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Catalysis meets machine learning: a guide to
data-driven discovery and design

Eleonora Casillo, a Thomas Scattolin *b and Steven P. Nolan *a

Machine learning (ML) has rapidly become an indispensable tool across the chemical sciences, offering

powerful methods to extract patterns from data and make accurate predictions in complex, multi-

dimensional systems. In organometallic catalysis, its potential is particularly evident: while transition-

metal catalysed reactions are at the core of modern synthesis, their design and optimization remain

challenging due to the vastness of chemical space, the scarcity of standardized data, and the intricate

interplay of steric, electronic, and mechanistic factors. This review aims to provide chemists with both a

conceptual and practical entrypoint into the field, beginning with a concise introduction to the

principles of ML and its most widely used algorithms. It then surveys recent advances by structuring the

discussion according to applications: optimization of reaction conditions, mechanistic elucidation, ligand

classification and design, stereocontrol, and the discovery of novel catalysts. By combining

methodological insights with case studies, we highlight how ML can reduce experimental workload,

enhance mechanistic understanding, and guide rational catalyst development, while also outlining

current limitations and future opportunities at the interface of data science and catalysis.

1. Introduction

The optimization and study of chemical reactions traditionally
rely on empirical methods, where chemists adjust parameters
based on their understanding to achieve optimal outcomes.
This approach is time-consuming and resource-intensive, most
often relying on trial-and-error experimentation.1 A central
challenge in this process is the efficient identification of
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optimal reaction conditions within a limited experimental
budget. This task is especially difficult in large and multi-
dimensional reaction spaces, where time and cost constraints
severely restrict experimental scope. Conventional strategies,
often dependent on initial guesses and existing system knowl-
edge, can be inefficient and expensive, particularly when start-
ing points are distant from the ideal solution. Machine learning
(ML) excels at extracting implicit knowledge from data by
inferring functional relationships statistically, even without
detailed problem-specific knowledge.2 Unlike traditional
approaches, ML starts from a generalized model and iteratively
refines it, enabling early and efficient exploration of complex
problems.3 By combining data-driven algorithms with scientific
theories, this interdisciplinary approach enhances the synergy
between empirical data and theoretical frameworks, providing
a powerful tool to navigate vast chemical spaces and accelerate
the optimization process, all while deepening our understand-
ing of complex catalytic systems.

Artificial Intelligence (AI) is becoming an essential tool in
various branches of chemistry, being used to predict molecular
properties, speed up computational simulations, design novel

compounds, and propose viable synthetic pathways to new
products.4 Before surveying applications in organometallic
catalysis, it is helpful to distinguish three terms that are often
mingled (see Fig. 1):
� Artificial intelligence (AI): any computational method that

performs tasks associated with human intelligence (reasoning,
decision-making, language).5

� Machine learning (ML): algorithms that learn patterns
from data to make predictions or decisions without hard-coded
rules.2

� Deep learning (DL): a subfield of ML that uses multi-layer
neural networks to model complex, nonlinear relationships;
particularly effective with large, diverse datasets.6

2. The role and fundamentals of
machine learning techniques in
organometallic catalysis

The integration of ML into organometallic catalysis represents
one of the most transformative trends of the past decade in
chemical research. Transition metal-catalysed reactions are
pillars of modern synthesis, yet their design and optimization
remain labour-intensive: the design and optimization of such
reactions often remain empirical, involving time-consuming
and costly experimental trials. Traditional computational tools,
such as density functional theory (DFT), offer mechanistic
insight but are limited by their computational expense, parti-
cularly when navigating vast chemical spaces. Moreover,
catalyst development is challenged by the complexity of reac-
tion mechanisms, the high dimensionality of tuneable para-
meters, and the limited transferability of successful designs
across different systems. The scarcity of standardized, high-
quality experimental data and the difficulty of integrating
molecular-scale insights with macroscopic performance
further hinder progress. In recent years, ML has emerged as a
powerful complement to both empirical and theoretical
approaches.2 By learning patterns from experimental or com-
puted data, ML models can make accurate predictions about
reaction yields, selectivity, optimal conditions, and even
mechanistic pathways.7

The present contribution presents diverse applications of
ML in organometallic catalysis over the last decade, organizing
key developments by the nature of the application: optimiza-
tion of reaction conditions, prediction of catalytic activity and
enantioselectivity, ligand design, mechanism elucidation, and
new catalyst discovery. Our aim is to provide a concise, yet
thorough overview accessible to chemists across disciplines,
emphasizing the field’s growing impact and future directions.

In general terms, the foundation of ML rests on two critical
components: data and algorithms.8 Data refers to any type of
input a computer can interpret (text, images, or sound). An
algorithm is a defined sequence of steps the computer follows
to analyze these data and learn from them. The combination of
data and algorithms during the training process results in what
is known as a ML model.

Fig. 1 Representation of artificial intelligence, machine learning and deep
learning.
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There are three main learning paradigms: supervised, unsu-
pervised, and hybrid (Table 1).9

Supervised learning learns a mapping from inputs to a
labelled output (e.g., predicting yield or enantioselectivity from
ligand descriptors). It excels when labels are reliable and
reasonably abundant.

Unsupervised learning finds structure in unlabelled data
(e.g., clustering ligands by descriptor similarity; dimensionality
reduction to visualize reaction spaces). It is useful for hypoth-
esis generation and dataset curation.

Hybrid/semi-supervised learning combines both (e.g., pre-
training on unlabelled structures and fine-tuning on a smaller
labelled set) to improve data efficiency.

The core distinction between the supervised and unsuper-
vised learning lies in the nature of the data used during
training. To put it simply: supervised learning operates by
training a model on a labelled dataset, where each input is
paired with the correct output. This is analogous to teaching
with a predefined curriculum: the algorithm is presented with
known examples (e.g., reactions with experimentally deter-
mined enantiomeric excess, % ee) and learns to map structural
or mechanistic features to the target property. Once trained, the
model can predict outcomes for new, unseen substrates or
catalysts. In contrast, unsupervised learning identifies inherent
patterns, groupings, or correlations within data without pre-
existing labels. Here, the algorithm explores the dataset auton-
omously to discover latent structure, for instance, clustering
catalysts or ligands based on similarity in their molecular
descriptors or reaction outcomes.9 In catalysis, this can reveal
novel classifications of ligands that confer similar selectivity or
activity, even in the absence of a priori mechanistic hypotheses.
While it offers the advantage of discovering hidden structures
without prior labeling, its results are often more difficult to
interpret and generally less accurate when used for predictive
purposes.10 Hybrid learning integrates both supervised and
unsupervised learning: a portion of the weights is typically
determined through supervised learning, while the remaining
weights are derived through unsupervised learning.11

The following section provides a concise overview of the
most used ML approaches in catalysis, with the goal of arming
readers with the essential background to interpret and appreci-
ate the methods described throughout the next chapters.

