

Cite this: *Chem. Commun.*, 2025, 61, 18725

DOI: 10.1039/d5cc90381e

rsc.li/chemcomm

Correction: Double aromaticity in a BBe_6H_6^+ cluster with a planar hexacoordinate boron structure

Amlan J. Kalita, Shahnaz S. Rohman, Chayanika Kashyap, Sabnam S. Ullah and Ankur K. Guha*

Correction for 'Double aromaticity in a BBe_6H_6^+ cluster with a planar hexacoordinate boron structure' by Amlan J. Kalita et al., *Chem. Commun.*, 2020, **56**, 12597–12599, <https://doi.org/10.1039/D0CC05668E>.

In the original paper, the authors used the M06-2X/Def2-TZVP level of theory to study the BBe_6H_6^+ cluster, finding this to be a minimum on the potential energy surface. Subsequent harmonic frequency calculations undertaken on the geometries from the MP2 and CCSD levels of theory, and using these same *ab initio* methods, highlighted that there are a number of imaginary frequencies associated with the computed geometry for the BBe_6H_6^+ (D_{6h}) geometry originally published. However, the D_{3d} structure is a minimum at the MP2 level of theory.

Further calculations have shown that the energy difference between the D_{3d} and D_{6h} structures is relatively small (less than 1 kcal mol⁻¹).

Results of the supporting calculations are available in an additional supplementary information (SI) file, available at <https://doi.org/10.1039/D0CC05668E>.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.