atop, bridge, and hollow sites using the
NetworkX module.38 Adsorbates are then added to the identi-
fied sites with random rotations. It should be noted that this
method expects well-defined lattices and works the best for
exploring adsorption on unrestructured surfaces or just to
enrich the initial population.

In all three methods, the interatomic distances of attempted
geometry are checked to avoid bad contacts. The user may also
opt to check the similarity of a new structure with already
generated structures to prevent duplicates in the very begin-
ning. GOCIA also offers many user-defined constraints such as
bonds that must (or must not) form, upper and lower limits of
the coordination number, and whether the added adatom/
adsorbate can incorporate into the relaxed region or must stay
above. If multiple types of adatoms/adsorbates are to be added,
the list can be randomly shuffled before addition to prevent
biases from the original ordering. The process iterates until all
adatoms/adsorbates have been added to the sampling box
while satisfying all geometric and connectivity constraints.

It should be noted that although the GA is not very sensitive
to the initial population, the number of sample evaluations
before locating the GM or, in other words, the success rate to
locate the GM within a certain number of sample evaluations,
can depend on the initialization. If some knowledge of the
structure is available, starting from a close enough putative
structure can save a lot of node-hours. But even without any
prior knowledge, the GCGA can still evolve to the ground truth
structure if the initial population is diverse enough, although at
a higher cost.9

If the user wishes to more extensively sample the LMs, it is
recommended to run multiple GCGA searches with different
initial populations in terms of geometry and composition.
Hereby, the multiple searches would start from different
regions in the chemical space and the sample along different
paths on its way to the GM.

4.3 Pre-optimization and iterative local optimization

It is essential to locally optimize each sample for a successful
global optimization and construction of a physically meaningful
final ensemble.12,13,39,40 In GOCIA, every generated sample,
either from random initialization or crossover and mutation, is
locally optimized to a minimum before it can be accepted.

To ensure an aggressive and progressive sampling, which
underlies extensive and delocalized exploration of the chemical
space, oftentimes one would allow some unphysical connectivity

Fig. 7 The workflow of the GCGA evolution process and the iterative
multi-stage local optimization process implemented in GOCIA.
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or interatomic distances to form in the random structure gen-
eration. For electronic structure calculators, this may cause slow-
down (or even failure) of the self-consistent field (SCF) cycle or
force convergence to the initial steps in the local optimization.

A remedy to this problem is to perform a pre-optimization at
a lower level of theory before the structure is fed to the
electronic structure calculator. GOCIA currently supports
Hookean and Lennard-Jones potential as the calculator for
the preoptimization. Any code for the geometric adjustment
can be interfaced to GOCIA as the pre-optimizer via the ASE
calculator class.

To reduce the overall computational expense, we adopt a
multi-stage local optimization strategy (Fig. 7), where each
stage has a different level of precision and convergence criteria,
from computationally cheaper to more expensive. In this way,
we can rationalize the structure in earlier and cheaper stages
and bring the structure closer to its local optimum, before the
final stage of higher precision for production. The flowchart
illustrates a 3-stage scheme, but the user may reduce or
increase the number of stages if needed.

Since electronic structure calculators do not intrinsically
constrain connectivity (bonds are determined quantum
mechanically), some unwanted motifs or bonds may form
during the local optimizations. GOCIA also offers an iterative
local optimization scheme which checks the geometry for
undesired connectivity after each stage. If any unwanted sub-
structure is detected, GOCIA would modify the structure to
meet the constraint and call for another multi-stage local
optimization. This again goes iteratively until convergence of
the connectivity (Fig. 7, right). Currently, GOCIA supports the
following connectivity constraints: (1) make sure where is no
desorbed species that is not connected to the slab, (2) remove
any atom that is outside the sampling region, (3) force all
adsorbates to directly form bonds with the surface, (4) remove
fragments that are not intact, (5) prevent bonds between
fragments, and (6) remove atoms that are not involved in a
specific type of bonds. Each connectivity constrained can be
switched on and off or modified easily. Users can also define
their own constraints (geometric or compositional) inside the
worker script to archive the unwanted structure, terminate the

job, or modify the structure and send it back for re-
optimization. This iterative local optimization scheme is one
of the main features of GOCIA enabling investigation of a
complex adsorption system, and it can be easily interfaced with
other GC global optimizers.