3. Key machine learning algorithms for
chemical applications

Several ML algorithms have proven particularly useful in
chemical applications:

(i) Linear regression: one of the simplest models, linear
regression assumes a direct, proportional relationship between
descriptors and outcomes.12 While often limited in complex
systems, it serves as a baseline and is sometimes surprisingly
effective in well-behaved chemical space. For example, Liu et al.
used in 2022 a Multiple Linear Regression (MLR) to predict
activation energies for C–O bond cleavage in Pd-catalyzed
allylation.12 Using DFT-calculated data from 393 reactions, they
modeled energy barriers using different key descriptors. The
resulting model (R2 = 0.93) successfully captured electronic,
steric, and hydrogen-bonding effects, demonstrating the MLR
ability to quantify complex catalytic interactions across diverse
chemical space.

(ii) Random Forest: a type of ensemble model composed of
many decision trees (Fig. 3). Each tree is trained on a random
subset of data, and the final prediction is an average (regres-
sion) or a vote (classification). A hypothetical challenge that a
chemist might face is predicting whether a given organometal-
lic complex will catalyse a reaction in high yield. Random
Forest can take as input hundreds of molecular descriptors
(e.g., electronic properties, steric factors, geometries, orbitals
etc. . .) and learn a general rule by combining the decisions of
multiple trees, each of which processes a different subset of
data.13 This approach allows to bring to light non-linear
relationships within the data, leading to more accurate and
robust predictions. An application in catalysis is reported by
Doyle and colleagues who used a random forest model to
predict reaction yields and screen reaction conditions in Pd-
catalysed aminations and Suzuki–Miyaura couplings.14

(iii) Deep learning and artificial neural networks (ANNs):
deep learning (DL) utilizes artificial neural networks (ANNs),
with multiple hidden layers, to model complex, non-linear
relationships within data.15 These deep architectures are espe-
cially effective when applied to large and diverse datasets,
enabling the automated extraction of hierarchical features. In
chemistry, DL has been used to optimize multi-parameter
reaction conditions and predict enantioselectivity with high
accuracy.16–18 The design of ANNs is conceptually inspired
by the structure and function of biological neurons, which
are the fundamental units of the nervous system. Biological
neurons communicate through electrochemical signals and are
composed of dendrites that receive input, a soma that is the cell
body that process information, and an axon that transmits
output to other neurons. Artificial neurons are simplified
mathematical abstractions of this biological model (Fig. 2).11

ANNs are composed of basic units called nodes or proces-
sing elements and the connections between them. Each node
receives inputs, either from other nodes or the external

Table 1 Applications, advantages and limitations of the two key-methods: supervised and unsupervised learning

Aspect Supervised learning Unsupervised learning

Data required Labeled Unlabeled
Applications Classification, regression Clustering, association, dimensionality reduction
Advantages High accuracy, interpretable results Reveals hidden patterns, no need for labeled data
Limitations Requires labeled data, time & money consuming Lower predictive power, harder to interpret
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environment, and produces outputs that influence others or
interact with the environment.11 A node processes its overall
input through a specific function f, generating an output.
Connections between nodes vary in strength, representing
either excitation (positive values) or inhibition (negative
values).19 These connections can change over time, initiating
a learning process across the network.20 This process of adjust-
ment is governed by what is known as the ‘‘Law of Learning’’.21

Since these adjustments occur over time, learning in ANNs
is inherently dynamic and driven by repeated interactions
with the environment, represented by data.22 Through this,
ANNs can ‘‘interpret’’ their environment and its underlying
relationships.23–25 Neurons in an ANN can be arranged in
various topologies, such as one- or two-dimensional layers,
three-dimensional grids, or higher-dimensional structures,
depending on the complexity and volume of input data.11 The
most widely used structure is the feed forward topology, where
information always moves in one direction; it never goes back-
wards (Fig. 4).26,27

In this system a set of nodes forms the input layer, typically
reflecting the number of input variables. Information then
moves through one or more hidden layers before reaching
the output layer, which delivers the result. While the resem-
blance is largely metaphorical, the learning mechanism in
ANNs, typically based on backpropagation and gradient des-
cent, bears conceptual similarity to synaptic plasticity in biolo-
gical systems, where connection strengths are updated in
response to experience or error feedback.11 The backpropaga-
tion architecture is the most commonly used learning algo-
rithm for training feed forward neural networks.28 In this
process, the network progressively identifies patterns and rela-
tionships within the data, updating its weights via backpropa-
gation to reduce the discrepancy between predicted and true
outputs. Even in their simpler forms, ANNs can capture sig-
nificant non-linear patterns. When trained in chemical reaction
data, such models have been used to predict optimal catalysts,
reagents, and reaction conditions across diverse reaction
classes, offering valuable support in reaction optimization and
discovery.29–33

Fig. 2 Comparison between a biological neuron (left) and an artificial neuron (right).

Fig. 3 Representation of random Forest model.

Fig. 4 Representation of feed forward topology.
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(iv) Graph neural networks: one of the most powerful and
rapidly evolving classes of ML models, particularly in the
domains of chemistry and materials science, is the graph
neural networks (GNNs).34,35 The representation of molecules
and materials as graphs has deep historical roots in mathema-
tical chemistry, dating back to the 19th century-preceding even
the formal development of graph theory.4 The GNNs defining
capability lies in the natural way they operate on graph-
structured data, making them ideally suited for modeling
atomic and molecular systems.36 While molecular graphs are
typically undirected with well-defined atom and bond types, the
extension of this concept to solid-state materials requires
additional considerations. In crystalline systems, bonding is
not always clearly defined, and the three-dimensional arrange-
ment of atoms plays a more prominent role. Nonetheless,
graph-based representations remain highly effective in captur-
ing local environments and long-range structural information.

