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Non-Newtonian dynamics modelled with
non-linear transport coefficients at the
mesoscale by using dissipative particle dynamics

Ali Naseri, a Clara Salueña Perez b and Josep Bonet Avalos *a

We derive the algorithms for the dynamics of the standard dissipative particle dynamics model (DPD) for

a velocity-dependent friction coefficient. By introducing simple estimators of the local rate of strain we

propose an interparticle friction coefficient that decreases for high deformation rates, eventually leading

to the macroscopic shear-thinning behaviour. We have derived the appropriate fluctuation–dissipation

theorems that include the correction of the spurious behaviour due to the coupling of the non-linear

friction and the fluctuations. The consistency of the model has been numerically investigated, including

the Maxwell–Boltzmann distribution for the particle velocities as well as the comparison with the stan-

dard linear model for various stresses. The shear-thinning behaviour is clearly reported. Finally, along

with the important methodological aspects related to the derivation of the algorithms for non-linear

interparticle friction, we introduce a novel two-step algorithm that permits us the integration of the

dynamic equations of the DPD model without the explicit derivation of the corrective terms due to the

spurious behaviour.

1 Introduction

The study of mesoscale phenomena holds a significant place
in many domains of physics, chemistry, material science and
engineering, including problems in condensed matter physics,
complex fluids, and biophysics, among many others.1,2 These
systems exhibit intricate behaviours resulting from the collec-
tive interactions of particles operating at intermediate lengths
and time scales, in which the effect of the thermal agitation is
relevant, as occurs in soft systems, spanning from polymer
solutions, colloidal suspensions, to biological membranes.
Among the computational methods used to describe this type
of systems, dissipative particle dynamics (DPD) has risen as an
adaptable approach increasingly used in recent years. As a
coarse-grain (CG) model, DPD allows for the extension of the
time and space domains that limit ordinary molecular dynamic
simulations, although it requires the knowledge of appropriate
expressions for the interaction forces, friction forces as well as
all the other properties transported by the DPD particles in the
generalised models.3–5 Furthermore, in contrast with molecular
dynamics, DPD simulations require the explicit considera-
tion of friction and random forces to model the exchanges
between the resolved and the coarse-grain degrees of freedom

embedded in each DPD particle, due to the coarse-grain. There-
fore, the DPD dynamics is formulated through Langevin-like
equations. However, the crucial difference between DPD and
the classical Langevin description of colloidal particles in a
thermal bath is the absence of the latter, as the friction and
random forces are exerted between particle pairs, in such a way
that the total momentum of the system is conserved. These
conservation laws, namely, number of particles and momen-
tum, are at the origin of the hydrodynamic behaviour of DPD
at long time and long wavelength, which is one of the most
prominent features of the model. In this article, we address the
problem of the construction of a suitable algorithm for DPD-
like systems with non-linear dissipative coefficients.

Initially introduced in 1992 by Hoogerbrugge and Koleman,6

Espanol and Warren7 later provide the necessary thermo-
dynamic consistency through a fluctuation–dissipation theorem
(FD). Such FD introduces the reservoir temperature through the
strength of the random forces, so that the Maxwell–Boltzmann
equilibrium distribution for the particle velocity is sampled by
the dynamics. An important step forward was introduced later
by Groot and Warren8 who addressed for the first time the
problem of relating the model parameters to the physical
properties of the system to be simulated. The scope of applica-
tion was further extended with the introduction of density-
dependent potentials,9,10 and more recently with density-
and temperature-dependent potentials, in the context of the
Generalised energy-conserving formulation.5,11 Different review
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b Departament d’Enginyeria Mecànica, Universitat Rovira i Virgili, Tarragona, Spain

Received 25th July 2024,
Accepted 15th November 2024

DOI: 10.1039/d4cp02951h

rsc.li/pccp

PCCP

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
N

ov
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

1/
8/

20
25

 1
1:

49
:1

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0002-3825-1222
https://orcid.org/0000-0001-7595-8588
https://orcid.org/0000-0002-7339-9564
http://crossmark.crossref.org/dialog/?doi=10.1039/d4cp02951h&domain=pdf&date_stamp=2024-12-04
https://rsc.li/pccp
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4cp02951h
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP027001


This journal is © the Owner Societies 2025 Phys. Chem. Chem. Phys., 2025, 27, 190–205 |  191

articles address the scope of the developments and applications
of the method.1,12,13

In the standard DPD method, the friction force FD
ij is

defined as

FD
ij ¼ �g rij

� � pi

mi
�

pj

mj

� �
(1)

where pi is the particle momentum, ri is its position, and mi,
its mass. The coefficient g depends only on the interparticle
distance rij = |ri � rj| to maintain Galilean invariance, is
positive-definite, and is non-zero only if rij o rc, where rc is
the cutoff radius. Since the dynamic equation is formulated as a
Langevin-like equation for the particle momenta, the latter will
vary discontinuously in time due to the action of the random
forces, dpR

ij/dt in view of eqn (5). Due to the discrete nature of
the algorithm, such variation is finite. Instead, the particle
positions are continuous functions although, non-differen-
tiable (cf. eqn (4)). Therefore, while momenta will change
rapidly, positions will vary in a much larger time scale, so that
the latter are taken as constants in the integration of momenta
in the usual algorithms. This fact is very relevant, as it places
the dissipative friction forces within the domain of the so-called
linearity between the fluxes and the thermodynamic forces, in
Onsager’s definition of irreversible phenomena.14,15 This means
that, in the particular case of the standard isothermal DPD, the
equilibrium probability distribution for a pair of particles i and j is
Maxwellian, namely, Peq p exp[�(pi

2/2mi + pj
2/2mj)/kBT], where

T is the absolute temperature and kB is Boltzmann’s constant.
Therefore, for this given pair, we can write the following property,

FD
ij Peq ¼ � gðrijÞ

pi

mi
�

pj

mj

� �
Peq

¼ kBTg rij
� � @

@pi
� @

@pj

 !
Peq

(2)

eqn (2) expresses the linearity between the friction force and
derivatives of Peq with respect to the momenta, which ultimately is
the corresponding thermodynamic force, according to Onsager.
As a consequence, the equilibrium average of the friction force is
zero, as

FD
ij

D E
¼ �kBT

ð
dpidpjPeq

@

@pi
� @

@pj

 !
g rij
� �

¼0 (3)

where partial integration has been used to obtain the right-hand
side of this last equation. However, if such a linearity is not
satisfied because g also depends upon the momenta, then one
would in general have hFD

ij i a 0, which contradicts the symmetry
requirements of the equilibrium state. In the context of the
Langevin equations, this is the well-known spurious drift,16,17

which needs the appropriate correction in the stochastic equation
of motion. However, the situation is wider as in some cases no
spurious drift is present but nevertheless a corrective term is
required, as we will later see. Therefore, along the article we will
use the expression spurious behaviour to account for this general
situation.

Such linearity is ubiquitous in DPD models, regardless of
whether they are isothermal, energy-conserving, or other types.
However, in complex fluids, e.g. non-Newtonian liquids, the
viscosity depends on the rate of strain. Therefore, since DPD
is a coarse-grain model, the simulation of non-Newtonian
fluids within the DPD framework should quite naturally entrain
friction coefficients depending on the rate of strain, which
ultimately depends on the velocity field. From a wider perspec-
tive of applications of DPD-like methods (energy-conserving,3,4

GenDPDE,11,18 among others,1,12,13) it is a natural situation to
have systems in which the dissipative coefficients, like g, depend
on the fluctuating temperature, the particle relative velocity or any
other variable that rapidly fluctuates in a dynamic stochastic
equations of motion.

In this article, we address the problem of developing the
appropriate dynamic equations for non-linear DPD applications.
Although the treatment of the spurious drifts in simple Langevin
equations is well known, the required derivation for complex
dynamic models like DPD may be daunting if analytically carried
out. Together with the derivation of such corrective terms, which
is our first important result, in addition we propose a novel
numerical method, based on the works of Lax19 and Fixman,20

which allows us to produce the appropriate integration algorithms,
consistent with the thermodynamic equilibrium conditions,
without the complex analytical derivation of the corrective
terms. Moreover, the theoretical analysis permits us to cast
the formulation into a clear and generalisable way, which we
believe transcends the specific goals of this article.

