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Over the years, several studies have aimed to elucidate why certain molecules show more enhanced
nonlinear optical (NLO) properties than others. This knowledge is particularly valuable in the design of
new NLO switches, where the ON and OFF states of the switch display markedly different NLO
behaviors. In the literature, orbital contributions, aromaticity, planarity, and intramolecular charge
transfer have been put forward as key factors in this regard. Based on our previous work on
functionalized hexaphyrin-based redox switches, we aim at identifying through explainable machine
learning the driving forces of the first hyperpolarizability related to the hyper-Rayleigh scattering (firs)
of meso-substituted and/or core-modified [26]- and [30lhexaphyrins. The significant correlation
between furs and the HOMO-LUMO energy gap can be further improved by including other orbitals as
well as charge-transfer features in a 6-fold cross-validated kernel-ridge-regression model. Our Shapley
additive explanations (SHAP) analysis shows that the charge transfer excitation length is more important
for 30R systems, whereas the transition dipole moment between the ground and first excited state is
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one of the main contributors for 26R systems. We also demonstrate that, besides various hexaphyrin-
based redox states, the ML model can describe to a large degree the frs response of other
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Introduction

Ever since the discovery of second harmonic generation (SHG)
in a ruby crystal in the 1960s, the interest in discovering new
materials with nonlinear optical (NLO) properties has spiked."
Owing to their tailorability and processability, organic materials
with enhanced NLO properties are sometimes even preferred over
the standard inorganic materials or crystals for potential applica-
tions in optical computing, optoelectronics and photonics.”>™
With the increasing demand to reduce the size of our current
electronic devices, these organic NLO materials are especially
promising for the creation of novel molecular devices with switch-
able NLO properties to combine with or replace our current
silicon-based electronics.*” Molecular switches are only one
example of these molecular devices, which can act as key compo-
nents in photonic and optoelectronic applications such as logic
gates and memory devices.® After applying an external stimulus,
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hexaphyrins, differing in substitution pattern and topology (26D and 28M).

these single molecules can be reversibly converted to other stable
states. The contrast associated to the significant difference in NLO
response between the different molecular states of the switch is
frequently used as a figure-of-merit to assess the switch’s
performance.’ It can be assessed by several NLO quantities such
as the first and second hyperpolarizability, denoted as f and y,
respectively. Various optical phenomena such as the SHG, two-
photon absorption (TPA), third-harmonic generation (THG), and
the hyper-Rayleigh scattering (HRS) are connected to these
hyperpolarizabilities.

Efforts have been made to acquire an in-depth understand-
ing of the structure-property relationships for molecules invol-
ving NLO properties. For polyenes and polymethine dyes,
several studies found that f and y are highly connected to the
molecular structure through the bond-length alternation (BLA)
and bond-order alternation (BOA).**"** More recently, the NLO
anisotropies of different X-shaped pyrazine isomers were elu-
cidated by scrutinizing the low-lying excited states’ symmetry."?
Multiple studies have also established structure-property rela-
tionships for various NLO molecular switches to understand
their change in NLO properties.”'*'> Tuning the intra-
molecular charge transfer in push-pull molecules changes
the NLO properties immensely.'® In Ru™™ redox-switches,
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the f mainly stems from excited states characterized by metal-to-
ligand charge transfer."”” When the Ru™™ centers are oxidized, the
donor character of the Ru is diminished by reducing the push-pull
n-conjugation in these systems. Consequently, the first hyperpolar-
izability related to the hyper-Rayleigh scattering, frrs, decreases in
value. In addition, this study revealed symmetry-NLO relationships
for these systems."” Another example is the pH-controlled
dimethyldihydropyrene/cyclophanediene photoswitch, where pro-
tonation of the acceptor yields a higher NLO response as a result of
a larger m-conjugation and more apparent charge transfer
transitions.'® The opposite behaviour is observed by protonating
the donor of the push-pull system. Regarding one of the most
studied systems, the azobenzene, orbital contribution decomposi-
tion analysis showed that the main orbital contributions to the f
response come from the azo bond.'® However, the response can be
augmented by including additional substituents on the neighbour-
ing phenyl rings. In 1977, Oudar and Chemla presented the simple
two-state approximation (TSA) to rationalize the f response con-
sidering only one electronic excited state, usually S; (eqn (1)).>°

2
TSA _ LMol |Aﬂ|
HRS = 37AE512 @

In this model, o1, |Agt|, and AEg, are the transition dipole
moment between S, and S,, the absolute difference between the
excited state dipole moment and the ground state dipole
moment, and the associated excitation energy, respectively.
This model had varying success in describing the f response
in experimental and theoretical studies.”*®

Another well-studied family of molecular switches, and the
main focus of this paper, is a specific class of porphyrin-based
molecules known as expanded porphyrins. Compared to the
porphyrin molecule, expanded porphyrins consist of a larger
extended m-conjugated system, which red-shifts the absorption
bands and increases the TPA cross-sections (¢6)).2? Thanks to this
expansion and their conformational flexibility, these systems have
been proposed as interesting candidates for various applications
such as near-infrared dyes, biosensors, nonlinear optical materi-
als, and molecular electronics.’** Recently these macrocycles
have been put forward as potential nonlinear optical molecular
switches, because of their ability to reversibly switch between
different redox states and/or distinct m-conjugation topologies
causing drastic changes in NLO properties.**>® Harnessing the
expanded porphyrin’s switching abilities allows to turn their NLO
properties “ON” or “OFF” and to use them as a test bed to study
the relationship between NLO properties and aromaticity.

Kim and co-workers substantially investigated the o® of various
expanded porphyrins and connected these enhanced values to the
intramolecular charge transfer or the rigid planarity of molecules
with a large n-conjugated system fulfilling the [4n + 2] Hiickel rule
for aromaticity.””*' Hence, the authors proposed this molecular
property as a quantitative measure to estimate experimentally the
aromaticity of the macrocyclic n-system. For example, the ¢ of
the rectangular aromatic [26]hexaphyrin is found to be four times
higher than the antiaromatic [28]hexaphyrin.*® On top of that, a
strong linear correlation between the ¢®, nucleus-independent
chemical shift (NICS(0)) value, and the molecular planarity was
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d.?”*® However, this correlation diminishes for core-
b

retrieve
modified expanded porphyrins.*” Furthermore, Chandrasheka
and coworkers also traced back the enhanced ¢® intensities of
core-modified expanded porphyrins to aromatic, planar
expanded porphyrin structures.*?

Nevertheless, determining the relationship between the topology,
aromaticity, and nonlinear optical properties for expanded por-
phyrins remains complex as noted by the computational work of
Alonso and co-workers.****** For porphyrinoid systems with a
high ring strain and reduced symmetry, they observed signifi-
cantly enhanced first hyperpolarizabilities (furs and f) but
retrieved no clear connection with aromaticity. On the other
hand, the value of the second hyperpolarizability is higher for
aromatic twisted-Hiickel topologies, than for their antiaromatic
counterparts. This observation also applies to meso-aryl-
substituted porphyrinoids. In summary, they concluded that
factors such as symmetry, planarity and the size of the macro-
cycle contribute to further understanding of the NLO properties.