A core strength of GNNs is their ability to incorporate four
essential types of information:

1. Node-level features (e.g., atom types)
2. Edge-level features (e.g., bond orders or distances)
3. Global context (e.g., temperature, pressure)
4. Overall connectivity or topology of the graph.
In GNNs, molecules can be represented as graphs: in this

representation, nodes correspond to atoms or atomic sites,
while edges represent chemical bonds or spatial proximity
between atoms, allowing GNNs to capture the underlying
structure of chemical compounds and materials with high
fidelity and process these graphs directly, learning to extract
chemical information from structure alone.37

Fig. 5 illustrates how GNNs were used by Friederich and
colleagues in chemistry and how their performance has been
benchmarked.4 Panel (a) shows a schematic of the message-
passing principle: molecules or crystalline materials are repre-
sented as graphs, where atoms are nodes and bonds or spatial
neighbours are edges. Through iterative message passing, each
atom updates its representation by aggregating information
from its neighbours, gradually capturing both local and long-
range structural features. This enables the model to learn
chemically meaningful descriptors directly from structure.
Panel (b) reports the accuracy of different GNN architectures
on the widely used QM9 dataset. QM9 is a collection of ca.
134 000 small organic molecules (up to nine heavy atoms: C, N,
O, F, plus hydrogens), each optimized at the DFT level. For each
molecule, more than a dozen physicochemical properties were
computed, including 3D geometries, formation energies, free
energies, dipole moments, polarizabilities, enthalpies of for-
mation, vibrational frequencies, and frontier orbital levels
(HOMO/LUMO). The graph shows mean absolute errors for
predictions of total energy (red circles), HOMO (orange trian-
gles), and LUMO (blue inverted triangles), highlighting the
rapid improvement in predictive accuracy achieved by succes-
sive generations of GNNs.

Unlike conventional ML models that rely on manually
crafted descriptors, GNNs autonomously learn internal feature
representations through a process of message passing between
neighboring nodes, followed by aggregation and readout steps
that produce graph-level outputs. These models remove the
need for explicit feature engineering and offer a more general-
izable approach. GNNs are also capable of modeling complex

Fig. 5 (a) Schematic depiction of the message passing operation for molecules and crystalline materials. (b) QM9 benchmark. Mean absolute error of the
prediction of internal (red circles), highest occupied molecular orbital (HOMO, orange triangles), and lowest unoccupied molecular orbital (LUMO,
inverted blue triangles) energies for different GNN models since 2017. Reproduced from ref. 4 with permission from the communications materials,
copyright 2022.
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systems involving non-covalent interactions, doping, or struc-
tural disorder-scenarios where classical descriptors often fall
short.4 Given their capacity to learn directly from raw structural
data and model intricate atomistic interactions, GNNs are
poised to become a cornerstone of next-generation computa-
tional chemistry and materials design workflows.

(v) The ‘‘black box’’ challenge and Bayesian optimization:
many ML models, especially neural networks and ensemble
methods, are considered ‘‘black boxes’’ (Fig. 6). A black-box
function is a system whose internal workings are not explicitly
known, but whose outputs can be observed for given inputs.38

In chemistry, the effect of a specific combination of tempera-
ture, catalyst, and solvent on reaction yield may not be precisely
understood. Nevertheless, the experiment can be carried out
and the outcome, such as yield, conversion, or enantioselec-
tivity, empirically determined. This defines a black-box setting:
the internal mechanism is opaque, but input–output behavior
is measurable. Consequently, these techniques provide accu-
rate predictions but offer limited insight into how decisions are
made.38 This lack of transparency can be problematic in
scientific research, where mechanistic understanding is often
crucial.

To address this, interpretability tools have been developed.
One such tool is SHAP (SHapley Additive exPlanations),39 which
assigns important scores to each feature, showing how it
contributed to a particular prediction.40 While tools like SHAP
improve interpretability by explaining individual predictions,
they do not directly address how to efficiently search through
large and complex input spaces to improve outcomes. In
experimental sciences such as chemistry, interpretability may
support mechanistic hypotheses, but practical constraints,
such as time, material cost, and safety, often make it unfeasible
to explore the full design space exhaustively.40 This is where
complementary strategies like Bayesian Optimization (BO)
become essential. ML in the form of BO proves particularly
suited to the challenge of chemical reaction optimization
because it works with small datasets and can explore very large
reaction spaces.41 BO is not a predictive model per se, but rather
a strategy for the global optimization of expensive black-box
functions.42 The term expensive does not necessarily refer to
monetary cost, instead, it encompasses the overall experi-
mental burden, including time, reagents, instrumentation,
and labor. Because of this, the primary goal is often to mini-
mize the number of experimental trials needed to achieve
optimal results. BO addresses this by using a probabilistic
surrogate model, typically a Gaussian Process, to estimate the
relationship between inputs and the objective function.42

It then applies an acquisition function to select the next

experiment, balancing exploration, which prioritizes regions
of the domain where the model uncertainty is high (it allows to
discover regions that may contain better values but have not yet
been sufficiently sampled), and exploitation which favours
regions where the model predicts high objective values based
on existing evidence.43 This iterative, data-efficient process
enables rapid identification of optimal reaction conditions or
molecular features, even in high-dimensional and costly experi-
mental spaces. BO can be broadly categorized into single-
objective (SOBO) and multi-objective Bayesian optimization
learning (MOBO).44 In the single-objective setting, the goal is
to optimize a single property of interest, such as catalytic
activity or stability. It is used to optimize a single objective
function, denoted f (x). The goal is to identify the global
optimum (maximum or minimum) of f (x) over the defined
search space. The output is typically a single best point x*,
based on the highest predicted utility from the surrogate
model.44

The workflow begins with a starting dataset comprising
candidate molecules and their experimentally measured or
computed property values. A surrogate model, often a Gaussian
Process, is trained on this dataset to approximate the objective
function. Using this model, the properties of new and untested
candidates drawn from a larger chemical library are predicted,
along with associated uncertainties. An acquisition function
then selects the most promising candidates based on the trade-
off between exploration and exploitation.43 These acquired
candidates are subsequently evaluated (experimentally or via
computational calculations), and their scores are fed back into
the dataset to refine the surrogate model. In MOBO, that is an
extension of the SOBO framework, the aim is to optimize
several, often conflicting, objectives at the same time, such as
catalytic efficiency and selectivity. Instead of a single objective,
one considers a vector of objective functions.

The workflow follows a similar structure of the SOBO: a
surrogate model is trained using a dataset containing molecu-
lar candidates and their multiple property values. However,
instead of a single acquisition function, the selection step must
consider the set of candidates that represent the best trade-offs
among the objectives. The newly acquired candidates are then
evaluated and used to update the dataset, refining the model.