As a proof of concept, we have applied this framework to
reproduce the non-Newtonian behaviour observed in polymeric
liquids. Polymers have been simulated using the DPD approach
soon after the DPD method was introduced,21–23 including
rheological applications in recent times.24,25 All these models
have in common that they reproduce the structural complexity
of the polymeric molecules with arrays of particles connected
by springs, which introduce elastic forces, allow for conforma-
tional changes and keep the integrity of the polymer molecule.
The non-Newtonian behaviour observed within these types
of models arises from the coupling between the externally
imposed shear flow and the induced conformational changes
of the polymer molecule, which results in a rheological beha-
viour depending on the rate-of-strain, i.e., the local deforma-
tion rate affecting the molecular conformation. In rheological
studies,26 the complexity of the mesoscopic model for the
polymer can be reduced to a so-called dumbbell model, repre-
senting the longest molecular relaxation time, for computa-
tional economy. Also rather commonly, the finite extensibility
of the chain is included in the FENE dumbbell model.27 Hence,
the non-linearity in the rheological response in the dumbbell
and general bead-spring models is coupled to the slow
dynamics of the internal coordinates of the polymer, namely,
the end-to-end distance, associated with the aforementioned
longest relaxation time. Therefore, the DPD models used to
simulate both the polymer molecule as well as the solvent
remain within the framework of the usual linear DPD dynamic
models. Therefore, to bring the non-linearity into the DPD
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model itself, we have introduced a larger degree of coarse-grain
in which an, e.g., dumbbell model is virtually embedded in one
single DPD particle. Thus, the coupling between the local fluid
flow and the polymer conformation is transferred to a specific
form of the interparticle friction which depends on the local
rate-of-strain, ignoring the dynamics of the internal coordinate.
Such an example must reproduce the non-Newtonian behaviour,
if the proper selection of the velocity-dependent friction is made.
Therefore, the model presented here is the simplest non-linear
model within the isothermal DPD framework, and will serve as a
proof of the internal consistency of the algorithms introduced
in the article. Therefore, the example treated in this article is
conceptually relevant and produces the intended non-Newtonian
behaviour understandable for the practitioners. However, the
importance of our analysis is the generality of the methodology
and our ultimate goal is to apply the same scheme to future more
complex applications.

The article is organised as follows. In Section 2 we propose
the dynamic equations of the standard DPD model, along with
the corrections introduced to address the problem of a velocity-
dependent friction parameter. We also derive estimators of the
local rate of strain, which allows us to formulate a form of the
friction parameters depending on these estimators. We also
comment on the obtained expressions for the random forces
(derived in Appendix A) and introduce the so-called two-step
algorithm, which is analysed in comparison with the previous
algorithms with corrections. In Section 3 we describe the
simulation setup as well as the parameters used in the numer-
ical tests of the algorithm. In Section 4 we analyse and discuss
the obtained results. These include, on the one hand, equili-
brium simulations to obtain the velocity probability distri-
bution, and the calculation of the zero-shear viscosity using
the Einstein–Helfand method. On the other, we study the
viscosity of a series of non-equilibrium simulations performed
ad increasing stress. Finally, in Section 5 we review the main
results obtained in this article.

2 Theoretical framework and analysis

In this section, we start by introducing the isothermal DPD
algorithm for a general non-linear model. Next, we define two
estimators of the local rate of strain, which are used to produce
velocity-dependent friction coefficients, as a case study. Next,
we propose the DPD algorithm with the analytical corrections
to the spurious behaviour for the cases studied. Finally, we
describe the so-called two-step algorithm, which does not
require the analytical evaluation of the correction, and prove
that it is numerically equivalent to the standard algorithm
previously derived.

2.1 The isothermal DPD algorithm

Let us consider that the state of the system at time t is denoted
by a point G = ({pi}, {ri}) in phase space, where {pi} and {ri} stand
for all particle momenta and positions, respectively. The state
of the system at t + dt is represented using primed variables as

G0 ¼ p
0
i

� �
; r

0
i

� �� �
and is calculated according to the following

algorithm:

r
0
i ¼ ri þ

pi

mi
dt (4)

p
0
i ¼ pi þ

X
jai

FC
ij þ FD

ij

� 	
dtþ

X
jai

dpRij (5)

Here, FC
ij, FD

ij , and dpR
ij represent the conservative force, dissipa-

tive force, and random momentum exchange between particles
i and j, respectively. The expressions for these terms are
written as,

FC
ij = FC(rij)eij (6)

FD
ij ¼ �g rij ; vij

� �
eijeij �

pi

mi
�

pj

mj

� �
(7)

dpR
ij = eij(Gij xijdt1/2 + Lijxij

2dt + � � �) (8)

In comparison with the standard DPD algorithm, in eqn (7)
we have introduced explicitly the dependence of the friction
coefficient in the pair relative velocity vij � pi/mi � pj/mj,

gij = g0(rij, vij)o(rij) (9)

which makes the algorithm non-linear, from the perspective of
Onsager’s theory of irreversible processes.28,29 Notice that
the friction coefficient is Galilean invariant, and therefore this
new dependence does not impair the overall momentum con-
servation. Furthermore, angular momentum conservation will
require further symmetry properties, which we will discuss
when introducing the specific model for the analysis, later
on. In the linear model, g0 is a constant friction coefficient,
which here we extend to be a function of the interparticle
positions and the relative velocities as well. o(rij) is a positive
definite, monotonously decreasing, spherically symmetric
weighting function, which vanishes for rij Z rc. In this work,
we use the usual quadratic form

o rij
� �

� oij ¼ 1� rij

rc

� �2

for rij � rc (10)

On the other hand, we have also adopted a more general form
of the random contribution, here expressed as a series expan-
sion in terms of xdt1/2, to indicate that complex forms of
the dissipation imply more complex expressions of the random
term.16,30 In eqn (8), xij is a normalized Gaussian number
satisfying,

hxiji = 0 (11)

hxij(t)xkl(t0)i = hdikdjl � dildjkidtt0 (12)

where dtt0 is 1 if t and t0 belong to the same time interval in
discrete-time simulations, and 0 otherwise.

The random force can then be defined from the random
momentum exchanged, according to

FR
ij ¼

dpRij
dt
¼ eij Gijxijdt

�1=2 þ Lijxij
2 þ � � �

� 	
(13)
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Notice that the random force in a discrete algorithm depends
on the size of the time step.31 In the expressions above, rij = |rij|,
and eij = rij/rij.

The coefficients Gij and Lij are calculated from the appro-
priate fluctuation–dissipation theorem later on, as they depend
on the specific model used for the non-linear friction
coefficient.

2.2 Local estimator of the rate of strain

Before the form for the non-linear friction coefficient is given,
in this section we analyze the expected form for the local rate of
strain estimator experienced by the central particle i. To this
end, in analogy with smoothed particle hydrodynamics,18,32 we
review the formulation of the momentum transport equations
from a Lagrangian perspective.

Let us define the momentum density j and mass density r
according to,

jðr; tÞ �
X
j

piðtÞd r� rjðtÞ
� �

(14)

rðr; tÞ �
X
j

mid r� rjðtÞ
� �

(15)

where r is a field point. Classically, the so-called baricentic
velocity field v is defined from the relation

j(r, t) � r(r, t)v(r, t) (16)

The local rate of strain in a given point of the fluid is thus
associated to the components of the velocity gradient tensor
rv. In what follows, we estimate the value of such rate of strain
from particle coordinates and momenta.