The aforementioned studies provide a broad overview of
structure-property relationships and correlations to under-
stand and compare the NLO property trends of different types
of molecules, including molecular switches within different
families of expanded porphyrins with varying conformations,
topologies and oxidation states. In this work, we will primarily
focus on elucidating the NLO response of different chemically
functionalized hexaphyrin-based redox states. In previous
works, we searched for new functionalized 26R — 28R and
30R — 28R switches with high nonlinear optical contrasts
using inverse molecular design algorithms.**~*® These functio-
nalizations included combinations of core-modifications and
meso-substitutions on the hexaphyrin’s framework. Analysis of
the inverse design dataset allowed us to derive structure-prop-
erty relationships for the best-performing [26]- and [30]-
hexaphyrin-based switches.*>*® Even though the 26R — 28R
and 30R — 28R switches are structurally very similar, the
optimal functionalization pattern yielding high NLO contrasts
are strikingly different for both. Push-pull meso-substitution
patterns were found to increase the NLO response for both
26R and 30R systems, but there is a difference in preference
for strong electron-donating groups (EDGs) and strong electron-
withdrawing groups (EWGs). With respect to core-modifications,
we observed that they can synergistically enhance the NLO
response of the 30R.*> However, the best-performing 26R —
28R switches do not favor the inclusion of core-modifications.

The balance between different types of functionalization,
their position and the potentially synergistic effect between
them, makes the prediction and understanding of the resulting
NLO response intricate. In this follow-up study, we aim to
identify the driving forces that govern the NLO response of
the 26R and 30R by developing an explainable machine-
learning model. First, the correlation between our target prop-
erty, furs, and a broad range of property features is analyzed, of
which most have been previously connected to NLO properties of
alternative organic molecules. Based on the best correlating
features, we build kernel-ridge-regression (KRR) based machine-
learning models to predict our target property. However, our
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ultimate goal is not to predict the NLO response, but to under-
stand the influence of the features on the target property by
applying interpretable machine-learning techniques on our KRR
models, such as an analysis based on Shapley values.

Computational details
Calculation of the quantum-chemical features

Unless stated otherwise, all features were extracted from quantum-
chemical calculations performed with the Gaussian16 software
package.*” All hexaphyrin geometries were obtained by perform-
ing geometry optimizations at the CAM-B3LYP/6-311G(d,p) level of
theory and are characterized as minima on the potential energy
surface through harmonic vibrational frequency analyses.®*° The
choice for this level of theory is based on several benchmark
studies, which compared the relative energies of expanded por-
phyrins with different DFT functionals to the golden standard
canonical CCSD(T) at the extrapolated basis set limit.”>">

Our target property is the first hyperpolarizability associated
to the HRS phenomenon, abbreviated as fugs.”>>>> This quantity
is related to the intensity of the incoherent light scattered at twice
the frequency of the incident laser pulse. Under the condition that
the incoherently scattered light is perpendicular to the laser’s
propagation plane, the HRS equation can be simplified to eqn (2):

Burs (203 0,0) = \/{Bzz7) + (Bzyx?) 2)

In addition, the depolarization ratio (DR) is computed in
eqn (3). Where (B,,,°) and (fx) represent in both equations
the orientational averages of f.

DR = <BZZZQ> (3)

(Bzxx*)

To compute the HRS hyperpolarizability tensors in the static
regime, the coupled-perturbed Kohn-Sham equations were
employed. Based on several studies on the importance of large
amounts of exact HF exchange at larger interelectronic dis-
tances to semi-quantitatively describe the furs of expanded
porphyrins, we employed the long-range corrected CAM-B3LYP
functional.***">® Regarding the basis set, it is recommended
to use split valence double- or even triple-{ basis sets with one set
of diffuse and polarization functions for sufficiently describing
the dominant f tensor components and depolarization
ratios.”>*®" Hence, for carrying out the NLO response calcula-
tions, we chose CAM-B3LYP/6-311+G(d,p).

At the same level of theory as our NLO calculations, we computed
the different frontier molecular orbital (FMO) energies: HOMO—1
(H—1), HOMO (H), LUMO (L), and LUMO+1 (L+1). In addition to the
FMO energies, we also evaluated several orbital energy differences,
including, the HOMO-LUMO gap (4y;) and the differences between
() Hand H—1 (4y), () L and L+1 (4y), (1) H—1 and L (4, 11_4), (IV)
H and L#+1 (4p y), and (V) the criterion |4y — A >*** The
selection of the orbital transitions is based on previous works, which
highlighted the importance of these transitions to rationalize optical
properties such as absorbance spectroscopy and magnetic circular
dichroism for porphyrinoid systems.®*"** Moreover, the trace of the

1258 | Phys. Chem. Chem. Phys., 2025, 27, 1256-1273

View Article Online

Paper

quadrupole moments (Qyace) and the dipole moment (1) were also
extracted from these calculations.

Next, several electronic descriptors such as the vertical
ionization energy (IE) and the vertical electron affinity (EA) were
computed with B3LYP/6-311+G(d,p),"*>®® in line with previous
studies within our research group.”"*® Using the IE and EA, three
additional descriptors were calculated: the electronic chemical
potential (), the chemical hardness (i7) and the electrophilicity
index (w). The electronic chemical potential’® or the negative
electronegativity (i) for an N-electron system is defined in eqn (4):

OE IE + EA
=—1=\3v)] *——>— 4
ezt (azv)y(r> 2 “

where E and 1{r) stand for the energy of the system and its external
potential, respectively. The following definition for the chemical
hardness was proposed by Parr and Pearson in eqn (5),”"

82E)
n:(— ~ IE — EA (5)
ON?)

where under a constant external potential, the chemical potential
is differentiated to the number of electrons. The global electro-
philicity index o can be formulated using u. and 5 (eqn (6)).”

pe
o= e (6)

To estimate the amount of charge transfer within the hexa-
phyrin macrocycles, we relied on orbital- and density-based
indices such as 4,, the transferred charge (gcr) and the charge
transfer excitation length (Dcr).”*”* The 4, index is based on the
electron-hole distance or the distance between the charge cen-
troids of the orbitals involved in the excitations.”® Regarding the
density-based indices, we computed the difference in electronic
densities of the ground (pgs(t)) and the first excited state (pgs(r)),
respectively (eqn (7)).”* The electronic densities associated to their
vertical electronic excitations at the TD-DFT CAM-B3LYP/6-
311G+(d,p) and charge transfer indices were computed with the
Gaussian16 and Multiwfn software packages, respectively.*””

Ap(r) = pgs(rt) — pas(r) (7)

Two different co-domains of Ap(r) are identified based on
the sign of the density describing either a charge accumulation
(p+(r)) or a charge depletion (p_(r)) upon absorption. At the
center of charge, the distribution of the depletion and accu-
mulation can be characterized by eqn (8).

_ Jrpi(r)dr
= o ©

The final charge transfer excitation length is then defined in
eqn (9) as the spatial distance between these two barycenters
(R and R_). In addition, gcr is defined by integrating over all
space of the two co-domains (p, and p_).

Der = |Ry — R_| ©)

In addition, the electronic dipole moments related to S;, the
transition dipole moment u,; and the excitation energy AEg

This journal is © the Owner Societies 2025
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between the ground state and its first excited state, respectively,
are extracted from the TD-DFT calculations to compute Oudar
and Chemla’s TSA to the f§ response. Note that gcr and D¢y are
computed based on the unrelaxed densities, while the dipole
moments are computed with the relaxed density.