Both approaches rely on probabilistic modeling to guide
decision-making and reduce the experimental workload, ren-
dering them especially well-suited to the complex, high-
dimensional design landscapes characteristic of organometal-
lic catalysis.

4. Molecular descriptors in machine
learning for catalysis

ML models inherently operate on numerical data, necessitating
the transformation of complex chemical entities, such as
ligands, substrates, and catalysts, into quantitative formats
for use in predictive tasks within catalysis. These numerical
representations, referred to as molecular descriptors, encode

Fig. 6 Black box approach.

Highlight ChemComm

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/1
0/

20
26

 4
:3

6:
59

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cc05274b


This journal is © The Royal Society of Chemistry 2025 Chem. Commun., 2025, 61, 18247–18272 |  18253

structural, electronic, steric, and topological characteristics of
molecules. The selection and design of suitable descriptors
constitute a critical step in the ML workflow, often exerting a
decisive influence on model performance and predictive accu-
racy. Molecular descriptors are defined as numerical values
that encapsulate specific properties of a molecule. Steric
descriptors, such as the percent buried volume (% V), are
commonly employed to quantify the spatial footprint of ligands
around a metal center.45 These descriptors are instrumental in
assessing steric hindrance and catalyst accessibility, both of
which are key factors in determining catalytic efficiency. Elec-
tronic descriptors, including quantities such as the HOMO–
LUMO energy gap and dipole moments, characterize the elec-
tronic structure of molecules. They provide insights into reac-
tivity, electrophilicity, and nucleophilicity, all of which are
essential for modelling chemical behaviour. Geometric descrip-
tors, for example bite angles and torsional angles, convey
information about the three-dimensional conformation of
molecules, which can critically influence the positioning of
reactive sites and, consequently, the outcome of catalytic
processes.

Lastly, topological descriptors, such as molecular finger-
prints, encode information about molecular connectivity and
atom-wise relationships in a format that does not require
explicit geometric coordinates. These descriptors effectively
transform molecular input into a format amenable to numer-
ical analysis, enabling ML models to identify patterns and
correlations that underlie catalytic behavior, reactivity, or selec-
tivity. The process of feature engineering involves careful
selection, calculation, and preprocessing of molecular descrip-
tors prior to training the ML model. This step is often critical,
as irrelevant or poorly chosen features can obscure meaningful
patterns, degrade model performance, and increase the risk of
overfitting.

First, it requires the identification of descriptors that are
chemically meaningful and relevant to the specific problem
under investigation. Next, the selected descriptors must be
computed using a range of methods, which may include
quantum chemical calculations (such as density functional
theory, DFT), cheminformatics toolkits (such as RDKit), or
semi-empirical approaches. Finally, the resulting descriptor
matrix must be cleaned and pre-processed. This includes tasks
such as removing redundant or highly correlated features,
imputing missing values if present, and applying normalization
or scaling procedures to ensure compatibility with the learning
algorithm. Each of these stages plays a crucial role in ensuring
that the features supplied to the model are both informative
and robust. This manual or semi-automated process has

traditionally required significant domain expertise and iterative
refinement, especially in catalysis, where subtle changes in
ligand architecture or electronic properties can have profound
effects on reactivity.

Recent advancements in ML, particularly in deep learning
and graph-based models such as graph neural networks
(GNNs), have shifted part of the feature extraction process from
human-driven engineering to model-driven learning. As pre-
viously stated, in these frameworks, molecules are often repre-
sented as graphs.

This automated descriptor learning holds promise for redu-
cing bias introduced by manual feature selection, uncovering
latent chemical relationships, and generalizing across diverse
molecular spaces. However, it also comes with increased com-
putational complexity and reduced interpretability, which are
important considerations in scientific applications.

Table 2 summarizes key categories of molecular descriptors
commonly employed in catalysis-oriented ML applications,
along with representative examples and their functional
relevance.

5. Model training, validation and
evaluation

To develop ML models that are robust and capable of general-
izing beyond the training data, it is essential to divide the
available dataset into separate subsets for training and
validation.45 The training set is used to fit the model para-
meters, while the validation set serves to evaluate the model’s
performance on unseen data, thereby providing an estimate of
its predictive power. Model performance is typically quantified
using a set of statistical metrics, each suited to different types
of predictive tasks. For regression problems, such as predicting
catalytic activity or reaction yield, commonly used metrics
include the coefficient of determination (R2), which indicates
the proportion of variance in the target variable that is
explained by the model. A higher R2 value suggests a better fit
to the data. Another widely used metric is the mean absolute
error (MAE), which measures the average magnitude of the
differences between predicted and actual values, providing an
interpretable indication of prediction accuracy in the same
units as the response variable.

In classification tasks, categorizing catalysts as active or
inactive, the accuracy score is often reported. This metric
reflects the proportion of correct predictions made by the
model out of the total number of predictions. However, in
cases of class imbalance, additional metrics such as precision,

Table 2 Molecular descriptors in catalysis

Descriptor type Example Interpretation/function

Steric % Vbur Measures the spatial crowding or steric hindrance near a site
Electronic HOMO–LUMO gap Indicates reactivity, electrophilicity, or nucleophilicity
Geometric Bite angle, torsional angle Describes the 3D conformation and spatial alignment of ligands
Topological Molecular fingerprints Encodes structural connectivity without explicit geometry
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recall, and F1-score may also be necessary to capture model
performance more comprehensively.

To mitigate the risk of overfitting and obtain a more reliable
estimate of model generalizability, cross-validation is fre-
quently employed. In this approach, the dataset is partitioned
into multiple train-test splits (folds), and the model is trained
and evaluated across these partitions in a systematic manner.
This allows for a more robust assessment of model stability and
ensures that performance metrics are not overly dependent on
a particular data split.

In ML, models are validated through a tiered approach: the
training set is used to build the model, the test set evaluates its
performance on unseen data from the same study, and a
separate external validation set, often new experimental data,
challenges the model to generalize to completely novel condi-
tions. The high R2 values reported across all three tiers strongly
suggest the model has captured genuine physical insights and
is not overfitted, underscoring its predictive reliability.