Let us define the local momentum density around a particle
i as,

jiðr; tÞ �
X
jai

pj �mjvi

� 	
d r� rj
� �

(17)

We can now introduce several moments of the momentum
density in the immediate vicinity of particle i. The zero and
first-order moments are defined as,

J0i �
ð
droS r� rið Þjiðr; tÞ

¼
X
jai

pj �mjvi

� 	
oS

ij

(18)

J1i �
ð
droS r� rið Þ r� rj

� �
jiðr; tÞ

¼
X
jai

rj � ri
� �

pj �mjvi

� 	
oS

ij

(19)

In these equations, oS
ij is a weighting function, positive-definite

and with a finite range, rc. The superscript ‘‘S’’ indicates that
this weighting function is not necessarily equal to that of
eqn (10). Higher-order moments can be defined although they
are not relevant for our analysis. Hence, from a continuum

standpoint, let us introduce a multipolar expansion of the local
momentum density around particle i

ji(r, t) E (r � ri)�rji + (r � ri)(r � ri):rrji +� � � (20)

where the zero-order term has been omitted as is zero by
construction. Thus, retaining terms only up to the first order,
we can write

J0i ¼
ð
droS r� rið Þ r� rið Þ � rji ’ 0 (21)

Due to the isotropy of the kernel together with the homogeneity
of the system, this integral is approximately zero, to the lowest
order. On the other hand,

J1i ¼
ð
droS r� rið Þ r� rið Þ r� rið Þ � rji

¼ 4p
3

ðrc
0

drcoSðrÞr4

 �

1 � rji ¼ Crji

(22)

The angular integration has been analytically performed due to
the isotropy, yielding the identity matrix I and the geometric
factor C, which depends on the mathematical expression for
the kernel oS. Therefore, comparing eqn (19) with eqn (22),
we can estimate the local momentum gradient, i.e.,

rji �
1

C

X
jai

rj � ri
� �

pj �mjvi

� 	
oS

ij (23)

We similarly introduce a multipolar expansion of the mass
density together with the calculation of the different moments.
The local mass density field reads,

riðr; tÞ �
X
jai

mid r� rj � ri
� �� �

(24)

In this case, the first non-zero contribution is the zero moment,
i.e.

r0i �
ð
dro r� rj

� �
riðr; tÞ ¼

X
jai

mjoS
ij (25)

Therefore, we can finally construct the estimator of the rate of
strain as a second order tensor, i.e.,

Si ¼
1

r0
rj ¼

P
jai

rj � ri
� �

pj �mjvi

� 	
oS

ij

C
P
jai

mjoS
ij

(26)

The expression of S in eqn (26) is multibody, which breaks
the pairwise additiveness of the friction forces that is central
in the DPD model. Therefore, rather than implementing
the estimator as indicated in eqn (26), here we introduce a
simplified version involving only pairwise contributions.
Although this may seem very restrictive, is sufficient for the
purpose of the article that is to show the modifications needed
for the standard DPD equations for non-linear situations.
Therefore, we choose this simplified model as is sufficient to
meet this purpose. Effectively, we decompose Si into pairwise
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contributions Si ’
P
jai

Sij , with

Sij ¼
rj � ri
� �

pj �mjvi

� 	
oS

ij

Cmj
¼ 1

C
rijvijoS

ij (27)

We will use this pairwise definition from now on.
2.2.1 Non-linear model for the interparticle friction. In our

simplistic model, we consider a scalar friction g0 cf. eqn (9).
We thus use the estimator eqn (27) to introduce a scalar which
will modulate the actual friction between two particles, depend-
ing on the estimated rate of strain. For the first model, we
choose Saij as

Sa
ij � rij � vij

� �2y rc � rij
� �

¼ 4C2SA
ij :S

A
ij (28)

Here, S
A
ij ¼

1

2
Sij � S

T
ij

� 	
is the antisymmetric tensor, where

the superindex T stands for transpose, and we have chosen
oS

ij = y(rc � rij). The quantity |rij � vij| is a measure of the rate of
the local shearing motion of the particles i and j. However,
as constructed, one cannot distinguish between the pure
deformation of the local environment of particle i from a pure
rigid body rotation of the same environment. To construct
such estimator more than two particles are required, as it is
expressed by eqn (25). For bounded flows, as in the Couette
geometry that we explore in this article, neither free interfaces
nor pure rotations are present and the use of such a simplified
estimator for the shear rate is pertinent.

For the second model we introduce,

Se
ij � rij � vij

� �2y rc � rij
� �

¼ 4C2 trSij

� �2
(29)

where trSij stands for the trace of Sij . For the same reasons
expressed before, this estimator cannot distinguish a pure
deformation of the volume element from a variation in its
volume. The overlapping of these two modes of motion has
been recently discussed in the context of other Lagrangian
methods like SPH.18,32

The pairwise additiveness of the local rate of strain proposed
in eqn (28) and (29) allows us to discuss the new proposed
algorithm for the integration of the non-linear cases.

Next, we propose the velocity-dependent friction coefficient
given by,

gij = (g0e�g1Sij)oij � g(Sij)oij (30)

In this equation, g0 is the zero-shear friction coefficient and g1

is a prefactor that measures the strength of the shear rate
estimator in the form given by either eqn (28) or (29). The
functional form of eqn (30) is introduced to macroscopically
reproduce the shear-thinning behaviour, common in many
polymeric materials, as an interesting example to show that
the new DPD algorithm is capable of reproducing non-
Newtonian behaviour from a non-linear dissipation law.

The two estimators for the local shear given in eqn (28) and
(29) require two distinct forms of the fluctuation–dissipation
theorem. Effectively, in Appendix A we demonstrate that for the

case of eqn (28) it suffices that

dpRij ¼ eij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTg Sa

ij

� 	
oij

r
xdt1=2 (31)

We find that, despite the non-linearity of the friction law, Lij = 0
for this case. However, for the case of eqn (29) we demonstrate
also in Appendix A that,

dpRij ¼ eij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTg Se

ij

� 	
oij

r
xdt1=2

þ 2kBT
1

mi
þ 1

mj

� �
g0 Se

ij

� 	
rij

2oij

� y rc � rij
� �

eijeij � vijxij2dt

(32)

The presence of the second term (i.e. L a 0) is entirely due to
the non-linearity and has to be analytically determined a priori
to construct an explicit algorithm, as in eqn (4) and (5), with
eqn (6)–(8). Notice that the average of this second term is zero
in equilibrium. Therefore, strictly speaking is not a correction
of any spurious drift, as also hFD

ij ieq = 0. However, it is a
necessary correction needed to produce the Marwell-Boltzmann
distribution.

2.3 The two-step algorithm

The analytical calculation of the extra term of the random
contribution for the second model can be avoided by introdu-
cing an implicit algorithm in two steps. For this analysis,
we specialise in the model of eqn (29), which is the only one
that requires correction of the spurious behaviour.

Effectively, let us consider an initial step in which we
calculate an intermediate momentum p00 according to the
equation,

p
00
i ¼ pi þ dpRij (33)

with

dpRij ¼ eij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTg Se

ij

� 	
oij

r
xijdt

1=2 (34)

where the values used for the state variables are evaluated at t.
Next, we reevaluate the friction coefficient using this intermedi-
ate momentum, i.e.,

v
00
ij ¼

p
00
i

mi
�

p
00
j

mj
¼ vij þ

1

mi
þ 1

mj

� �
dpRij (35)

Se00
ij ¼ rij � v

00
ij

� 	2
y rc � rij
� �

(36)

The corrected random term dp
00R
ij is then calculated as,

dp
00R
ij ¼ dpRij Se00

ij

� 	
¼ eij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTg Se00

ij

� 	
oij

r
xijdt

1=2 (37)

Then, we finally update the momenta using,

p
0
i ¼ pi þ

X
jai

FC
ij þ FD

ij

� 	
dtþ

X
jai

dp
00R
ij (38)
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with all the forces calculated at t and only the random contri-
bution is calculated using the intermediate momenta. It is very
important that the random number xij used in eqn (37) is
the same sorted to calculate the right-hand side of eqn (34).
We thus state that the use of the corrected random term eqn (37)
in the dynamic equation eqn (38) satisfies Detailed Balance and,
as a consequence, the dynamics of the system correctly samples
its equilibrium probability distribution, which is the Maxwellian
distribution for the standard isothermal DPD.

To prove the previous statement, we next proceed to demon-

strate that the random contribution dpRij Se00
ij

� 	
is actually iden-

tical to the right-hand side of eqn (32), up to the order of

validity of the algorithm, OðdtÞ3=2. We start by expanding

eqn (37) up to first order in v
00
ij � vij , i.e.,

dpRij Se00
ij

� 	
’ dpRij Se

ij

� 	
þ
@dpRij
@Se

ij

@Se
ij

@vij
� v

00
ij � vij

� 	
þ � � � (39)

The first factor in the second term in eqn (39) can be further
developed to obtain,

@dpRij
@Se

ij

¼
@dpRij

@g Se
ij

� 	 @g Se
ij

� 	
@Se

ij

¼ eij

kBTg0 Se
ij

� 	
oijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTg Se
ij

� 	
oij

r xijdt
1=2 (40)

The second factor in turn reads,

@Se
ij

@vij
¼ 2rij

2y rc � rij
� �

eijeij � vij (41)

Since eij�eij = 1, finally, using eqn (35) to obtain v
00
ij � vij

� 	
,

substituting eqn (40) and (41) into eqn (39) we arrive at,

dpRij S
00
ij

� 	
’ dpRij Se

ij

� 	
þ 2kBT

1

mi
þ 1

mj

� �
g0 Se

ij

� 	
rij

2oij

� y rc � rij
� �

eijeij � vijxij2dtþ OðdtÞ3=2
(42)

This expression is identical with eqn (32), so the two-step
algorithm produces the same second-order term in (x2dt) as
we have determined in Appendix A, as part of the fluctuation–
dissipation theorem, provided that the time-step is small
enough.