4.4 Grand canonical crossover, mutation, and selection

The crossover, mutation, and selection process largely follow
the original genetic algorithm proposed by ref. 41 and the
gradient-embedded genetic algorithm proposed by ref. 12.
Here, we only highlight a few notable GC modifications and
additions in Fig. 8.

In the GC crossover process, the parent structures are split-
and-spliced along the same cutting plane. In the case of any
bad atomic contact, the one whose center is closer to the
cutting plane would be preserved, while the farther one would
be removed. As a result, the composition of the child structure
can be naturally different from its parents (analogous to
chromosomes). In the case of polyatomic adsorbate, the bridle
atom (via which the adsorbate is supposed to bind to the
substrate) is viewed as the center of the adsorbate.

In the GC mutation process, GOCIA offers the following
operators: (i) adding an atom/fragment, (ii) deleting an atom/
fragment, (iii) moving a random atom/fragment to a random
empty site, (iv) rattling the surface atoms along random vectors
drawn from a normal distribution, (v) translating the buffer
slab along a x or y axis by a fraction of the cell length, and (vi)
permuting a random fraction of the buffer slab. If an offspring
is too similar to its parent, its mutation rate is increased to
100% to avoid recalculating the same structure.

In the selection process, an over-mating penalty factor of 1 +
(Nmate)�3/4 is multiplied to the grand canonical free energy-based
fitness factor. Here, Nmate is the mating counts, and it penalizes
the candidates that have mated too many times to diversify the
population. Similarity checks against the current population are
performed before adding any new candidate to remove dupli-
cates. Adopted mutation operations include: upon the addition
of each offspring to the population, the candidate with the
lowest fitness is archived to maintain the population size.

Fig. 8 Crossover of two parent structures to produce a child structure, with an illustration of possible mutation operations.
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We note that the theoretical framework of GC ensemble
representation and many of the features of GOCIA presented
herein (Sections 4.1–4.6) are universal and not confined to usage
with GA. We chose GA to be the weight lifter in our past works due
to: (i) its well-benchmarked capability in locating GM for a wide
spectrum of systems with little hyper-parameter tuning,42 (ii) its
algorithmic simplicity and hence high extensibility and customiz-
ability, (iii) GA naturally handles variable-length configurations
(analogous to chromosomes) which well suits the GC ensemble
sampling tasks, (iv) it avoids the use of Hessians which is very
expensive to compute numerically with ab initio methods, and (v)
it allows for ‘‘unphysical’’ structural operations (Fig. 8) to take very
aggressive leaps across chemical space instead of small local steps
bound by finite temperature criteria and inertia. We are open for
other more sophisticated alternatives to GA, but, for now, our
focus is on improving the GC capabilities, by designing new target
functions and mutation operations, within the GA scheme.

4.5 Filtering and sorting the ensemble

It is important to avoid or prevent duplicate structures during
the global optimization or final analysis of the ensemble.
GOCIA adopts an adapted version of the similarity checker
proposed by ref. 42, which considers both energetic and
structural aspects. This method assesses geometric similarity
by comparing sorted lists of interatomic distances, enabling it
to identify symmetrically equivalent duplicates without the
need of a predefined number of unique clusters in the data set.

After duplicate removal, the unique structures in the ensem-
ble would be sorted by GC free energy and written to a new
database which contains all essential metadata from the search.
The database file can be used for statistical analysis or comput-
ing ensemble-average properties. GOCIA would also report an
oversampling ratio which reflects how extensively the chemical
space has been sampled. A low oversampling ratio suggests that
the sampling is far from extensive, while a high oversampling
ratio often means that the search is extensive enough.