6. Navigating chemical space: ML
strategies for catalytic reaction
development

The application of ML in organometallic catalysis has emerged
as a powerful tool to accelerate the development and optimiza-
tion of synthetic reactions. The selection of optimal reaction
conditions, including the choice of catalyst, solvent, reagent,
temperature, and time, is a fundamental aspect of organic
synthesis, critically impacting both the efficiency and selectivity
of chemical transformations. Traditionally, this optimization
has relied heavily on the intuition and experience of synthetic
chemists, often requiring labour-intensive and time-consuming
trial-and-error experimentation. Recent advances in ML have
introduced transformative methodologies to accelerate and
rationalize this process. Several studies have demonstrated that
data-driven models can significantly reduce the experimental
burden by accurately predicting reaction outcomes under var-
ied conditions, even in the absence of prior empirical data.

Despite significant progress, current methods for predicting
reaction conditions still face important limitations. Most
approaches cannot reliably predict the full set of reaction
parameters, including catalysts, solvents, reagents, and tem-
perature, across large collections of reactions. Moreover, most
methods do not account for the interdependence between these
factors, which means that compatibility issues between chemi-
cals and reaction conditions are often ignored. Evaluating the
performance of these models on large datasets is also challen-
ging, partly because comprehensive, machine-readable data-
bases with standardized classifications of catalysts, solvents,
and reagents are lacking, and partly because it is difficult to
quantitatively assess predictions that involve complete sets of
conditions. Another key challenge lies in representing the
chemical context in a way that is both general enough to be
widely applicable and specific enough to capture meaningful
chemical detail. Representations that are too general may

overlook important functional characteristics, while overly spe-
cific approaches, such as copying entire reaction conditions
from previous experiments, do not provide insights into
chemical similarity or allow for broader predictions.

A lot of studies focused narrowly on isolated elements of the
chemical context (e.g., solvent choice or catalyst class) or on
restricted reaction families. For example, solvent selection has
been extensively investigated as an independent problem.
Struebing et al. combined quantum mechanical (QM) calcula-
tions with a computer-aided molecular design framework to
identify solvents capable of accelerating reaction kinetics.46

Although effective in specific cases, this approach is difficult
to scale due to the high computational cost associated with QM
calculations.

Data-driven methods have also been applied to suggest
conditions for particular reaction types. In this context, Marcou
et al. developed an expert system to predict suitable catalysts
and solvents for Michael additions,71 trained on 198 known
reactions.47 The task was framed as multiple binary classifica-
tion problems, determining whether a given solvent or catalyst
would be appropriate for a particular Michael reaction. Never-
theless, in an external test set, only 8 out of 52 reactions had
both predicted solvent and catalyst matching the experimental
conditions. Many more studies could be mentioned here, high-
lighting the common trend of investigating only a few reaction
parameters at a time, which often limits general applicability
and overlooks the interplay between different components of
the chemical context.

6.1 Reaction conditions optimization via machine learning
models

One of the most direct and practical applications of machine
learning (ML) in catalysis is the optimization of reaction con-
ditions. By predicting promising conditions with fewer experi-
mental runs, ML offers an efficient alternative to the traditional
trial-and-error approach that often dominates synthetic
chemistry.49

In 2018, Jensen and colleagues introduced a pioneering
study that expanded the scope of ML beyond narrow problems
such as solvent or catalyst selection.50 Instead, their hierarch-
ical neural network simultaneously predicted catalysts, sol-
vents, reagents, and reaction temperature, addressing the
multifactorial interplay that governs catalytic outcomes. The
authors constructed a hierarchical neural network model
trained on approximately 10 million single-step, single-
product reactions curated from the Reaxys database. Reactions
were encoded using Morgan circular fingerprints for reactants
and products, from which reaction fingerprints were derived to
represent the structural changes taking place. In other words,
the authors trained their model on millions of published
reactions and taught it to recognize how molecules change
during a transformation, so that the algorithm could then learn
which catalysts, solvents, and reagents are typically used under
similar circumstances: the model was able to develop its own
internal ‘‘map’’ of chemical species, where solvents and
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reagents with similar roles or properties were placed closer
together.

To train the model, the different condition parameters
(catalysts, solvents, reagents) were treated as classification
problems: for each category, the algorithm had to choose the
correct option among hundreds of possible chemicals. Each
chemical was represented using a ‘‘one-hot encoding,’’ mean-
ing that every candidate was assigned its own unique slot in a
long vector, where the correct entry is marked as ‘1’ and all the
others as ‘0’. Put simply: imagine you have a list of 200 possible
solvents: one-hot encoding means creating a column for each
solvent and marking ‘‘1’’ only for the one that was actually
used, while all the others get ‘‘0’’. In this way, the algorithm
knows exactly which solvent is present without assuming any
similarity between them. Temperature, on the other hand, is
not a yes/no choice but a number that can vary continuously, so
it was handled as a regression problem where the model tries to
predict a realistic numerical value. A sequential prediction
scheme was adopted, in which the catalyst prediction informed
the solvent prediction, which in turn conditioned the reagent
and temperature predictions. This design mimics the logical
reasoning employed by practicing chemists and captures inter-
dependencies among condition elements. Because the dataset
was so large, the authors first had to clean and simplify it. Many
chemical species appeared only very rarely in the database and
including them would have made the model harder to train
without adding much useful information. To avoid this ‘‘data
sparsity’’, species used fewer than 100 times were excluded,
leaving a still impressive 11.4 million reactions across 803
catalysts, 232 solvents, and 2247 reagents.

Conditions were modelled as classification problems with
one-hot encodings, while temperature was treated as a
regression task. A sequential prediction strategy was adopted:
catalyst prediction informed solvent choice, which in turn
conditioned reagent and temperature outputs, mirroring che-
mists’ decision-making.

Performance was strong: solvents and reagents were cor-
rectly ranked among the top ten suggestions ca. 83% of the
time, catalysts above 90%, and the entire context matched
literature conditions in 57% of cases (rising with functionally
equivalent alternatives). Temperature predictions were within
�20 1C in most cases, with accuracy improving when the
chemical context was correct. Qualitatively, the network often
suggested either the reported conditions or chemically reason-
able substitutes, such as predicting piperidine instead of
morpholine for Fmoc deprotection. Importantly, inference
was in the order of milliseconds per reaction, vastly outper-
forming nearest-neighbour searches. The study highlighted
how ML can both capture functional similarities between
species and scale efficiently, offering an invaluable tool for
integration into synthesis planning platforms.