Therefore, the two-step algorithm is an attractive way to deal
with non-linear Langevin equations in that the extra term does
not require an explicit evaluation. A drawback of the method,
however, is that the random number xij should be used twice:

for the estimation of dp
00R
ij and for the subsequent calculation of

the total random term dpR
ij.

2.4 Generality and limit of validity of the two-step algorithm

The results obtained in the previous subsection may appear
specific to that particular problem, but the applicability of the
method transcends this case and can be applied to any problem
with the characteristics described here.

Let us consider a mesoscopic system whose state is charac-
terised by a given observable x. In general, we can also consider
that along with x its momentum p and internal energy u,

complete the description of the state. The equilibrium distribu-
tion function in the Canonical ensemble is of the form,

Peqðp; u; xÞdpdudx / e
Tsðu;xÞ� p2

2m
þu

� 	h i.
kBT

dpdudx (43)

where s(u, x) is the entropy of the system at a given state
characterised by (p, u, x), according to Einstein’s theory of
thermodynamic fluctuations.33 Denoting,

Fðp; u; xÞ � � Tsðu; xÞ � p2

2m
þ u

� �
 �
(44)

the so-called thermodynamic force related to the variable x is
X � �@F=@x; with all the other variables kept constant. In the
spirit of Onsager’s theory of non-equilibrium thermodynamics,
one writes,

x0 = x � aXdt + dxR (45)

which is a definition of the kinetic dissipative coefficient a.
In the linear domain, a is a constant. However, here we have
centered our interest on situations in which a is a function of
the state variable x. The case of the coupling with other
fluctuating variables in the non-linear regime will be addressed
elsewhere.

The properties of the random contribution dxR are deter-
mined by the Detailed Balance condition, as developed in
Appendix A. Proposing a general expansion of the form dxR =
Gxdt1/2 + L(xdt1/2)2 + � � �, as in eqn (8), the evaluation of the first
moment yields,ð

dGPeqðGÞ �aXdtþ dxR

 �

x

h i
¼ 0 (46)

with G = (p, u, x). In general, due to eqn (44), the following
relation is satisfied within the integral,

PeqðGÞ �aX½ � ¼ kBT a
@

@x
PeqðGÞ


 �

¼ � kBTPeqðGÞ
@

@x
a

(47)

Therefore, ought to hdxRix = L the choice

L ¼ kBT
@

@x
a (48)

exactly eliminates this term if qa/qx a 0, i.e., in the non-linear
case. Using (48), the second moment yields

G2 = 2kBTa(x) (49)

Next, consider the prescription for the two-step algorithm to
calculate the first step,

x00 = x + G(x)dt1/2 (50)

In the second step, the random term then reads,

dxR ¼ Gðx00Þdt1=2 ¼ G xþ GðxÞdt1=2
� 	

dt1=2

¼ GðxÞdt1=2 þ GðxÞ@G
@x

dtþ OðdtÞ3=2
(51)
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Given the structure of the dynamic equation eqn (45) and the
probability distribution eqn (43), it is verified that,

GðxÞ@G
@x
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTa

p 2kBT

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTa
p @a

@x
¼ kBT

@

@x
a ¼ L (52)

which produces the needed L-term up to OðdtÞ, Q.E.D.

3 Simulation setup

In this section, we detail the setup of numerical experiments
designed to investigate the equilibrium and rheological beha-
vior of the system for the different models introduced. Our
simulations encompass both equilibrium (EQ) and non-
equilibrium (N-EQ) scenarios. For both cases, we utilized the
code developed by the Molecular Simulation group at the
University of Rovira i Virgili. This code has been validated
by several research papers, including Malaspina et al.34 The
integration algorithm is a velocity-Verlet and the force loop is
parallelised using a nearest-neighbour list.

3.1 Simulation parameters

The simulations are conducted for a system with N = 20 000
DPD particles. As we are not using the standard DPD para-
meters, we have to provide an intuitive picture of the scales
used to make the equations dimensionless. We shall assume
that there is an underlying physical fluid in a given equilibrium
state characterised by a reference pressure and temperature
(PR, TR), which we coarse-grain (CG) into a DPD particle via
decimation through a scale factor f. The physical number
density of the reference state cR and the degree of CG allows
us to define a scale of length l = (f/cR)1/3, which is the aver-
age distance between DPD particles. The particle mass is m0 =
fMw/NA, where Mw is the molecular mass and NA is Avogadro’s
number. For the energy, we take u = PRf/cR, rather than kBT, as

is the customary choice. The time scale is then t ¼ l
ffiffiffiffiffiffiffiffiffiffiffi
m0=u

p
.

Using these scales from our reference system, we choose the
mass of the DPD particle to be m = 1. We will analyse two
different densities, namely n = 16 and n = 32. The dimension-
less volume of the system corresponding to n = 16 is V = 1250,
while for density n = 32, we selected V = 625. For equilibrium
simulations, the box is cubic, with lateral sizes L = 10.77 and
L = 8.55 for n = 16 and n = 32, respectively. For N-EQ simula-
tions, the size on the x-direction is Lx = 2L while Ly = Lz = L.
Therefore, V = 2L3, which gives L = 8.55 and L = 6.79 for the two
densities. Moreover, the dimensionless temperature of our
simulated system is 0.1, corresponding to a physical tempera-
ture T = 0.1u/kB, should we set the physical value of u. This
temperature is used in the random force of the algorithm in all
equilibrium and non-equilibrium simulations in this article.
The chosen set of parameters does not necessarily correspond
to any physical state of the reference system. The selection of
the appropriate time-step dt = 10�4 is carefully considered and
validated in Appendix B, using the measure of the viscosity to
set the appropriate value. Periodic boundary conditions are
applied in all three spatial coordinates. The thermalisation

induced by the random force physically represents the coupling
of the system with a heat reservoir at the same nominal
temperature T. However, in the non-equilibrium simulations
(cf. Section 3.3), we inject energy into the system, due to the
momentum push at each slab, which eventually drains into the
reservoir through the dissipative forces. Due to this phenom-
enon, kinetic temperatures that differ from the nominal tem-
perature of the random force are observed at high rates of
strain.

Table 1 provides a summary of the input parameters in
dimensionless units. Each simulation variant is assigned a
unique identifier for ease of reference: ref represents the
reference case with a g1 = 0 (see eqn (30)), corresponding to
the standard isothermal DPD. Cross and Dot cases feature the
two estimators used in the simulations, according to eqn (28)
and (29), respectively, while the Two-step-dot case corresponds
to the parameters used in the application of the two-step
algorithm with the Dot estimator.

For simplicity, we choose to set the conservative forces
(FC

ij = 0) across all models. This type of DPD model is often
referred to as ideal DPD.

3.2 Equilibrium probability distribution simulations

The test on the thermodynamic consistency of the algorithm
requires the evaluation of the equilibrium probability distri-
bution of the particle momenta. Methodologically, once the
system is equilibrated, we record the modulus of the velocity of
all the particles for the last 2000 time-steps (over 40 million
samples), and classified them in 150 bins, for velocities ranging
from 0 to 2 in dimensionless units. The resulting histogram is
normalised and then compared to the theoretical Maxwell–
Boltzmann velocity distribution, for the same nominal tem-
perature and particle mass, i.e.,

PMB ¼
ffiffiffi
2

p

r
m

kBT

� �3
2
v2 exp � mv2

2kBT

� �
(53)

where

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vx2 þ vy2 þ vz2

q
(54)

The parameters of the simulations are the same as in Table 1.