Widely used structural descriptors to describe porphyrinoid
macrocycles such as the torsional ring strain (¢p) and n-
conjugation index (IT) were included in our feature set.”*”” The
average dihedral angle between neighboring pyrrole rings is
described by the torsional ring strain. On the other hand, the
effective overlap of the adjacent p-orbitals is expressed by the IT
descriptor. Negative IT values are associated with Mobius conforma-
tions, while the Hiickel conformations exhibit a positive IT value.
Porphyrinoids with macrocyclic aromaticity are characterized with a
IT value above 0.30.7°

Because nonlinear optical properties have been previously
linked to aromaticity, we computed a diverse set of aromaticity
descriptors rooted in different criteria to evaluate the multidimen-
sional character of aromaticity.”®*" Two aromaticity indices were
selected based on the structural criteria: bond-length alternation
(BLA)®" and the harmonic oscillator model of aromaticity
(HOMA).** Four electronic indices, ie., AV1245 index,*®* AV,
index,* bond-order alternation (BOA),*' and aromatic fluctuation
index (FLU),**® were considered. In line with our previous
research on porphyrinoid systems, the six aforementioned indices
were computed along the most conjugated pathway, which corre-
sponds to the annulene pathway in neutral macrocycles.***” For
the calculation of these structural and electronic indices, the ESI-
3D code®® in conjunction with the AIMAIl software®® was used. The
latter software was employed to compute the atomic overlap
matrices and relies on the quantum theory of atoms in molecules
(QTAIM) partition scheme. Based on the magnetic criteria, both
the isotropic and out-of-plane tensor components of nucleus
independent chemical shifts (NICS)** > are computed using the
gauge-independent atomic orbital method (GIAO).*>** Three dif-
ferent positions were considered for the NICS calculation: (I) at the
the geometric center of the macrocyclic ring defined by its heavy
atoms, (II) 1 A above, and (I1I) 1 A below the molecular plane. The
molecular plane for nonplanar structures is defined by a least-
square fitting considering all coordinates of the heavy atoms of the
macrocycle.”® All aromaticity indices were computed with the long-
range corrected CAM-B3LYP*® and the 6-311+G(d,p) basis set* to
reduce the impact of the delocalization error.>**°

Machine-learning models

All input features for the machine-learning models were stan-

dardized by subtracting the mean and scaling to the unit

variance (eqn (10)).

X —uy
ox

Z= (10)
Next, we constructed different kernel ridge regression (KRR)
models with the scikit-learn python package.”” Ridge regres-
sion models (11) build further on linear regression models
(OLS) by introducing an additional penalty term, also known as
the regularisation term L2, to the ordinary least squares
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Table 1 List of kernels employed in this thesis with cq, 7, r, and d tunable
hyperparameters. x’ stands for the transpose of x

Kernel Definition

Linear k(x1,x2) = x|x2

Polynomial k(x1,x2) = (2 + Co)

Cosine X175
k(x1,x2) = _ 1

lIxullllx2 1

Sigmoid k(x1,x2) = tanh(px{x; +7)

Laplacian k(x1, x) = exp(—7|xy — X2

Radial basis function k(x1, x5) = exp(=yllxs — szZ)

function. The incorporation of this penalty term aids in the
generalization of the model and prevents overfitting.

OLS +L2=

i=1

N 2
=D xib
=

N
+od B (11)
Jj=1

Ridge regression is particularly useful when correlated
features are considered.

KRR models add a kernel trick, which alters the input data
by a mathematical function known as a kernel. Examples of
such kernels are listed in Table 1.

Since only a few hyperparameters are needed to be tuned,
KRR are robust models and even suitable for small datasets. We
resorted to KRR models, because the size of our dataset is rather
small and we still wanted to introduce nonlinearity to our model.

Our dataset was split in a training and test set, containing
75% and 25% of the data, respectively. For the hyperparame-
trization, we performed 1000 trials on the training set with the
Optuna package®® to tune five different hyperparameters as
listed in Table 2. The objective of these hyperparametrization
runs was to minimize our selected validation metric, the mean
absolute error (MAE), with the six-fold cross-validation scheme.

After acquiring our best set of tuned hyperparameters (see
Table S1 in the ESIT), we fitted our KRR model on the full
training set and predicted the NLO response of the test set. The
model’s performance was evaluated through the MAE and R?,
whereas the contribution of each feature on the model’s perfor-
mance was assessed via the feature permutation importance
technique as implemented in scikit-learn python package.”’

Finally, we applied a SHapley Additive exPlanations (SHAP)
analysis®>'% to our selected KRR model to understand the
contribution of the different input features to the ML model
prediction value, relative to a given baseline (here, the average
of the predictions). Shapley values are derived from concepts of
cooperative game theory to find a fair contribution of profits
and costs (i.e., the ML predictions) by different players (i.e., the
input features) forming a coalition. The advantage of SHAP
is that both global feature importances as well as their impor-
tance on the local predictions can be determined. For this
analysis, we used R package shapr to calculate the SHAP values
with the Kernel SHAP method as this package takes feature
dependence into account for the computation.'” The SHAP
python package was employed for the visualization of the SHAP
values.”>'%°
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Table 2 Overview of boundaries for each hyperparameters tuned with
the Optuna package
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Table 3 Overview of the investigated features in this study grouped in 5
different categories

Hyperparameter = Boundaries Category Features

o 0.01 < o« < 1000 Aromaticity (structural) BLA & HOMA

Kernel Linear, polynomial, radial basis function laplacian, Aromaticity (electronic) AV1245, AVp,in, BOA & FLU
sigmoid, cosine Aromaticity (magnetic) NICS(0), NICS,,(1) & NICS(1)

Degree 1,2,3,4,5 Orbital H-1, H, L, L+1, Ay, 4y, Agy,

y 01 <y<10 Ay, 11, A1 u & criteria

Coefficient0 0.1 < coefficient0 < 2 Charge transfer gcrs Dery A & por

Results and discussion
Correlations between features and fygg response

Based on our previous work, we collected a dataset consisting of
562 functionalized hexaphyrins with the X,Y,A,B,C, pattern
biased towards high hyperpolarizabilities related to the hyper-
Rayleigh scattering fugrs (Fig. 1).*>*® More specifically, this
dataset contains 242 and 320 meso-substituted and core-
modified [26]- and [30]hexaphyrin structures with a Hiickel
topology (26R and 30R), respectively. All structures contain
combinations of the following meso-substituents on the posi-
tions R;-Rg: NO,, CN, F, H, CH;, OH and NH,. Depending on
the oxidation state of the hexaphyrin, up to two core-
modification sets (X, Y) are present, where NH is replaced by
O, S or Se. Only Y modifications were allowed for 26R to avoid
charged molecules. The labelling of the 26R and 30R following
their substitution pattern is presented in Fig. 1.