With the aim of addressing the dataset challenge, Li
and colleagues presented in 2024 AutoTemplate, a data pre-
processing protocol designed to enhance the quality and relia-
bility of chemical reaction datasets used in machine learning
applications for organic chemistry.51 Recognizing that the

performance of models in yield prediction, retrosynthesis,
and reaction condition recommendation depends heavily on
dataset integrity, the authors propose a two-stage framework
consisting of generic template extraction and template-guided
reaction curation. Using simplified SMARTS representations,
AutoTemplate derives broadly applicable reaction templates
that are then systematically applied to validate, correct, and
complete reaction entries—addressing issues such as missing
reactants, incorrect atom mappings, and erroneous reactions.

A distinctive aspect of the method lies in its ability to
identify and correct false reactions by leveraging reliable entries
within the dataset as self-consistent references. Applied across
a variety of reaction types, AutoTemplate demonstrates sub-
stantial improvements in dataset quality, offering a stronger
foundation for developing accurate machine learning models
in chemistry. Through this work, Li and colleagues provide a
concrete framework for correcting common errors such as
missing reactants and atom-mapping inconsistencies, directly
reinforcing the point that dataset quality critically affects ML-
driven catalysis and synthesis prediction.

Another influential contribution came from the Doyle group
and co-workers, who focused on yield prediction in Pd-
catalyzed Buchwald–Hartwig aminations.14 The central chal-
lenge was the unpredictable effect of functional groups, such as
isoxazoles, that can poison catalysts or trigger side reactions. To
tackle this, instead of directly varying substrates bearing het-
erocycles, they adopted a Glorius fragment additive screening
approach that enables the testing of hundreds, if not thou-
sands, of distinct interactions within a short timeframe and
with limited resources, effectively transforming a traditionally
slow and labour-intensive process into a rapid and streamlined
screening strategy. It is a clever screening trick to quickly test if
a specific functional group will cause problems in a chemical
reaction. Instead of synthesizing complex molecules, scientists
simply add a small, representative fragment of the functional
group to the reaction mixture. If the reaction proceeds well, the
group is compatible. If the yield plummets, the fragment is
likely to interfere, perhaps by poisoning the catalyst or initiat-
ing a side reaction. It is a high-throughput shortcut to map out
what works and what does not. Although not without limita-
tions (free fragments may sometimes behave differently than
when incorporated into larger molecular frameworks) it none-
theless provides an exceptional starting point for mapping
the landscape of chemical reactivity. This strategy enabled the
generation of an unusually rich dataset of over 4600 nanomole-
scale reactions, spanning multiple aryl halides, ligands, bases,
and additive combinations.

A key methodological advance was the automated genera-
tion of 120 quantum-chemical descriptors for all reaction
components, allowing the ML model to uncover relevant phy-
sicochemical trends without human bias in descriptor choice.
Among tested algorithms, Random Forests provided the best
performance, achieving R2 = 0.92 on the test set with RMSE =
7.8%. Remarkably, even with only 5% of the dataset, the model
outperformed linear regression trained on 70%. The model
generalized well, correctly predicting yields for eight unseen
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isoxazole additives. Importantly, analysis of descriptor impor-
tance revealed that electrophilic isoxazoles inhibit the reaction
by undergoing competitive oxidative addition with Pd(0), a
mechanistic insight subsequently validated experimentally.
This study exemplifies how ML can transform empirical
reactivity.

A further advance was made two years later by Fu et al., who
developed a deep neural network for the Suzuki–Miyaura cross-
coupling reaction, a cornerstone of C–C bond formation.18

Despite its versatility, this transformation is notoriously diffi-
cult to optimize due to the interdependence of catalyst, sub-
strate, and condition choices. The DNN software integrated
both molecular descriptors and external variables such as
temperature, residence time, and catalyst loading, features
often neglected in prior ML studies. Training data comprised
387 well-curated reactions, systematically varying halides,
boron reagents, and eight Pd pre-catalysts.52

Input features were 44 quantum-mechanical descriptors,
including HOMO/LUMO energies, Mulliken charges, bond
lengths, and exposed surface areas, providing a physically
meaningful basis for prediction. The model achieved excellent
performance with R2 = 0.945 on test data and 40.92 on external
validation (see Model Training, Validation, and Evaluation
section), substantially outperforming k-nearest neighbour
regression. Computationally, it was highly efficient, screening
over 15 000 candidate reactions in about one minute.

Importantly, predictions were experimentally validated. For
one benchmark reaction, the DNN-guided conditions improved
yields from 30% to nearly 90% in flask-scale experiments. For
new combinations generated by crossovers of known reactants,
predicted yields closely matched experimental results (errors
often o5%). Even for structurally modified substrates absent
from the training set, the model maintained strong predictive
power (see Table 2). Feature analysis underscored the impor-
tance of temperature and catalyst loading, while descriptors
such as halogen bond length and boron atom charge aligned
with established chemical intuition. By linking ML predictions
to mechanistic principles, this work bridged the gap between
‘‘black box’’ computation and interpretable chemistry.

In 2021, Ebi and co-workers introduced a collaborative ML
framework aimed at supporting chemists in the design of
reaction conditions.53 The study was motivated by a central
obstacle in applying ML to synthesis: while most models
require large and uniform datasets, experimental data are
typically scarce, heterogeneous, and often biased toward parti-
cular research goals. To overcome this, the authors proposed a
system where chemists can contribute data incrementally, with
ML algorithms updating predictions iteratively as new results
become available. This framework was tested on two widely
studied but condition-sensitive transformations: Suzuki–
Miyaura cross-couplings and Buchwald–Hartwig aminations.

The core of their method was a Bayesian optimization
algorithm that balanced exploration (searching under-
sampled regions of condition space) with exploitation (refining
promising leads). Reaction conditions were encoded by descrip-
tors of ligands, catalysts, bases, and solvents, and the model

used acquisition functions to select the next set of experiments
predicted to be most informative. By adopting this active-
learning approach, the system reduced the experimental effort
needed to locate high-yielding conditions compared with tradi-
tional grid searches. In practice, the model was able to identify
near-optimal conditions in a fraction of the experimental runs
that exhaustive screening would have required.

To evaluate its generality, the authors compared the
performance of the ML-driven strategy with conventional
experimental design in benchmark studies. The Bayesian opti-
mization model consistently converged more rapidly to high-
yielding conditions, particularly when multiple parameters
interacted non-linearly. Importantly, the method was designed
for collaborative use: separate research groups could maintain
local autonomy while pooling partial datasets, allowing the
algorithm to benefit from a broader data foundation without
requiring full centralization of experimental information. This
opens a path toward ‘‘distributed intelligence’’ in synthesis
optimization. The study also highlighted practical limitations:
predictions depended strongly on the diversity of the initial
dataset. Models trained on narrow or biased data could overfit
and mislead exploration.