3.3 Non-equilibrium viscosity calculations

For the non-equilibrium simulations, we employ a variation of
the boundary-driven PeX algorithm, a method originally intro-
duced by Müller-Plathe et al.35,36 The PeX method used for

Table 1 Simulation parameters. We have labelled each simulation
according to the rate of strain estimator or reference model. To address
the different densities along the article we use digits next to the label. For
example Dot32 indicates density 32 for case Dot

Particles (N) g0 g1 kBT rc dt Label

20 000 5 0 0.1 1 10�4 Ref
20 000 5 1 0.1 1 10�4 Cross
20 000 5 1 0.1 1 10�4 Dot
20 000 5 1 0.1 1 10�4 Two-step-dot
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viscosity calculations31 considers a simulation box with Lz = Ly = L
and Lx = 2L with two narrow slabs defined at specific positions
along the x-axis, dividing the simulation box into two identical
moieties, across the periodic boundary conditions. The centre of
the box is considered as the coordinate origin, and the slab
centres are located at x1 = �Lx/4 and x2 = +Lx/4, each with a width
of Dx = Lx/10 (see Fig. 1). In the original method,36 a virtual elastic
collision was produced between the particle with larger�vz in slab
at x1 and that of larger vz in the slab at x2. Such collision transfers
a net amount of momentum between the slabs Dpz, which
eventually produces a net flow within the slabs in the directions
given in Fig. 1, while conserving total momentum and energy.
If this process is repeated every Dt, the system eventually arrives
to a steady state, where a linear velocity gradient develops
in each of the two moieties in which the system is divided.
The stress Pzx exerted onto every slab can be obtained from
the ratio,

Pzx ¼
SDpz

2LzLyDt
(55)

where SDpz stands for the accumulated momentum transferred
over a given period of time Dt, after the steady state is reached.
Notice the factor 2 in the denominator due to the propagation
of the stress to the two halves of the simulation box. At the
same time, phenomenologically one has,

Pzx ¼ m
dvz

dx
(56)

which is the constitutive equation that relates the exerted stress
with the velocity gradient through the viscosity of the system, m.
Therefore, once the velocity gradient dvz/dx is measured, as the
stress is known and constant across the simulation box, its
ratio is the measure of the viscosity. However, if the original
procedure is to be used, the maximum velocity gradient that
can be obtained is limited by the width of the velocity distri-

bution function. Effectively, such width is of the order of Dpz �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT
p

� 0:4 (the latter, in dimensionless units). For the
problem that we are addressing, this difference is not enough
to produce high shear rates. We have thus introduced a

variation in the original PeX method replacing the virtual
collision by simply adding +Dpz to the selected particle with
minor vz in slab 1 and �Dpz to that with major vz in slab 2 every
dt, with no restriction on the size of Dpz. Although the total
momentum conservation is maintained, the energy is not, as
the procedure effectively pumps kinetic energy into the system.
In the steady state, such energy influx is eventually dissipated
by the friction forces, but the kinetic temperature of the system
is therefore affected by the viscous heating. For each model
and density, we have considered several cases characterised by
a momentum Dpz transferred at every time-step, as indicated
in Tables from 3 to 7. The resulting velocity profile, vz(x), is
determined by dividing the whole box in the x-direction into 40
bins. At given instants of time, a snapshot of the system is
taken and the z-component of the velocity field is obtained
from the following average over the bin,

vz xkð Þ ¼
X
i2k

pz;i

,X
i2k

mi (57)

where k here indexes the bin. The procedure is repeated at
different decorrelated instants. The final velocity profile is
ultimately obtained from an average over a number of 5000
instantaneous profiles. Next, we calculate the resulting velocity
gradient over a sufficiently wide region in the middle of the box,
where the profile is linear, by a linear regression.

The dynamic temperature Td field is determined from the
kinetic energy in the directions orthogonal to the streaming
motion, according to the energy equipartition relation,

NkkBTd xkð Þ ¼
X
i2k

px;i
2

2mi
þ py;i

2

2mi

� �
(58)

where Nk is the number of particles in the kth bin. Notice that
in equilibrium Td = T enforced by the fluctuation–dissipation
theorem, according to either eqn (31) or (32).

3.4 Validation with Einstein–Helfand zero-shear viscosity
calculations

For verification purposes, we have conducted equilibrium
simulations to determine the zero-shear viscosity of the Cross
and Dot non-linear models, along with the two-step algorithm,
using the Einstein–Helfand (EH) method, to validate the non-
equilibrium simulations at vanishing rate of strain. The test
also serves to validate that the dynamics induced by the two-
step algorithm are consistent with the standard algorithms for
non-linear models.

To obtain the numerical values of the viscosity in equili-
brium, we employ the method developed by Malaspina et al.31

In this reference, the authors propose the use of the standard
Einstein–Helfand formula,37

m ¼ 1

kBTV
lim
t!1

1

2t

ðt
0

dt 0Pzxðt 0Þ
� � ðt

0

dt 0Pzxðt 0Þ
� �� �

(59)

Fig. 1 Visualizing the slabs’ configuration and added momentum direction in
our N-EQ simulation.
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where V denotes the volume, whereas the relevant xz-component
of the stress tensor Pzx is given by the expression,

Pzx ¼
X
i

pzi p
x
i

mi
þ
X
jo i

zij FxC
ij þ FxD

ij þ FxR
ij

� 	" #
(60)

as demonstrated in ref. 31. In our analysis, we have considered an
ideal DPD model, i.e., FC

ij = 0. Moreover, notice that the random
force is defined from eqn (13) and therefore also contains second-
order terms, O x2dt

� �
; used to correct the spurious contributions

due to the non-linear friction. This fact is in agreement with the
mechanistic interpretation of the stress tensor given in ref. 31.
For the two-step algorithm, the contribution of FR

ij to the stress is
calculated using the value of the random force after the first step.

Finally, to avoid finite-size effects in the evaluation of the
correlation function, we must consider the linear portion up to
a limiting time, tmax { L2/4p2n, where L is the size of the
simulation box and n = m/r is the evaluated kinematic viscosity
of the model (see ref. 31 for details).

4 Results and discussion

In this section, we present the outcomes of the numerical
simulations proposed earlier. First, the equilibrium (EQ) simu-
lations, on the one hand, are used to test the capacity of the
non-linear models to correctly sample the equilibrium distribu-
tion. On the other, the zero-shear viscosity obtained from the
EH correlation is used to also test the dynamics of the models,
as that viscosity should be consistent with the non-equilibrium
measurements at vanishing shear, as well as with the properties
of the standard linear model.

Second, the non-equilibrium (N-EQ) simulations are per-
formed at the increasingly larger rate of strain (shear rate),
where the features of the non-linear model are revealed at large
shear rates. To correctly interpret the measured viscosity we
have to consider that two contributions to the viscosity exist in
ideal DPD models.38 The kinetic contribution is due to the
momentum transport due to particle agitation. This contribu-
tion scales as kBTd/grc

3, and is independent of the particle
density. It is thus expected that this contribution will increase
with decreasing friction and increasing dynamic temperature
Td. Both situations will simultaneously occur at high shear
rates. The second contribution is purely dissipative and is in
turn proportional to gn2rc

5. Therefore, to observe the shear
thinning behaviour39 we have selected simulation parameters
such that, at least in equilibrium, the model’s viscosity is
dominated by the dissipative contribution, which will decrease
with decreasing interparticle friction. The condition of dom-
inating dissipative contribution is satisfied always that kBTd {
g2n2rc

8 for the ideal DPD case,8 analised along this article.

4.1 Maxwell–Boltzmann distribution

The thermodynamic consistency of the algorithms proposed
requires that the dynamics of the resolved variables sample
the appropriate equilibrium distribution, set by the principles
of statistical mechanics. For the present case of an ideal DPD

model, the resolved variables are particle positions and
momenta. Therefore, in equilibrium, with no external fields
acting on the particles, the relevant distribution should be
Maxwell–Boltzmann for particle momenta.

In Fig. 2, we present the validation tests regarding Cross16,
Dot16 and Two-step-dot16 models as described in Table 1.
All the simulations produce the appropriate distribution at
the nominal temperature T set by the random forces, according
to eqn (31) or (32). As it is clear from the figure, all the plots are
indiscernible from the theoretical curve (dashed line), showing
that all the algorithms generate dynamics that evolve to the
appropriate thermal equilibrium. In particular, notice that
the two-step algorithm gives an excellent agreement with the
theoretical distribution. Therefore, its thermodynamic consis-
tency is verified. This is the first important result of the present
article.

4.2 Analysis of the zero-shear viscosity

We have selected a minimal momentum transfer of Dpz = 0.01
to produce the smallest stress in all models (see Table 3), which
allows us to work within the linear response regime in the
calculation of the viscosity through the induced velocity gradient,
according to eqn (55). In this regime, the friction experienced by
the particles is the value of the equilibrium friction.