As already mentioned, this dataset is composed of structures
which are skewed towards high nonlinear optical responses
since they were generated during NLO contrast optimization
runs using an inverse design algorithm. For a detailed compar-
ison between the [26]- and [30]hexaphyrins, we refer to our
previous work, in which we extensively described the different
design rules for the molecular switches based on these two redox
states.’® Aside from the target property, the fugs response, we
computed 35 additional properties. These features can be cate-
gorized based on their intrinsic character as indicated in Table 3.
By investigating the intercorrelation between the individual 35
features as well as the correlation with our target property, furs,
we aim to identify the driving forces responsible for increasing
the nonlinear optical response of hexaphyrin macrocycles.

Fig. 2A summarizes the coefficients of determination (R?)
based on the Spearman correlation between the 35 features and

Substitution Pattern: NH_Y_R; 4 Ry5 Rzgand X_Y_Ry4 Rys R3¢

Fig. 1 Graphical representation of the [26]- and [30]hexaphyrins with the
X2Y2A2B,C, pattern with three pairs of meso-substitution sites {Ry 4; Ros;
R3,6} and one or two sets of core-modification sites {X; Y}. For 26R, only Y
modifications were allowed.

1260 | Phys. Chem. Chem. Phys., 2025, 27,1256-1273
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AEs,, |Au| & DR

Geometrical p

the furs. Each feature is ranked according to its Spearmann
correlation value from a positive to negative correlation. Only
13 of the 35 features have an R* greater than 0.42, namely, Ay,
1y AEs,, AEs, Ari1_n, BOA, qer, 1y Ay, |Ap], to1, An, and Der.
These 13 features belong to different categories as defined in
Table 3, being either aromaticity-, electronic-, orbital- or charge
transfer-based descriptors. Note that even though DR and
aromaticity descriptors are commonly used to rationalize the
NLO properties, they do not correlate with our target property,
with the exception of BOA. A scatterplot of fugrs versus DR is
provided in Fig. S1 (ESIf), which shows that our dataset of
hexaphyrins is described by a broad range of DR values ranging
from 1.5 until 6.7. Our best-performing structures are distin-
guished by a DR value close to 5, which is characteristic for a
1D push-pull chromophore. Nevertheless, a large number of
structures have a DR around 5, yet a fiyrg below 10000 a.u.
Hence, DR is not able to sufficiently explain the variations in
Purs- Next, we checked the correlation between the individual
35 features in Fig. 2B. The electronic-based descriptors (IE, EA,
o and p.) and the orbital energies of H—1, H, L and L+1 show R*
values larger than 0.80, both within their category and between
the two categories. Additionally, the geometrical-based descrip-
tors IT and ¢, show a high correlation. The last set of features
with high R*> values are the aromaticity indices based on
magnetic criteria, NICS(0), NICS,, (1) and NICS(1). Intermediate
R? values between 0.60 and 0.80 are observed between NICS
indices, HOMA and the geometrical descriptors. Overall, the
aromaticity indices based on different criteria seem to correlate
among each other, where the R* ranges between 0.40 and 0.80.

The additional subplot of Fig. 2B concentrates on the
intercorrelation between the 13 features highly correlating with
Purs- BOA and 4;.; y show only low to moderate correlation
with respect to the other features. Therefore, these two features
may bring unique information into the ML model. Most other
properties are characterized by higher R* values. To reduce the
number of input features, we opted to remove features that
correlate highly with the 4y, since this feature correlates best
with the Bygs response (R* = 0.91). Consequently, the chemical
hardness (i) (R* = 0.94), the excitation energy associated to S,
(AEs) (R* = 0.82), and 4y (R* = 0.77) were not retained. An
additional reason for the exclusion of Ay is that Dor and Ay g
also correlate reasonably well with this feature, so the model
input of 4y may be compensated by these other input features.
Despite its significant correlation with four of the remaining
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input features, we decided to keep D¢y in our input set because
of its correlation with furs. In summary, the following properties
will be used as input features for the ML model: Agyy, Ar+1 g,
BOA, gcr, 1 AL, o1, |Apl, AEs,, and Der.

Remark that this list of features still contains the three
properties building up the TSA of Oudar and Chemla: |Ay|,
o1, and AEg . In Fig. 3A, we plotted our target property frgrs
versus the fis obtained through Oudar en Chemla’s TSA.
Despite its frequent successes in other molecular switches,
the TSA describes only to a certain degree the target property
with an MAE of 2829 a.u. and an R” of 0.821. Interestingly, our
best performing feature (4y;) explains already quite well the
trend in fygrs response. We performed an exponential regres-
sion on the fyrs Vs. A1, which resulted in an R? of 0.924 and
mean absolute error (MAE) of 1686 a.u. (Fig. 3B). The question
arises whether we can better explain the variance of the NLO
response, by creating a machine learning (ML) model with
additional features that can improve the performance of the
TSA and exponential model.

Training, testing and understanding of machine learning
models

Model 1 using ten features. We opted to split our dataset
into a separate test (25%) and training set (75%), so that the
trained model could also be tested on generalizability. The NLO
distribution was kept similar for each set as displayed in Fig. S2
(ESIY). As a result, both sets mainly contain hexaphyrins with a
Purs below 15000 a.u. and include a similar number of the
best-performing hexaphyrins with a large fugrs response.

This journal is © the Owner Societies 2025

Next, we trained a kernel ridge regression model (KRR) with
our selected ten features: Ay, 4141 1, BOA, gt 1y A1, Ho1, | AL,
AEs,, and Dcr. The objective during the training and hyperpar-
ametrization tuning of our ML model was to minimize the
MAE. For the hyperparametrization optimization, we used
6-fold cross-validation to prevent overfitting. Using the most
optimal hyperparameters, the KRR model was fitted to the full
training dataset. Both the averaged cross-validation statistics
(MAE and R?), calculated over the six validation sets, and the
full training set statistics are reported in Fig. 4, in addition to
the external test set statistics along with the 95%-confidence
interval (CI). Fig. 4 also includes the truth of predictions plot
for the test set data. A markedly lower MAE and higher R* are
found for the full training set, which may indicate overfitting
during the model training. Regarding the test set, similar
values for MAE and R are obtained as the cross-validation sets
(MAE: 695 vs. 627 a.u.) with only a difference of 68 a.u.
Compared to the cross-validation, the test set performs a bit
better as reflected by the MAE falling out of the 95% confidence
interval. In summary, the model generalizes quite well similar
unseen data. Remark that the performance of model 1 is
significantly better than our exponential model as the model
1’s MAE is far below half of the exponential and TSA models.