Across the five studies reviewed, ML has consistently
demonstrated its value in optimizing catalytic reactions, albeit
through different strategies. Gao et al. showed that hierarchical
neural networks can successfully predict complete reaction
contexts, catalyst, solvents, reagents, and temperature, high-
lighting ML’s ability to learn chemically meaningful represen-
tations from large datasets.50

Li and Chen developed a two-stage preprocessing framework
that extracts and applies simplified SMARTS-based reaction
templates to correct dataset errors such as missing reactants
and atom-mapping inconsistencies.51

The Doyle group demonstrated that random forest models
trained on high-throughput experimental data can accurately
predict yields in Buchwald–Hartwig aminations and identify
inhibitory functional groups, providing both predictive power
and mechanistic insight.14 Fu et al. established that deep
neural networks integrating quantum mechanical descriptors
and reaction parameters can optimize Suzuki–Miyaura cross-
couplings, with experimental validation confirming dramatic
yield improvements.18 Ebi et al. advanced a collaborative Baye-
sian optimization framework that reduces the number of
required experiments and enables data sharing across labora-
tories, underscoring the practicality of active learning in data-
scarce environments.53

In a recent contribution from our group, we reported the
application of a ML-driven optimisation strategy to the
platinum-catalysed reduction of amides under hydrosilylation
conditions.54 Instead of relying on conventional trial-and-error
protocols, we employed the Sunthetics ML platform, an algo-
rithm specifically designed to iteratively refine experimental
conditions while minimising the number of required trials. The
optimisation targeted the reduction of N,N-dimethylacetamide
to the corresponding amine using 1,1,3,3-tetramethyldisiloxane
(TMDS) as reductant and a set of five Pt(II)-based catalysts,
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including thioether- and NHC–ligated complexes. The Sun-
thetics ML platform was employed to iteratively propose reac-
tion conditions by varying three parameters, reaction time
(1–24 h), temperature (25–80 1C), and catalyst loading (0.01–
1.0 mol%), while continuously updating predictions based on
experimentally measured conversion, turnover number (TON),
and turnover frequency (TOF). Through only a limited number
of experiments, the algorithm identified [Pt(DMS)2Cl2] and
[Pt(THT)2Cl2] as the most promising systems, achieving full
conversion under exceptionally mild conditions. Notably,
[Pt(DMS)2Cl2] at 0.01 mol% loading and 39 1C afforded quanti-
tative reduction within 2 h, corresponding to a TOF of 5002 h�1,
one of the highest reported for this transformation. The ability
of the algorithm to converge rapidly on optimal catalytic
conditions underscores its value not merely as a tool for
efficiency but as a driver of discovery, revealing reactivity
patterns that would be difficult to predict solely based on
empirical screening.

In 2024, Li and colleagues present an innovative approach
for the automatic recommendation of reaction conditions
within the framework of computer-aided synthesis planning
(CASP).55 The study introduces a two-stage deep learning model
that integrates a multi-label classification network with a
ranking model to predict suitable reagents, solvents, and reac-
tion temperatures for chemical transformations. A notable

feature of this work is the use of hard negative sampling, which
generates fictitious reaction conditions that challenge the
model to refine its decision boundaries and improve its robust-
ness in distinguishing favorable from unfavorable reaction
contexts.

Trained across ten reaction types—Buchwald–Hartwig cross
coupling, Chan–Lam coupling, Diels–Alder reaction, Fischer
indole synthesis, Friedel–Crafts acylation, Friedel–Crafts alkyla-
tion, Grignard reaction, Kumada coupling, Negishi coupling,
and reductive amination—the model achieves 73% top-10
accuracy in retrieving at least one correct set of reaction
conditions and predicts temperatures within �20 1C of experi-
mental values in 89% of test cases. Importantly, the model
demonstrates the capability to propose viable alternative reac-
tion conditions beyond the confines of the training dataset,
underscoring its potential to inspire novel synthetic strategies
and accelerate discovery in chemical research.

By enabling the generation and prioritization of diverse
reaction conditions based on predicted relevance scores, Li’s
model represents a significant advancement toward the inte-
gration of reaction condition prediction into CASP systems.

Together, these studies (summarized in Table 3) converge
on a clear conclusion: ML not only accelerates the search for
optimal conditions but also offers interpretable insights into
the underlying chemistry, bridging data-driven prediction with

Table 3 Examples of reaction condition optimization via machine learning models

Study
(Year) Optimization problem addressed ML approach Key results & conclusions

Gao et al.
(2018)

Recommend complete reaction contexts
(catalyst, solvents, reagents, temperature)
across diverse organic reactions.

Hierarchical neural networks, Morgan fin-
gerprints; sequential multi-output classifi-
cation + temperature regression.

Top-10 accuracy E83% for solvents/
reagents and 490% for catalysts; full-
context top-10 E57%; temperature MAE
E25.5 1C (E19.4 1C when context correct).
Millisecond-scale inference; scalable, gen-
eral recommendations.

Ahneman
et al.
(2018)

Predict yields and diagnose inhibitory
functional groups in Pd-catalysed Buch-
wald–Hartwig aminations using HTE data.

Random Forest regression trained on
44600 nanomole-scale reactions; B120
computed descriptors.

Test R2 E 0.92 (RMSE E 7.8%); strong data
efficiency; accurate out-of-sample predic-
tions. Identifies electrophilic isoxazoles as
inhibitors via competitive oxidative addition
(validated).

Fu et al.
(2020)

Optimize Suzuki–Miyaura cross-coupling
conditions incl. catalyst loading, tempera-
ture, residence time.

Deep neural network with 44 QM descrip-
tors for reactants and Pd pre-catalysts.

R2 E0.945 (test), 40.92 (external). Screens
B15 200 candidates in B1 min (GPU).
Experimental validation: yield m from
B30% to B89%; generalizes to new/cross-
over substrates; highlights importance of
temperature & catalyst loading.

Ebi et al.
(2021)

Cut experiments by guiding condition
selection for Suzuki–Miyaura and Buch-
wald–Hartwig with scarce/fragmented data.

Collaborative active learning via Bayesian
optimization; iterative updates as labs con-
tribute data.