Fig. 3 shows the obtained velocity profile, in which an
extended linear region in each of the two moieties is observed.
The velocity gradient is thus obtained from this linear part.
These two linear regions are connected through a smooth
transition across the slab, as expected. Table 2 collects the
results of the zero-shear viscosity obtained from the N-EQ
simulations, compared to EH results from EQ simulations.
The N-EQ results and the EH values are in a very good agree-
ment in all cases. Here, we have to stress that the results
obtained from cases Dot and Two-step-dot are also in perfect
agreement with each other for both, the EH calculation of the
shear viscosity and the low-shear limit of the N-EQ simulations,
as well. Therefore, the two-step algorithm also produces
dynamic consistency, which constitutes the second important
result of this article.

Fig. 2 Velocity distribution function computed in EQ simulations com-
pared to the Maxwell–Boltzmann distribution at the same temperature.
We tested the Cross16, Dot16 and Two-step-dot16 models with T = 0.1.
The rest of the parameters are given in Table 1.
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4.3 Non-linear regime: shear-thinning

Shear thinning, also known as pseudoplasticity, is a property
of certain fluids where the viscosity decreases as the rate of
strain increases. This behavior contrasts with the response of
Newtonian fluids, for which the viscosity remains constant,
independently of the shear rate (see ref. 39 for details). With
our choice of parameters, selected to make the dissipative
contribution much larger than the kinetic, it is expected that
a significant decrease of the friction coefficient between the
particles would produce a decrease in the viscosity, showing the
aforementioned shear-thinning behaviour. In Tables 3 and 4 we
show the results for the viscosity as a function of the rate of
strain of the Ref16 linear and the Cross16 non-linear cases,
respectively. The two sets of simulations are performed at the
same overall density, nominal temperature T, and stress. The
tables also gather the values of the stress, the velocity gradient
and density in the central region, for completeness. For the
reference case Ref16, we observe that the density in the central

part of the simulation box and kinetic temperatures are close to
the nominal ones over the whole range of stresses analysed.
A slight increase of the kinetic temperature with the stress,
accompanied by a slight increase in the shear viscosity, linearly
proportional to the kinetic temperature, is observed. Therefore,
the slight non-Newtonian behaviour of the case Ref16 is due
to the increase of the kinetic contribution as a result of the
heating of the system as the energy introduced through the
stress is increased. As far as the Cross16 case is concerned,
Table 4 shows a clear decrease of the viscosity with the shear
rate. This is the signature of the shear-thinning behaviour
induced by the non-linear friction. For this case, the increase
of the temperature is, however, more noticeable than for the
Ref16 case. Such an increase of the temperature is related to the
viscous-heating proportional to Pzxqvz/qx. As the stress is the
control parameter, the smaller the viscosity, the larger the shear
rate and, therefore, the larger the dynamic temperature. As a
consequence, increasing the stress imposed on the system
eventually makes kBTd 4 g2n2rc

8 and the kinetic viscosity
dominates the overall behaviour (not shown). Therefore, the
shear-thinning is only observed in a window of externally
imposed stresses satisfying simultaneously the two conditions,
g1Sij Z 1 (cf. eqn (30)) and kBTd { g2n2rc

8.
When using the Dot estimator, the window of shear rates

where the shear-thinning behaviour is observable is reduced
when using n = 16. To increase the weight of the dissipative
contribution to the viscosity, we performed N-EQ simulations at
higher density n = 32. The behaviour of this estimator is
particularly important as its use requires correction of the
spurious drifts due to the non-linear friction, unlike the Cross
estimator. In addition, the former is the benchmark for the
analysis of the performance of the two-step algorithm.
In Tables 5–7 we present the values of the viscosity as a function
of the shear rate, along with the dynamic temperature and the
density in the linear region in the centre of the simulation box.
We observe that the viscosities of the Dot32 and Two-step-dot32
are practically the same, as they are also the measured dynamic
temperature, density and shear rate. We can thus conclude that
the two algorithms are producing the same dynamics and that
their results are indiscernible from each other. This is the third
important result: in DPD simulations with non-linear models
for friction, the use of the two-step algorithm permits a con-
sistent dynamic simulation without the explicit calculation of
the correction to the spurious drift. As they are structurally
identical, the presence of a temperature-dependent thermal
conductivity in DPDE and GenDPDE models can be also tackled

Fig. 3 Averaged velocity profile and corresponding linear regression in
the middle area for the N-EQ Cross16 case with Dpz = 0.01. The regions
where the velocity gradient changes sign correspond to the position of the
slabs.

Table 2 Zero-shear viscosity results for EH and N-EQ methods. Numbers
inside the parentheses next to names indicate the density, while the digit
inside the parentheses in the ciphers represent the error in the estimation

Case EH (16) N-EQ (16) EH (32) N-EQ (32)

Ref 4.223(4) 4.29(3) 18.443(4) 18.2(2)
Cross 3.985(1) 3.72(3) 15.87(1) 15.87(6)
Dot 4.082(2) 3.99(2) 17.171(5) 16.81(9)
Two-step-dot 4.193(2) 3.95(2) 16.78(1) 16.83(9)

Table 3 Results of N-EQ simulations for the Ref16 case (cf. Table 1). All
quantities are evaluated at the central linear region between the slabs

Dpz Pzx dvz/dx Td Density m

0.01 0.68 0.160(1) 0.1002(1) 16.0(1) 4.29(3)
0.025 1.71 0.397(5) 0.1011(1) 16.0(1) 4.31(5)
0.05 3.42 0.784(4) 0.1033(1) 16.0(1) 4.36(2)
0.075 5.13 1.153(9) 0.1061(1) 15.89(7) 4.45(3)
0.1 6.84 1.522(6) 0.1089(1) 15.92(9) 4.49(2)
0.15 10.26 2.247(1) 0.1141(2) 15.87(3) 4.57(2)
0.2 13.68 2.92(2) 0.1192(3) 16.01(7) 4.69(4)

Table 4 Results of N-EQ simulations the Cross16 case

Dpz Pzx dvz/dx Td Density m

0.01 0.68 0.184(2) 0.1001(1) 16.0(1) 3.72(3)
0.025 1.71 0.460(5) 0.1006(2) 16.0(1) 3.72(4)
0.05 3.42 0.936(7) 0.1031(1) 16.1(1) 3.65(3)
0.075 5.13 1.425(9) 0.1057(1) 16.20(7) 3.60(2)
0.1 6.84 1.99(1) 0.1089(1) 16.39(5) 3.44(2)
0.15 10.26 3.54(2) 0.1199(6) 16.75(9) 2.89(2)
0.2 13.68 5.91(6) 0.146(2) 17.05(8) 2.31(3)
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using a two-step algorithm. The problem of temperature-
dependent friction in DPDE and GenDPDE will be addressed
elsewhere.

In Fig. 4 we summarise the behaviour of the viscosity vs. the
rate of strain for the cases analysed. First, we observe a region
in which the behaviour of the non-linear cases and the linear
reference case are analogous. Notice that in this region the
measured viscosity is practically identical to the zero-shear
viscosity of Table 2 for each individual case. However, the
viscosities of the non-linear models are slightly inferior to the
reference cases due to thermal agitation that makes he�g1Siji r
1. Second, after a given critical rate of strain O g1

�
rc
2

� �
, the non-

linear models show a decreasing viscosity, while the reference
cases do not. The slight increase of the viscosity in the reference
linear case is also observed in Ref32. In Fig. 5 we have plotted
the variation of the dynamic temperature as a function of the
viscous heating. The plot shows a rather linear dependence of
the temperature with the dissipation rate calculated at the
centre of the box. We have included the cases Dot16 and the
Two-step-dot16 to show that the increase of the temperature is

the steepest. Due to this effect, there is no range within which a
shear-thinning behaviour can be observed. In general, from
Fig. 5 we can conclude that for the DPD models analysed the
dynamic temperature varies inversely proportional to the actual
value of the friction between the particles. Apart from the
characteristic shear-thinning behaviour observable in the N-
EQ simulations for both the Dot and Cross cases, we highlight
that the two-step algorithm produces the same results for all
properties measured in the simulations as found with the use
of the standard algorithm with the random force eqn (32).
Therefore, the corresponding plots in Fig. 4 closely follow
each other.

4.4 Inhomogeneities in the non-linear regime

The dependence of the viscosity on the rate of strain induces
local inhomogeneities around the slabs, where the energy and
momentum injection take place. Although this analysis is
not the main objective of the present article, we discuss this
problem for completeness.