Since some features were found to be somewhat correlated,
we performed a feature permutation importance analysis, as
implemented into scikit-learn,”” to understand how each fea-
ture contributes to the performance of our ML model. Here, the
feature importances are calculated as the difference between
the statistics of the entire dataset and that of the dataset with
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one feature column permuted. Because the feature permutation
has a different interpretation for the test set and training set,
we performed this analysis on both sets. All feature permuta-
tions are collected in Table 4 for the MAE statistics.
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Fig. 4 Truth of predictions plot: scatter plot of true values (i.e, frs based
on quantum chemical calculations) and predictions (Bnrs predicted by
model 1) of the test set, together with MAE (in a.u.) and R? for the validation
sets (averaged over 6 sets) from the cross-validation, the full training set,
and the test set with its confidence interval.
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Table 4 Feature permutation importance of model 1 with the differences

in statistics between the actual dataset together with the permuted
datasets and their standard deviations

AMAE (train) AMAE (test)

A 1653 + 73 1559 + 113
Der 3789 + 139 3650 + 193
At n 1430 + 58 1123 + 86

Ar 1429 + 69 1347 £ 129
Lo 2321 £ 99 2021 + 182
qor 2439 + 102 1874 + 184
AEs 2496 + 186 2130 + 251
|Aul 1141 + 79 854 + 118
BOA 1260 + 71 1007 + 122
u 983 + 97 1179 + 57

By inspecting the importances of the test set, we can derive
which features will contribute to the generalization power of
our model. Additionally, the feature importances related to the
training set can identify which features are possibly overfitting
our trained model. At first glance, both test and training set of
model 1 present similar trends for their feature importances and
generally within the same order of magnitude. Consequently, the
interpretation of this analysis for both datasets is the same. The
D¢y is the most influential feature in the model, both for the
training and test set of model 1 with a potential increase in MAE
value of around 3700 a.u. Other important features are: AEs ,
qct, and po;. Unexpectedly, 4y, comes in fourth place despite its
high correlation with the target property. A slight discrepancy in
feature importances between the train and test set is observed
for AEs, po1, and especially gcr. Since this divergence might
indicate that model 1 is overfit, a reduction of input features is
advisable. Our strategy is to continue reducing the feature set
based on the balance between model performance and feature
importances. The analysis of this strategy is described in ESIT (cf-
Fig. S3). By consecutively removing the feature with the lowest
feature importance, new models are generated until the result-
ing model has a (too) negative effect on the model performance,
here through the MAE statistic. In the end, we obtain our final
model, denoted as model 2, with only six features: Ay, gcr, 41,
to1, AEs, and Der. Note that this final model still contains the
features of the TSA and the exponential models, except for |Ap|.

Model 2 using 6 features. Based on the previous analysis, we
trained a new KRR model, called model 2, consisting of three
charge-transfer based features (gcr, fio1, and D), two orbital based
features (4yy;, and 4;), and one electronic feature (AEs ). Similarly,
we focused on minimizing the MAE of the ML model. Fig. 5
summarizes the most important statistics for the validation sets
from the 6-fold cross-validation hyperparameter optimization, the
full training set, and the test set. The R> and MAE values of model 2
are slightly worse than our previous model, for which the MAE of
the test set increases by merely 40 a.u. This 6% augmentation is
acceptable given the 40% reduction in feature size. As observed in
model 1, a small difference in MAE between the cross-validation
data and the test set is observed. In contrast to model 1, both
statistics of the test set fall within the 95% confidence interval.

Next, we applied the feature permutation importance analy-
sis on model 2 (Table 5). In contrast to the model 1, Ay,
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Fig. 5 Truth of predictions plot: scatter plot of true values (i.e, firs based
on quantum chemical calculations) and predictions (fprs predicted by
model 2) of the test set, together with MAE (in a.u.) and R? for the validation
sets (averaged over 6 sets) from the cross-validation, the full training set,
and the test set with its confidence interval.

becomes equally important as Dy for both the training and test
sets, whereas py; and 4; increase substantially in feature
importance. Note the slight discrepancy between training and
test set for gcr in terms of MAE. In conclusion, all features
significantly contribute to the model performance, both for the
training and test data.

Despite the slight drop in performance going from model 1
to model 2, the performance of model 2 remains significantly
better than our initial exponential model based on only one
feature Ayy;. Fig. 6 compares three error-bar histograms showing
the prediction error distributions for the exponential model, the
two-state model of Oudar and Chemla, and model 2. For the
construction of the error-bar plots, all datapoints were consid-
ered. Besides a much narrower distribution for model 2, we also
note that the exponential model and the two-state model
description of this total dataset results in a significant number
of datapoints having errors above 2000 or below —2000 a.u.,
being 166 or 30% for the exponential model and and 314 or 56%
for the TSA, while model 2 has as few as 9 datapoints within this
range. In short, the addition of other features besides the Ay,
allows model 2 to drastically reduce the number of outliers. To
confirm this observation, we computed the MAE of these 166
systems based on the model 2 predictions, and, indeed, the
initial MAE of 3580 a.u. using the exponential model is signifi-
cantly reduced to 587 a.u. by using model 2.

Analysis of the machine learning model 2 with SHAP. The
question still remains how these additional features aided in
the prediction of the NLO response. To further elucidate the
influence of the features on the fyrg response, we select model

Table 5 Feature permutation importance of model 2 with the differences
in statistics between the actual dataset together with the permuted
datasets and their standard deviations

Model 6 features AMAE (train) AMAE (test)
A, 4735 + 186 4347 4+ 295
Dcr 4730 + 214 4498 + 360
Ay, 1247 £ 72 1043 £ 106
Ho1 2982 + 154 2898 + 267
der 2152 + 133 1776 + 243
AES1 2028 £+ 90 1960 + 195
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model (A), TSA model (B) and model 2 (C) using the complete dataset
(training & test sets).

2 as our main model of interest. We employed the SHAP Python
package®®'°® and its version in R for dependent features,'"*
which contains techniques to explain black-box machine learning
models. Using this analysis, we aim to understand our model’s
predictions based on the features on which the model is built.
We considered the full dataset for the SHAP analysis discussion,
but a similar analysis for the test set is provided in the ESI}
(Fig. S4). To summarize the average impact of each feature on the
model output, we present a bar plot in Fig. 7A. This average
impact is calculated with respect to the so-called baseline value,
which in our case is the average of all predicted furs values, being
10500 a.u. The trends of Fig. 7 are the same regardless of the
dataset type. All features have a nonnegligible impact on the
magnitude of the model output, with a minimal average con-
tribution of 900 a.u. Our most impactful features are the Ay, Dcr
and pyq, with mean SHAP values over 1200 a.u., which are well
above the MAE.

To gain insight on how each feature impacts the model
predictions (SHAP value) depending on the feature value, we
provide a beeswarm plot in Fig. 7B. Both Ay, and AEg show the
same trend where lower feature values have a positive impact
on the NLO response, while high feature values have a negative
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impact on the output. That means that the lower is the HOMO
and LUMO energy gap or the excitation energy, the higher is the
Purs response. On the other hand, Dcr, to1, and 4y, behave in
the opposite manner, where higher and lower values have a
positive and negative impact on the firg response, respectively.
With respect to the baseline (SHAP values of 0), most structures
have lower SHAP values, but they do not extend that much
when compared to the higher SHAP values (SHAP ranges are
between —4000 and 16 000 a.u.). There is no clear trend for gcr,
for which we see an overlap between high and low gcr to the left
and the right of the baseline. Additional information on the
exact relationship between the feature value and SHAP value is
provided in Fig. S5A-F in the ESL{ Here, we observe a reversed
and sharp v-curve relationship between gcr and its SHAP value.
This v-curve peaks around a feature value of 0.8. Values lower
and higher than 0.8 almost linearly decrease in SHAP contribu-
tion. The SHAP values associated with gcr generally contribute
less but quite evenly with respect to the baseline. Hence, our
main features contributing most to the prediction of high NLO
responses by model 2 are primarily orbital and charge transfer-
based features, Ay, and Doy as well as py;. Note that the
relationship between the HOMO-LUMO energy difference
and its SHAP contribution to firg seems close to exponential
(Fig. S5A in ESIY), as we observed before for the exponential
regression model.