The evolution trajectory of a GCGA run, although bearing no
physical meaning in a strict sense, contains many useful informa-
tion. GOCIA offers scripts for tracking the progress of the GCGA
by plotting O versus the number of samples on-the-fly. It can easily
visualize the key new GM’s in the search history and if there is a
good sign of convergence. It can also inform if there is any sign of
significantly restructuring, usually characterized by an apparent
dive of the population’s O to a much lower value and remains
there, without the need to inspect each structure in the trajectory.

GOCIA also stores the inheritance information of each candi-
date in the database. To be specific, the identity of each candidate’s
parents and the type of mutation (if any) that it went through.
GOCIA offers scripts that can track the lineage of any candidate and
plot its family tree. This can inform putative pathways via which the
restructured GM may arise from pristine structures, and which
mutation operations are the most effective for the system of study.

4.6 Ensemble analysis and beyond

The filtered and sorted ensemble of unique minima structures
well covers the GM and relevant LMs to a specific condition

defined by the chosen m. By merging multiple ensembles from
searches at different sets of m (followed by filtering and sorting
again), a more complete GC ensemble is yielded and can be
used to study the system’s behaviors at all interpolated m values
among the sampled ones.

GOCIA offers a GCE class for ab initio thermodynamic
analysis of the GC ensemble database. But before anything,
an important thing to check is the distribution of stoichiome-
tries. The GCE class offer functions that can cluster the minima
into separate groups of the same stoichiometry. By plotting
statistical histograms, one can learn about the density (counts)
of samples for each stoichiometry, which informs whether the
samples cover a continuous range in the chemical space which
is the prerequisite for further analysis with interpolated
m values. By calculating the structural similarity metric (the
same as in Section 4.5) with respect to a few reference struc-
tures, one can also group the samples by their restructuring
patterns and check their sampling density.

Within each group, it is straight forward to extract the low-
energy local minima (LELMs) as a relevant sub-ensemble,
which can be used for further refinement at a higher level of
theory or with additional treatments such as solvation and
GCDFT. A recommended energy cutoff relative to the GM of
each group is 10 kBT; however, one should always check if the
relative energies of the LELMs would reorder at a different level
of theory, and there may be a need to use a higher cutoff.

The GCE class offers functions for the easy calculation of O
and Boltzmann population, p, of any states within the ensem-
ble at a specific m or a series of m values (Fig. 9a–c) by:

piðmÞ ¼
e�OiðmÞ=kBT

PN

j

e�OjðmÞ=kBT
(5)

Fig. 9 A typical analysis of the grand canonical ensemble. (a) The grand
canonical free energy O of all states computed within the ensemble with
respect to some elements at a given set of m. Each bar represents a unique
state. (b) O on a series of m values computed to generate a condition
dependent phase diagram. Each line represents a unique state. Slicing at
the dotted line would yield panel a. (c) The Boltzmann population, pi, of
each state calculated as a function of m. (d) The pi used to calculate the m-
dependent ensemble averaged properties or spectra. All steps shown here
are straightforward by using the functions within the GCE class of GOCIA.

Paper PCCP

Pu
bl

is
he

d 
on

 0
9 

D
ec

em
be

r 
20

24
. D

ow
nl

oa
de

d 
on

 2
/2

0/
20

26
 1

:0
0:

09
 P

M
. 

View Article Online

https://doi.org/10.1039/d4cp03801k


704 |  Phys. Chem. Chem. Phys., 2025, 27, 696–706 This journal is © the Owner Societies 2025

The m-dependent populations can then be used to calculate the
GC ensemble average of a specific function X (Fig. 9d) by:

hXi ¼
XN

i

piðmÞFi (6)

Here, X can be a single-value property (activation energy,
adsorbate coverage, etc.) or an array (simulated microscopy
image, spectrum, etc.). In this way, we can obtain the ensemble
averaged X as a function of any reaction condition within the m
range of sampling.