We have investigated the temperature profile across the
system, using the same method as in Section 3.3, dividing the
box in the x-direction into 40 bins and using eqn (58) to obtain
the dynamic temperature in each bin. Similarly, employing a

Table 5 Results of N-EQ simulations for Ref32 case

Dpz Pzx dvz/dx Td Density m

0.025 2.71 0.149(1) 0.1001(1) 32.0(4) 18.2(2)
0.075 8.14 0.444(3) 0.1010(2) 31.8(4) 18.4(1)
0.15 16.29 0.882(4) 0.1018(4) 31.8(3) 18.47(9)
0.2 21.72 1.172(2) 0.1048(2) 31.7(2) 18.52(3)
0.25 27.14 1.45(1) 0.1065(3) 31.6(4) 18.7(1)
0.3 32.57 1.740(7) 0.1079(1) 31.8(3) 18.72(8)
0.4 43.43 2.300(9) 0.1112(3) 31.5(3) 18.89(8)
0.5 54.29 2.84(1) 0.1142(3) 31.8(3) 19.1(1)
0.55 59.72 3.11(2) 0.1156(4) 32.0(3) 19.2(1)

Table 6 Results of N-EQ simulations for Dot32 case

Dpz Pzx dvz/dx Td Density m

0.025 2.71 0.162(1) 0.1002(1) 31.9(4) 16.81(9)
0.075 8.14 0.485(4) 0.1015(2) 31.8(4) 16.8(1)
0.15 16.29 0.981(4) 0.1050(4) 31.9(3) 16.60(6)
0.2 21.72 1.31(1) 0.1085(6) 31.8(4) 16.5(2)
0.25 27.14 1.678(9) 0.1128(8) 32.1(4) 16.18(8)
0.3 32.57 2.070(7) 0.118(1) 32.1(2) 15.73(5)
0.4 43.43 2.90(2) 0.1350(9) 32.7(4) 15.00(6)
0.5 54.29 4.53(7) 0.20(1) 31.6(7) 12.0(2)
0.55 59.72 6.3(3) 0.22(1) 33.3(3) 9.5(4)

Table 7 Results of N-EQ simulations for Two-step-dot32 case

Dpz Pzx dvz/dx Td Density m

0.025 2.71 0.161(1) 0.1001(2) 32.0(3) 16.83(9)
0.075 8.14 0.481(2) 0.1014(2) 32.2(5) 16.94(9)
0.15 16.29 0.986(8) 0.1054(2) 31.8(4) 16.5(1)
0.2 21.72 1.316(8) 0.1086(3) 32.1(4) 16.5(1)
0.25 27.14 1.680(9) 0.1134(3) 32.0(3) 16.15(9)
0.3 32.57 2.06(2) 0.1186(7) 32.2(4) 15.8(2)
0.4 43.43 2.86(1) 0.134(1) 33.1(2) 15.19(2)
0.5 54.29 4.5(4) 0.200(5) 31.7(5) 12.2(3)
0.55 59.72 6.2(2) 0.21(1) 28.6(8) 9.6(3)

Fig. 4 The viscosity as a function of the shear rate in N-EQ simulations
shows the effect of non-linear friction implemented via the local strain rate
estimators, Cross and Dot.

Fig. 5 Averaged temperature (eqn (58)) vs. entropy production in N-EQ
simulations.
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time-averaging method, we determined the density profile for
all cases by counting the number of particles in each bin. This
procedure provides the dependence of the fields in the x-
direction, assuming translational invariance in the z-
direction. However, to understand the figures we have to take
into account that the PeX procedure introduces momentum
every time-step in a localised position along the z axis. Due to
the interaction between the affected particle and its immediate
vicinity, this effect is equivalent to the introduction of Pzz stress
of the order of Dpz

�
dtLDLxð Þ � Oð102Þ; which creates local

inhomogeneities in the velocity vz along the z-axis, namely
dvz. We can consider that, at high shear rates, the motion of
the kicked particle inside the slabs scatters the neighbouring
particles, inducing a dvx component in localised places along
the z-axis. In steady state, this effect is balanced by a gradient in
pressure from the outer regions, to reach the mechanical
equilibrium in the x direction. As this effect is mechanical, it
is not reflected in the dynamic temperature of the slab. Hence,
no local equilibrium can be properly defined. This considera-
tion is very important to understand the nature of the inho-
mogeneities found during the simulations.

In Fig. 6, we show the dynamic temperature profile across
the system for the Cross16 at low and large shear rates. In the
larger shear rate employed, we observe that the slabs are colder
than the central part of the system. This is due to the fact that
there is no viscous heating inside the slabs, as the velocity
profile is almost homogenous (see Fig. 8), leaving the tempera-
ture of the slab approximately equal to the nominal tempera-
ture of the random force. The injected energy does not increase
the thermal agitation within the injection region. However, the
temperature in the central part of the system is higher than the
nominal. The energy introduced in the slab is uniformly dis-
sipated in the central part, causing a temperature rise due to
viscous heating.

In Fig. 7, we compare the average density profiles for the
same situations as in the previous case. Here, we observe a
depletion of the slabs and an increase of the concentration in
the central region of the two moieties of the simulation box.
As the modelled system is thermodynamically equivalent to an
ideal gas, i.e., P = nkBT, Fig. 6 and 7 contradict local

equilibrium, as the pressure in the centre of the box would
be higher than the pressure within the slab if we apply the
previous equation of state with the local dynamic temperature
at each region. However, if we consider the energy pumped
inside the slab to estimate am effective temperature Teff = Td +
Dpz

2/2mkB, we obtain that the pressure values are very similar.
Finally, we analyse the velocity profile at high shear rate in

Fig. 8, for the same Cross16 system at high shear rate. Com-
pared to Fig. 3, the velocity profile at high shear rate, shows
indications that the slabs are somehow detached from the rest
of the system. Effectively, the regions of large shear rate are
concentrated at the contact area between the slabs and the bulk
of the system. As the stress Pxz is constant outside the slabs for
the present Couette flow, the product viscosity times velocity
gradient is constant across the system. Therefore, these regions
of large shear are also the regions with the lower viscosity,
which is responsible for such a detached motion of the slabs.
This behaviour is similar to that observed in polymeric flows in
ducts, where at high Deborah numbers a region of strong
velocity change develops near the walls.39

To end this section, let us mention that even in the large
shear rate situations, the measure of the viscosity is possible
even under the presence of such inhomogeneities caused by the
strong shear and the non-linear behaviour. The constant stress,
together with the linear profile in the centre of the box allows

Fig. 6 Comparison of averaged temperature profiles (Td) for N-EQ
Cross16 scenarios: low-shear (Dpz = 0.01) vs. high-shear (Dpz = 0.2) cases.

Fig. 7 Comparison of averaged density profiles for N-EQ Cross16 sce-
narios: low-shear (Dpz = 0.01) vs. high-shear (Dpz = 0.2) cases.

Fig. 8 Velocity profile and corresponding linear regression in middle area
for the N-EQ Cross16 case with Dpz = 0.2.
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us to obtain a significant value for the non-linear viscosity,
using eqn (56).

5 Conclusions

The analysis presented in this article highlights the efficacy of
the proposed model in accurately simulating complex fluids, in
which the transport coefficients depend on the fast-fluctuating
variable, the particle velocity in our analysis. We have derived
the appropriate form of the random force, by proposing an
expansion in powers of xdt1/2, and determining the two leading
coefficients through the application of Detailed Balance to the
dynamic transitions. Moreover, we have further demonstrated
that our two-step algorithm naturally produces the sought
correction for the non-linear friction behaviour, which is our
main result presented in this article. The analysis performed
with both, the expanded random force and the two-step algo-
rithm, shows that the model not only captures the intricate
behavior of complex fluids, like non-Newtonian polymer
liquids, but also compensates for any spurious drifts induced
by the stochastic equation of motion for the DPD model.
This fact suggests that our approach holds significant promise
for a wide range of applications requiring precise modelling of
complex fluid dynamics. The extension of the analysis to
models with more than one fast random variable, like in the
recently developed GenDPDE and GenDPDE-M, must provide
an enhancement of the capabilities of these simulation tech-
niques to model complex systems at the mesoscale.
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Appendices
A Derivation of the statistical properties of the random terms
from detailed balance

Within this appendix, we derive the statistical properties of the
random contribution from Detailed Balance, which is based on
the time-reversibility of the microscopic trajectories of the
underlying physical system.16 Schematically, as mentioned
earlier, the algorithm provides a transition from a state point

G = ({pi(t)}, {ri(t)}) at time t to a new point G0 at time t + dt. The
new point is a function of the original one, the dynamic
properties of the system, and of the random number x. The
overall algorithm can be written in the following general form:

G’ = Gd[G, x; dt] (61)

where Gd represents the generic function that provides the
dynamics, and its arguments represent the variables on which
this function depends. The transition probability is thus
given by

w(G - G0)dt = hd(G’ � Gd[G, x; dt])ix (62)

The subscript x indicates that the average has to be determined
over all realizations of the random number x. From this
expression it follows thatð

dG0w G! G0ð Þdt ¼
ð
dG0 d G0 � Gd G; x; dt½ �ð Þh ix ¼ 1 (63)

The reverse trajectory is defined as G* - G*0, where G	 �
�p 0i
� �

r
0
i

� �� �
and G*0 � ({�pi}, {ri}). The change of sign depends

on the parity under time reversal of the variable.16 Thus,
detailed balance indicates that

Peq(G)w(G - G’) = Peq(G*)w(G* - G*0) (64)

This last equation permits us to calculate the moments of the
distribution. If we restrain the analysis up to second-order
moments,16 we are under the same degree of approximation
as the Fokker–Planck equation.