Difference between 26R and 30R. As mentioned before, our
dataset consists of hexaphyrin structures with the same rectan-
gular Hiickel topology but two different oxidation states: [26]-
and [30]hexaphyrins, denoted as 26R and 30R, respectively.
During our previous studies,*>*® we discovered that higher
NLO responses can be obtained for 26R compared to 30R. On
top of that, the preference for the type and position of the
functionalizations to increase the NLO response are different
depending on the oxidation state. In this work, we aim to gain a
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better understanding on which driving forces can be related to
these differences in NLO response between the 26R and 30R,
and thus also the differences in their optimal substitution
patterns. First, we will compare the performance of the ML
model for the 26R and 30R hexaphyrins and, second, we will
determine which features have the strongest impact on the
prediction of their respective NLO responses.

First, we reassessed the MAE for the [26]- and [30]hexaphyrin
systems separately by focusing only on those present in the test
set. Fig. 8 summarizes the scatterplots of the true values versus
the predictions by ML model 2 for the subsets of [26]- and
[30]hexaphyrins. The MAEs of the test sets containing either
26R or 30R systems remain around the same value as for the
total test set. In addition, both subsets show an R* of 0.94 and
more, with the model performance being a bit better for the
26R systems.

Next, we reapplied the SHAP analysis to the 26R and 30R
hexaphyrin subsets (both training and test sets) to verify if the
features contribute differently to the prediction of their NLO
response. In Fig. 8, two barplots are displayed highlighting the
average impact on the model output for all [26] (left) and
[30]hexaphyrins (right), relative to their respective baseline,
14163 a.u. for the former and 7731 a.u. for the latter. Despite
the base value being adjusted for each subset, we clearly
observe that the average SHAP values are lower for 30R systems
than 26R macrocycles for the different features. Importantly,
the top three features influencing the average impact on the
model output differ for the two hexaphyrin redox states. The
[26]hexaphyrins are mostly impacted by the oy, 4p1, and Der,
in nearly equal amounts. In fact, all features still significantly
contribute to the prediction with a SHAP value of minimally
1400 a.u. Regarding the 30R systems, Ay; becomes more
important and f; drops significantly in fygrs contribution.
Dcr remains in the top 3 of dominant features. Interestingly,
Ay, now becomes a vital feature in terms of the average con-
tribution to the output prediction. The S; excitation energy
remains on the fourth place but seems less influential than for
the 26R. For both hexaphyrins, gcr is one of the least impactful
features on the model output. Note that for the [30]-
hexaphyrins AEs , po1 and gcr contribute, on average, a rela-
tively small amount.

How do the features influence our best- and worst-
performing 26R and 30R in terms of NLO response? Our best-
performing 26R are denoted as 26R(NH_NH_NH, CN_NH,),
26R(NH_Se_NH,_CN_NH,) and 26R(NH_S_NH,_CN_NH,) and
all contain the same meso-substitution pattern with 2 sets of
strongly electron-donating groups (EDGs) and 1 set of strongly
electron-withdrawing groups (EWGs). The three 26R macro-
cycles with the lowest NLO response (26R(NH_O_NO, H_H),
26R(NH_S_CN_CN_CN) and 26R(NH_S_NO,_CN_CN)) consist
of combinations of core-modifications and meso-substitutions
with 1 or 3 pairs of EWGs. In Fig. 9, we present the force plots'?°
of the 26R systems with minimal and maximal fygrs response,
with the baseline at 10500 a.u. taken as the prediction average
of the full dataset (including both [26]- and [30]hexaphyrins).
These force plots depict for each instance the influence of each
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Fig. 8 Truth of predictions plot: scatter plot of true values (i.e., frs based on quantum chemical calculations) and predictions (Srs predicted by model 2)
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global feature importances as the mean absolute SHAP value for each feature for the (C) 26R and (D) 30R subsets of the entire dataset.

feature on the model’s prediction. Starting from the base value,
each feature increases (red) or decreases (blue) the base value to
obtain the function value (f(x)). The other force plots of the
second and third structures with either minimal and maximal
Prrs responses can be found in the ESIT (Fig. S6-S9).

All force plots of best performing 26R structures show that all
six features have a positive impact on the model’s prediction.
Hence, all features aid in increasing the base value towards the
predicted value. AEg has the most influence for the three max-
ima. Depending on the optimum, either g, 451, and 4y, play an
important role. Interestingly, Dcr plays a minor role, despite being
in the top three of average feature impact on model output
magnitude (Fig. 8A). The opposite trend is observed for the 26R
systems with a low furs response, where all features lower the
base value. Here, Dcr and 4y, are the most important features.
Therefore, Dcr has a larger impact in reducing the NLO response
than enhancing it, relative to the other features.

The best-performing 30R systems contain two sets of core-
modifications and EWGs and one set of EDGs, 30R(O_
O_NH, CN_CN), 30R(O_S_NH, CN_CN) and 30R(O_O_NH,_
NO, CN). Our worst-performing are 30R(NH_NH_H_NH, H),

This journal is © the Owner Societies 2025

30R(NH_NH_H_OH_H) and 30R(NH_NH_H_F_H) and only con-
sist of one set of strong EDGs or weak EWGs as meso-substituents
on the macrocycle and no core-modifications. Similarly to the 26R
systems, we only display the systems with the lowest and highest
Purs response in Fig. 10.

In contrast to the best 26R, the force plots of the best 30R
structures show that not all features necessarily increase the
baseline prediction. In all three structures, AEs has the highest
negative impact on the predicted average. Surprisingly, even
though p, is ranked second to lowest for the [30]hexaphyrins,
it shows the highest positive impact for the 30R maximum
followed by Dcr. In the two remaining structures, other features
such as gcr, Dety, and Ay, play a varying positive role on the
NLO response. In contrast, the worst performing 30R structures
behave similarly to the worst performing 26R with D¢y, Ay,
and to a lesser degree 4;, as the main important features. This
explains the gain in importance of Dcr for 30R compared to
26R, as this feature greatly impacts both high and low
responses for the former but only low responses for the latter.

Aside from the structures with the highest and lowest fxrs
response, we selected three additional systems with predicted
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Fig. 9 Force plot of the 26R system with the highest and lowest furs response corresponding to 26R(NH_NH_NH,_CN_NH,) and
26R(NH_O_NO,_H_H), respectively. Features highlighted in red positively contribute with respect to the base value, while those highlighted in blue

lower the NLO response prediction.

Purs values close to the average of the entire dataset, the base-
line of our SHAP analysis. We focused on 26R structures, as we
found for both high and low response structures similar domi-
nant features. These [26]hexaphyrins incorporate at least one set
of core-modifications and different combinations of meso-
substitutions on their macrocycle: 26R(NH_O_NH, H_CHj),
26R(NH_S_NH,_OH_NO,) and 26R(NH_S_CN_CN_OH). The
force plots of these systems are provided in Fig. 11.