In the cases where the Boltzmann statistics fail, the ensem-
ble can still serve as an ab initio thermodynamics database for
kinetics simulations, as it well covers the relevant LELMs. The
combination of global optimization and quasi-kinetic MC
simulation has been used to study the off-equilibrium struc-
tural evolution such as Ostwald ripening of sub-nano clusters36

and surface roughening of Cu electrodes during the CO2 RR.29

5 Grand canonical density functional
theory

GOCIA also supports GCDFT calculations using the surface
charging approach.43 Specifically, the potential-dependent
grand canonical electronic free energy, Oel(f), of a charged
electrode/electrolyte interface at a constant potential (i.e., a
constant me), is approximated by an effective capacitor model
with a constant capacitance:

OelðfÞ ¼ EðfÞ � qðfÞ � Ff � �1
2
Ceffðf� f0Þ2 (7)

where E(f) is the electronic energy of the surface under a potential
f that is calculated by referencing the Fermi level of the system
against the vacuum level. q(f) is the surface charge difference
referenced against the neutral system, and F is the Faraday con-
stant. f0 is the potential of zero free charge (PZFC) of the system,
and Ceff is the effective capacitance of the interface. The linearized
Poisson–Boltzmann model as implemented in VASPsol44 is used to
represent the polarizable electrolyte region. By varying the number
of electrons (Nel) in the system, the surface is charged/discharged,
and the electrolyte is polarized. The center of the empty region in
the cell (vacuum filled with implicit solvation) is then used as the
reference energy level to track the change in the Fermi level of the
system. By sampling a series of q (through varying Nel), we can
obtain a data set of E(f) and their corresponding f, which can then
be used to fit the quadratic relationship (eqn (7)).

We can then replace the electronic energy terms (EAB and EB

in eqn (3)) with the resulted Oel(f). In this way, we can
eventually obtain the potential-dependent total GC free energy,
Otot, with respect to all adatoms/adsorbates as well as electrons:

OtotðfÞ � Oel;ABðfÞ � Oel;BðfÞ �
X

A

m0iNi (8)

5.1 Slab symmetrization

Symmetrized slabs are recommended for constant-potential
calculations. GOCIA can construct a symmetrized slab using

mirror and center symmetry operations from an asymmetric
slab. This operation only requires a few structural parameters
and can be easily applied to a large number of structures within
the same ensemble. The user can also make customized opera-
tions that combine multiple symmetry operations and atom
addition/removal for slabs with unusual stacking or chirality.

5.2 Automated surface charging workflow

GOCIA provides a wrapper for easy surface charging calcula-
tions. The user only needs to provide a list of numbers of
fractional electrons that needs to be added/removed from the
system, and GOCIA would calculate the corresponding Nel and
make the input files. A separate job sub-directory will be made
for each Nel, and it again can be run in a serial or parallel way.
After jobs corresponding to all Nel values converge, GOCIA can
automatically parse the output files, extract the key results, and
then fit and report the Oel–f relationship. After all GCDFT
calculations converge, GOCIA can extract the fitting parameters
and write them into the database file for further data query and
analysis (similar to Section 4.5).

We note that the described treatment relies on many
assumptions including (i) a constant interfacial capacitance,
(ii) no dramatic potential-dependent geometric changes, (iii)
the minima structures are obtained under constant-charge
conditions, and the electronic degree of freedom is added a
posteriori. A rigorous GCDFT treatment would require all sam-
ples to be locally optimized under constant-potential condi-
tions, which is technically doable37,45–48 but computationally
too expensive for a very large number of samples in a typical GC
global optimization. Our a posteriori approach has been a
successful compromise for metallic systems with simple adsor-
bates such as H and CO.9,10,29 For surfaces with high polarity
and larger flexible adsorbates,49 the constant-potential treat-
ment may be necessary during the search, and we are working
on making it more affordable.