A.1 First moment

To obtain the first moment of the momentum distribution,
let us consider the equalityð

dGdG0PeqðGÞp
0
iwðG! G0Þdt

¼
ð
dGdG0Peq G	ð Þp 0iw G	 ! G	

0
� 	

dt

(65)

Notice that, on the right-hand side of this equation we can write

p
0
i ¼ �p	i . Hence, the integration over G*0 can be readily per-

formed. Using (63) we can write,ð
dGdG0PeqðGÞp

0
iwðG! G0Þdt

¼
ð
dG	Peq G	ð Þp	i ¼ pih i ¼ 0

(66)

where we have also introduced the change of the integration
variable. From this equation, using (5) and after simplifications,
we haveð

dGdG0PeqðGÞp
0
i

� d p
0
i � pi þ FD

ij dtþ FC
ij dtþ dpRij

h i� 	D E
x
¼ 0

(67)
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Integrating over G0 one finds,ð
dGPeqðGÞ FD

ij dtþ FC
ij dtþ dpRij

D E
x


 �
¼ 0 (68)

First, notice that, by construction, hFC
iji = 0. Second, the average

over the random number only affects the random term. Third,
we have to analyse the average of the dissipative force in more
detail, i.e.,ð

dGPeqðGÞFD
ij ¼ �

ð
dGPeqðGÞg Sij

� �
oij

pi

mi
�

pj

mj

� �
� eijeij

¼ kBT

ð
dGg Sij

� �
oijeijeij �

@

@pi
� @

@pj

 !
PeqðGÞ

(69)

Using partial integration and that the probability distribution
exponentially decays at the limits of the variable domain, we can
further write,ð

dGPeqðGÞFD
ij ¼ � kBT

ð
dGPeqðGÞeijeij

� @

@pi
� @

@pj

 !
g Sij

� �
oij

(70)

The right-hand side of this last equation can be further developed
to give,ð

dGPeqðGÞFD
ij ¼ � kBT

1

mi
þ 1

mj

� �

�
ð
dGPeqðGÞg0 Sij

� �
oijeijeij �

@Sij

@vij

(71)

Next, we explicitly evaluate the gradient of the estimator using
eqn (28), which gives,

eijeij �
@Sa

ij

@vij
¼ 2rij

2oS
ijeijeij � 1� eijeij

� �
� vij ¼ 0 (72)

Thus, for this estimator, eqn (71) identically vanishes. In the case
of the second estimator, eqn (29), one has

eijeij �
@Se

ij

@vij
¼ 2rij

2oS
ij eijeij � vija0 (73)

For this second case, we thus have,ð
dGPeqðGÞFD

ij ¼ � 2kBT
1

mi
þ 1

mj

� �

�
ð
dGPeqðGÞg0 Se

ij

� 	
oijoS

ij rij
2eijeij � vij

(74)

However, the fact that the result is linear in the momentum,
means that the average of this term is also zero. Therefore, the
equilibrium average of the dissipative force is zero and there is no
spurious drift. Therefore, to satisfy eqn (67) the equilibrium
average of the second term should yield,

hdpR
iji = 0 (75)

In view of eqn (8), the average of dpR
ij over the random number

x gives,

hdpR
ijix = Lij dt (76)

For convenience, as it will be apparent below, we can choose,

Lij � 2kBT
1

mi
þ 1

mj

� �
g0 Se

ij

� 	
oijoS

ij rij
2eij � vij (77)

Obviously, the equilibrium average of this contribution
vanishes.

A.2 Second moment

The starting point of the calculation isð
dGdG0PeqðGÞp

0
ip
0
iwðG! G0Þdt

¼
ð
dGdG0Peq G	ð Þp0ip

0
iw G	 ! G	

0
� 	

dt ¼ pipih i
(78)

where, in deriving the last equation, we have used the same
arguments as for the first moment. Using again eqn (5), we
can write,ð

dGdG0PeqðGÞp
0
ip
0
i

� d p
0
i � pi þ FD

ij dtþ FC
ij dtþ dpRij

h i� 	D E
x
¼ pipih i

(79)

Again, integrating over G0 and keeping terms up to first order in
dt only, we can write,ð

dGPeqðGÞ piFD
ij dtþ FD

ij pidt
h

þ pi dpRij
D E

x
þ dpRij
D E

x
pi þ dpRij dp

R
ij

D E
x

�
¼ 0

(80)

The contributions of the form hpiF
C
iji do not appear because are

zero as they are odd functions of the momentum. In turn, the
contributions of the form and pihdpR

ijix are non-zero because of
the quadratic term proportional to xij

2dt. We have also can-
celled the term hpipii as it appears on both sides of the
equation. Hence, keeping terms up to first order in the time-
step, one has,ð

dGPeqðGÞ piFD
ij þ FD

ij pi þ pieijLij þ eijpiLij þ eijeijG2
h i

¼ 0

(81)

Next, let us analyse the term hFD
ij pii. Using the explicit form

of the dissipative force, we can write,ð
dGPeqðGÞFD

ij pi ¼ �
ð
dGPeqðGÞg Sij

� � pi

mi
�

pj

mj

� �
� eijeijpi

¼ � kBT

ð
dGPeqðGÞeijeij �

@

@pi
� @

@pj

 !
pig Sij

� �
(82)

The differentiation in the integrand produces the classical
result, plus a correction due to the non-linearity of the friction
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coefficient, namely,

eijeij �
@

@pi
� @

@pj

 !
pig Sij

� �

¼ eijeijgðSijÞ þ 2
1

mi
þ 1

mj

� �
g0 Sij

� �
rij

2oS
ijeijeij � vijpi

(83)

where only eqn (74) has been considered, as for model
Cross this contribution vanishes, in view of eqn (72). Since

pijpi

D E
¼ mikBT1, we can thus write

ð
dGPeqðGÞFD

ij pi ¼ �
ð
dGPeqðGÞeijeij � kBTg Sij

� �
oij1

�

þ2kBT
1

mi
þ 1

mj

� �
g0 Sij

� �
rij

2oS
ijoijvijpi

�
(84)

The transposed matrix follows similarly. Next, notice that, in
view of the definition in eqn (77), the second term on the right-
hand side of eqn (84) is identically cancelled. The same occurs
with the transposed. We are thus left with the equality,ð

dGPeqðGÞ �2kBTeijeijg Sij

� �
oij þ Gij

2eijeij
� �

¼ 0 (85)

where the factor 2 comes from the transposed. Therefore, for
jai we can choose

Gij
2 = 2kBTg(Sij)oij (86)

In this way, the fluctuation–dissipation theorem is completely
defined.

B Convergence test

To select the appropriate time-step (dt), we examined the effect
of the latter on the measured viscosity in the N-EQ simulations.
We conducted simulations for both the Dot16 and the Two-step-
dot16 cases, focusing on the largest stress applied, namely
13.68. As the time-step is changed, the transferred momentum
has to be adjusted to obtain the same imposed stress, in view of
eqn (55). In Table 8 we summarize the obtained results. Since
the errors related to the viscosity calculations are negligible in
this scale, we opted to not add them to this table.

Fig. 9 presents the viscosity values plotted on a logarithmic
scale against the logarithm of dt, the latter in reverse scale.
Notably, viscosities for dt smaller than 0.001 converge to a
specific value in both cases, indicating that our choice of
dt = 10�4 falls within the acceptable range.
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