For all three systems, we observe that nearly all individual
features distinctly contribute to the predicted NLO response,
some positively and some negatively. A clear trend on how each
feature influences the final prediction of the model is difficult
to establish. Despite the similar total prediction output, a

30R(0_O_NH, CN_CN)

different combination of features is responsible for the predicted
Purs value. For example, for 26R average 2, the two orbital and
one electronic-based features increase the response prediction,
whereas the charge-transfer-based features diminish the predic-
tion by the same amount. The similarly substituted 26R average 3,
having the same core-modification set and also two sets of EDGs
and one set of EWGs (though on different positions), differs with
the previous structure in that y; now positively contributes and
Ay, negatively.

Lastly, to estimate where these 15 selected systems are
positioned within the SHAP versus feature value space, we
plotted dependency plots for each feature. The dependency
plots in Fig. 12 show the SHAP value of a feature versus the

30R(NH_NH_H_NH,_H)
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Fig. 10 Force plot of the 30R system with the highest and lowest furs response corresponding to 30R(O_O_NH,_CN_CN) and
30R(NH_NH_H_NH,_H), respectively. Features highlighted in red positively contribute with respect to the base value, while those highlighted in blue

lower the NLO response prediction.
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NLO response with respect to the base value, while those highlighted in blue lower the NLO response.

feature value. The 26R and 30R systems are represented by a
square and star marker, respectively. The systems are colored in
red, orange and green corresponding to lowest, medium and
highest responses accordingly. The scatter plot for Ay as

presented in Fig. 12A shows that the best-performing 26R have
high SHAP values for low 4y, feature values. The figs response
of the orange markers and the best-performing 30R, repre-
sented by green stars, are only slightly positively influenced by
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Fig. 12 Dependency plots highlighting the feature SHAP versus the feature value for (A) 4y, (B) to1, (C) Dcr, (D) 4y, (E) AES1 and (F) gct. The 26R and 30R
systems are represented by a square and star marker, respectively. The 15 systems are colored in red, orange and green corresponding to lowest, medium

and highest fiirs responses accordingly.
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the Ay, except for one system 26R(NH_O_NH,_H_CH;) with an
average furs response. For example, the SHAP value for Ay, of
26R(NH_NH_NH, CN_NH,) is much higher and positive,
11019 a.u., than the best-performing 30R with a SHAP value
of 836 a.u. For the worst performing structures depicted in red,
the Ay, has always a negative influence on the model output.
Fig. 12B-D show the opposite of Fig. 12A, where high feature
values have a positive impact on the model’s output and low
values the opposite. Nonetheless, a few outliers should be noted
which deviate from the expected trend. Regarding the o, feature
(Fig. 12B), the best-performing [30]hexaphyrin-based structures
are close to the [26]hexaphyrins with an average fprs response,
except for one system, 30R(O_O_NH, CN_CN), which has a
higher 1y, than the other [30]hexaphyrins. In addition, one 26R
system, 26R(NH_S_NH,_OH_NO,), is negatively impacted by to;
as reflected by its negative SHAP value and lower feature value.
The opposite is observed for Dcr (Fig. 12C), where the best-
performing [30]hexaphyrin-based structures lie closely to the
best-performing [26]hexaphyrin-based structures, with the excep-
tion of 30R(O_S_NH, CN_CN), which resides near the average
performing structures. For those two charge-transfer-based
descriptors, the worst-performing 26R and 30R are all at the
end of the curves. The average-response structures are more
spread for Dcr. In Fig. 12D, one of the average 26R structures,
26R(NH_S_CN_OH_OH), is positioned closer to those with a low
Purs response highlighted in red, because lower differences
between L and L+1 (4;) result in more negative SHAP values.
Fig. 12E shows similar trends as Fig. 12A, where the best-
performing 26R structures show positive SHAP values for low
feature values and the opposite is true for the worst 26R and 30R
structures. Except for 26R(NH_O_NH, H_CHj;), all average-
structures are characterized by a postive SHAP value with an
excitation energy AEg around 1.6 €V. In contrast to Ay, the
best-performing 30R structures are much closer to the overall
worst performing structures and are characterized by negative
SHAP and low AEg, values. The outlying 26R(NH_O_NH,_H_CH;)
is also positioned closer to the best-performing 30R structures.
Finally, a general trend remains difficult to distinguish for the gcr
feature in Fig. 12F. As mentioned before, the peak of the struc-
tures with the highest positive impact on the model is perceived at
a feature value of 0.8. Remarkably, our best-performing structure
26R(NH_NH_NH, CN_NH,) has a very high positive impact on
the final prediction for a low feature value of 0.57 but lies well
outside the v-curve.

External test sets: new meso-substitution pattern and different
conformers. Now that we gained insight into how the features
influence the [26]- and [30]hexaphyrins, our next goal is to
investigate whether our ML model can generalize other hexa-
phyrin macrocycles. As our dataset only consisted of hexaphyrin
structures with the A,B,C, meso-substitution pattern, can our
model describe other substitution patterns or even other types
of hexaphyrins with different topologies? To test this, we con-
structed three additional test sets with new categories of hexa-
phyrins investigated in our previous works (structures are shown
in Fig. 13).*4%%1%% A first test set, called 26R(A,BC,D), contains 49
[26]hexaphyrins with a different substitution pattern A,BC,D.
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Fig. 13 Scatter plot of the frs response (in a.u.) versus the Ay (in eV) for
(A) 26R(A2BC;D), (B) 26D(A,B,C,) + 28M(A,B,C,), (C) 28R(A,BC,D). The
exponential regression line is portrayed by a solid black line and its
mathematical expression is given in the box. Data points from the initial
dataset are highlighted in grey, but each new test set is coloured in red,
salmon, orange and green for 26R(A,BC,D), 26D(A,B,C,), 28M(A,B,C,)
and 28R(A,BC;,D), respectively.

A second set of 8 [26] and 10 [28]hexaphyrins having the dumbell
(26D) and Mobius topology (28M), respectively, and the same
A,B,C, substitution pattern is collected in test set, 26D(A,B,C,) +
28M(A,;B,C,). Lastly, a third test set 28R(A,BC,D) contains 39
[28]hexaphyrins with the rectangular topology (28R) and the
A,BC,D substitution pattern. This last substitution pattern was
selected for the 28R system, because our initial A,B,C, meso-
substitution pattern allows the 28R to become centrosymmetric
with a zero-valued firs response per definition.

To start off, we replotted in Fig. 13 the relationship between
the Purs versus Ay, for our initial dataset, in which we addi-
tionally highlighted one of the extra test sets in a different
color. The two test sets (26R(A,BC,D) and 26D + 28M(A,B,C,))
presented in Fig. 13A and B, respectively, follow the trend, thus
associating high fygrs responses with low Ay, values. However,
the test set containing 28R(A,BC,D) structures does not follow
this exponential relationship. In essence, systems with either
a different substitution pattern or different hexaphyrin confor-
mations can behave similarly to the 26R(A,B,C,) and
30R(A,B,C,) dataset. In the ESI,i we also provided the scatter-
plots regarding TSA (i.e., furs versus fiss) for our external test
sets. The 26R(A,BC,D) dataset but also 28R(A,BC,D) (reason-
ably) follow the previous TSA trend, while 26D + 28M(A,B,C,) is
not well described by this model.