6 Comments and perspectives

We would like to note that GOCIA is not a black box, but rather
an open toolbox with many tunable parts and options. The user
should be prepared to make customization according to the
nature of the system of study, especially the specifics of each
individual component. Otherwise, the sampling could wander
off to unwanted FES regions due to a very unreasonable initial
distribution, or get stranded for a long time in a local FES
region due to insufficient diversity, and waste a lot of computa-
tional resources.

Future developments of the GOCIA would include: (i) vary-
ing the chemical potentials (corresponding to reaction condi-
tions) during the search. The ‘‘scan rate’’ can be adaptive and
depend on how extensive the local chemical potential regime
has been sampled. This can be useful in identifying the critical
conditions where there is a switch in thermodynamic GM. (ii)
Symmetry-based operations and substructure representations,
which may accelerate the convergence for some systems where
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the bonding is more directional and coordination patterns, are
more well-defined.17 (iii) Motif-based operations, which can
keep track of energetically favorable structural motifs during
the search and include them in later structure generation steps,
similar to ref. 13 but covering periodic and multi-component
cases. (iv) Sampling of explicit solvation layers. Some key goals
are determining electrolyte hydration structures and building
micro-solvation models for surface species in a more adaptive
and efficient way. (v) Metrics for the extensiveness of LM
exploration. Two promising options are conformational
entropy50 and similarity descriptors checked against the search
trajectory. They can serve as additional target functions to
control exploitation (finding GM) versus exploration (discover
new LMs). (vi) Incorporating Hessian-based techniques into GC
schemes, such as sparse methods for efficient harmonic vibra-
tional density calculations.19,51,52 They can boost the search
efficiency when the calculators support analytical Hessians.
(vii) Including the electronic degree of freedom in the GC
search for electrochemical systems. This is paramount for
surfaces with high polarity and/or flexible adsorbates whose
geometry responds dramatically to varying potentials.

Machine learning (ML) models, especially the interatomic
potentials, have undergone impressive development over the
recent decade.53–56 However, in our opinion, there are still two
obstacles in applying them to global optimizations. (i) Overall
cost: the computational cost for generating the training data for
making a good model that well covers the corner cases would
be comparable to, if not larger than, that of a direct global
optimization approach. (ii) Force accuracy: unlike the case of
MD, global optimizations require very accurate forces (at a
magnitude of a few meV Å�1) to ensure that the final ensemble
contains only minima states and exclude saddle points or other
structures on flat local regions of the PES. (iii) Differentiability
and description of non-local effects: we look forward to further
advances in ML model architectures that can enable more
accurate force predictions and new features to surpass the
limitations discussed before. At this time, GOCIA would still
serve as an excellent generator of diverse and off-equilibrium
training datasets – or it can be incorporated as an on-the-fly
component into active learning workflows.

7 Conclusions

Herein, we report GOCIA, an open-source Python package for
general-purpose global optimization of various off-stoichiometric
restructuring systems. GOCIA has proven versatile, efficient, and
successful in a wide range of applications involving adatoms,
clusters, crystalline surfaces, amorphous over-layers, and/or adsor-
bate coverage.

This manuscript covers the main features of GOCIA, with
detailed descriptions of its code structure and the grand
canonical genetic algorithm. The relevant theories are
explained, and other key functionalities are introduced.

GOCIA is a highly versatile and extendable code, and it can
be potentially customized to study many other systems beyond

heterogeneous catalysis, such as plasma chemistry, metallurgy,
batteries, environmental chemistry, surface molecular assem-
blies, and other functional materials. GOCIA is an ongoing
effort and is open to comments and contributions from
researchers in all aforementioned areas, and we hope to con-
tinue the development and implementation of community-
needed features in the future.
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