Subsequently, we predicted the fugs response of the three
test sets with our ML model 2. For the individual scatter plots
for each new test set, we refer to the ESI{ (Fig. S11). If we
combine our initial test set with the two test sets 26R(A,BC,D)
and 26D + 28M(A,B,C,), for which the exponential model
provided a good description, and recalculate the MAE and R?
Fig. 14 is obtained. Here, 26R(A,BC,D) and 26D(A,B,C,) +
28M(A;B,C,) are colored in red and salmon and orange,
respectively. Even after the addition of the new data points,
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Fig. 14 Truth of predictions plot: scatter plot of true values (i.e, firs based on quantum chemical calculations) and predictions (frs predicted by model 2)
on the initial test set, and new test sets 26R(A,BC,D) and 26D + 28M(A,B,C,) with MAE and R? for the initial test set, the three extra test sets, and the total
test set excluding the 28R (figure statistics). Below, SHAP analysis of the first two external test sets. (A) Bar plot containing the feature importances as the
mean absolute SHAP value for each feature and all samples for 26R(A,BC,D) (B) bar plot containing the feature importances as the mean absolute SHAP
value for each feature and all samples for 26D + 28M(A,B,C,) (C) beeswarm plot with SHAP values of all data points while highlighting the feature value for
26R(A2BC,D). (D) Beeswarm plot with SHAP values of all data points while highlighting the feature value for 26D + 28M(A;B,C,).

our R> of 0.988 stays similar to that of the initial test set (R*:
0.991). Since our ML model has not yet encountered these types
of structures, the MAE increases but not substantially (774 a.u.
vs. 667 a.u.). This observation also applies to the R* of the first
and second extra test set individually in comparison to the
initial test set (Fig. 14). However, the MAEs of the individual
(26R(A,BC,D) and 26D + 28M(A,B,C,)) sets increase by 40%
and 75%, respectively, so a different substitution pattern is
generalized better than a change of topology and/or oxidation

This journal is © the Owner Societies 2025

state. Nonetheless, these predictions are still better than the
initial exponential model (MAE of 1686 a.u.) and the revised
exponential model, including these first two external test sets
(MAE of 1736 a.u. and R*> of 0.913). As expected, the
28R(A,BC,D) test set performs the worst of all new sets with
an MAE almost 20 times higher than our exponential model.
This bad performance stems from the negative fugrs response
predictions by model 2 for the 28R(A,BC,D) test sets. In
summary, our ML model is able to reasonably describe
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hexaphyrins of the same oxidation state and topology with a
different substitution pattern and hexaphyrins of different
oxidation state and topology, with the exception of the 28R
structures.

To gain insight into which features contribute to the pre-
diction for the first two external test sets, we applied our SHAP
analysis tools (using the average prediction of the original total
dataset as base value) to understand our model’s decisions
(Fig. 14). For the 26R(A;BC,D) set, which contains [26]hexaphyr-
ins with a different substitution pattern, the Ay, is the most
significant feature (Fig. 14A). This feature rises from second to
first place in importance compared to the 26R conformers
having A,B,C, pattern in Fig. 8A. The second most influential
feature of this external dataset is AEs , which has also increased
in importance. Surprisingly, our top feature for the initial 26R
dataset, o1, drops significantly in averaged SHAP value. Dcr
remains in the third position and gcr and 4y, are still the least
influential features. Apart from the feature importance, the
trends in Fig. 14B are overall quite similar as in Fig. 7B, which
deals with the entire dataset and does not distinguish between
the different hexaphyrin types. Higher values for Dcr, 1o, and 4y,
correspond with positive impacts on the model output. The
opposite is still true for Ay, and AEg . For our second test set,
26D + 28M(A,B,C,), Dcr and Ay are our most important
features (Fig. 14C), which is more or less in line with the
[30]hexaphyrins in Fig. 8B. 4, and AEg become equally impor-
tant and the latter jumps to the third place in the ranking
compared to the trends observed for the 30R hexaphyrins. Again,
gcr is among the worst-performing of all features. Since only 18
data points are present in this external test set, the beeswarm
plot in Fig. 14D becomes less interpretable but it shows similar
trends as Fig. 7B for the entire dataset. Except for some small
deviations in the 4y feature vs. SHAP scatter plot in Fig. S12D in
the ESI,T the other scatter plots (Fig. S12, ESIT) confirm that the
two external datasets follow indeed the general trend.

Conclusion

In this work, we employed explainable machine learning to
further understand the underlying factors influencing the NLO
response of chemically functionalizated [26]- and [30]hexaphyrins.
To this end, we investigated various quantum-chemical descrip-
tors and their relationship with our target property, figrs. Only 13
features correlated sufficiently with R> values above 0.4. They can
be categorized as, primarily, orbital-based (4) and charge-transfer
(3) features but also electronic (5) and aromaticity (1) descriptors.
The intercorrelation between each of these thirteen features was
also established. Before applying any machine-learning model to
our dataset, we checked two additional models to predict the fyrs
response based on either the two-state approximation of Oudar
and Chemla and only the HOMO-LUMO energy gap. Overall, the
HOMO-LUMO gap is the best-performing feature in predicting
the furs response of the hexaphyrin macrocycles for which
exponential regression yielded an MAE of 1686 a.u. After removing
highly intercorrelating features, we constructed a ML model using
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6-fold cross-validated kernel ridge regression with 10 input
features and the MAE as the validation metric (model 1). As
model 1 shows signs of overfitting, we further reduced the
number of features to 6 by keeping the balance between the
model performance and high feature importances for the model.
Our final ML model contained 6 features only including orbital,
electronic and charge-transfer based descriptors and resulted in
an MAE value far below half of that of the exponential model. We
applied explainable ML model techniques such as a SHAP analy-
sis to obtain the average impact of each feature on the model
output. From the SHAP analysis, we concluded that all of the
features have an impact on the model output, but Ay, Dcr, and
Uo1 influence the model output the most. We would like to
emphasize that even though nearly all features of the TSA and
the exponential model are included in the ML input feature set,
other descriptors such as Dcr still have a big importance on both
the performance of the model as the interpretation of the final
predictions. Next, we re-evaluated the performance of our model
for the two subgroups in our dataset, the 26R and 30R structures.
By reapplying the SHAP analysis on the 26R and 30R structures
separately, we could scrutinize whether the most influential
features are different for each group. We found that, besides
Uo1, the NLO response of the 26R structures are mostly affected by
Ay, and Der. For the 30R, Dcr gains importance whereas that of
Uo1 significantly drops. Analysis of the three best- and worst-
performing 26R and 30R structures indicated that, even though
the Dcr is in the top three of important features, the best-
performing 26R structures are less influenced by this property
in contrast to 30R. Lastly, we assessed the generalization of our
ML model by predicting the NLO response of other types of
hexaphyrins, which were not present in the training dataset.
Three external datasets were constructed with either 26R or 28R
with another meso-substitution pattern, and a collection of hexa-
phyrins sharing the original meso-substitution pattern but with
another topology (26D and 28M). With the exception of the 28R
set, our model could reasonably describe our additional external
test sets. Our SHAP analysis concluded that 26R(A,BC,D) resem-
bles the 26R(A,B,C,) set, except for i, and that the 26D +
28M(A,B,C,) set follows the trends of the 30R.
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