Reaches high-yielding conditions with far
fewer runs than exhaustive screening; sup-
ports multi-lab pooling. Performance
depends on diversity of seed data; narrow/
bias can mislead.

Nolan
(2024)

Reduction of N,N-dimethylacetamide with
Pt-catalyst; optimization of catalyst identity,
loading, temperature, and reaction time.

Sunthetics ML platform; iterative optimisa-
tion algorithm adjusting experimental con-
ditions based on conversion, TON, and TOF
to minimise the number of experiments.

Identified [Pt(DMS)2Cl2] as optimal catalyst;
achieved quantitative conversion with 0.01
mol% loading at 39 1C in 2 h, corresponding
to TOF = 5002 h�1.

Li (2024) Prediction and ranking of optimal reaction
conditions (reagents, solvents, tempera-
tures) in Buchwald–Hartwig, Chan–Lam,
Diels–Alder, Fischer indole synthesis, Frie-
del–Crafts acylation, Friedel–Crafts alkyla-
tion, Grignard reaction, Kumada coupling.

A two-stage deep learning model combining
multi-label classification. Hard negative
sampling to refine decision boundaries and
improve accuracy in challenging reaction
contexts.

73% top-10 accuracy for correct reagent/
solvent sets and predicts temperatures
within �20 1C in 89% of cases. It success-
fully suggests multiple viable and novel
reaction conditions, demonstrating strong
potential for integration into CASP to
enhance synthesis planning and reaction
optimization.
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mechanistic understanding. Together, these studies illustrate
complementary strengths of ML-guided optimization. ML
models not only reproduce known conditions but also extra-
polate to novel substrates, enabling rapid, scalable, and gen-
eralizable predictions. Through feature importance analysis,
these models often uncover chemically interpretable trends,
bridging data-driven insights and mechanistic understanding.
A key advantage is efficiency: ML can screen thousands of
reaction conditions in silico, drastically reducing experimental
effort. Active-learning strategies further enhance efficiency by
intelligently exploring chemical space, while models trained on
high-throughput data accelerate discovery and reveal key reac-
tivity drivers.

Challenges remain, however, including dependence on
high-quality, diverse training data; the ‘‘black box’’ nature of
many algorithms, despite advances in descriptor design; and
issues of reproducibility and accessibility due to reliance on
specialized or proprietary data. Every approach reported in the
literature highlights how ML can transform experimental
design: not by replacing the chemist, but by augmenting
decision-making, reducing wasted effort, and uncovering
opportunities that might otherwise remain hidden.

6.2 Machine learning for predicting enantioselectivity and
stereo-control

Predicting how a catalyst will behave toward a given substrate
has never been straightforward. Unlike yields, which depend on
global thermodynamic or kinetic factors, stereoselectivity arises
from subtle differences in transition-state energies, often below
1 kcal mol�1. Capturing such fine energetic balances is notor-
iously challenging for traditional computational methods and
impractical for brute-force experimental screening. A minor
modification in the structure of a ligand can transform a highly
selective system into a completely inactive one or even generate
unexpected catalytic species.

For decades, chemists have tackled these challenges
through a combination of intuition, experience, and extensive
cycles of trial and error. In recent years, however, machine
learning (ML) has emerged as a transformative tool for addres-
sing stereo-control. Strategies range from supervised regression
models to unsupervised clustering, each tailored to tackle
specific mechanistic challenges.

By learning stereochemical outcomes directly from reaction
data, ML models offer the dual advantage of accelerating
catalyst discovery and revealing mechanistic principles under-
lying stereoselectivity. Four recent studies exemplify the multi-
faceted nature of this approach, highlighting how ML can
become a valuable ally for researchers working on stereo-
controlled reactions.

A foundational contribution was made by Nandy et al.
focused on accelerating discovery in transition metal chemistry
by applying ML to predict fundamental electronic structure
properties, such as HOMO–LUMO of open–shell transition
metal complexes.56 While not directly predicting enantioselec-
tivity, this frontier molecular orbital energetics are crucial for
understanding chemical reactivity and dictating optical and

electronic properties, which underpin catalytic behaviour. To
overcome the challenge of robust and automated data set
generation, they introduced the molSimplify automatic design
(mAD) workflow and developed topological revised autocorrela-
tion (RAC) descriptors tailored for inorganic chemistry. Their
artificial neural network (ANN) models achieved mean absolute
errors of 0.15 eV for HOMO level and 0.25 eV for HOMO–LUMO
gap, enabling the rapid prediction of properties for diverse
complexes and the discovery of molecules with target HOMO–
LUMO gaps from a large 15 000-molecule design space in
minutes rather than days required by full DFT evaluation. This
capability significantly accelerates the initial screening phase,
allowing for more efficient exploration of chemical space where
subtle structural changes might lead to desired electronic
properties. The problem of efficiently navigating complex,
multidimensional reaction spaces, traditionally reliant on
expert intuition and trial-and-error, has been powerfully tackled
by Bayesian optimization (BO).

In 2021, Doyle and colleagues developed a modular frame-
work, experimental design via Bayesian optimization (EDBO),
and accompanying open-source software to streamline reaction
optimization.57 Recognizing that chemical reaction optimiza-
tion involves numerous discrete and continuous parameters
(e.g., substrate, catalyst, ligand, solvent, temperature, concen-
tration), their BO approach employs a probabilistic surrogate
model (Gaussian process) and acquisition functions to intelli-
gently balance the exploration of uncertain areas with the
exploitation of promising regions. This strategy ensures the
selection of high-quality experimental configurations in fewer
evaluations, significantly outperforming human decision-
making in both optimization efficiency and consistency.
Although their specific applications focused on optimizing
reaction yields for palladium-catalysed direct arylation, Mitsu-
nobu, and deoxy-fluorination reactions, the general framework
is directly applicable to optimizing enantioselectivity. Their use
of DFT-encoded descriptors for reaction components further
enhances the model’s ability to capture the subtle chemical
properties influencing reaction outcomes, thus providing a
systematic way to identify optimal stereo-control conditions
more rapidly.

Complementing these predictive and optimization tools,
Singh and Hernández-Lobato highlighted, in a 2024 contribu-
tion, the critical role of understanding biases in existing
literature data for successful ML applications in stereo-
control.58 Their data-driven analysis of transition metal-
catalysed asymmetric hydrogenation of olefins (AHO), involving
Ir, Rh, and Co-based catalysts, explicitly addressed the chal-
lenge that ML models trained on biased data might merely
reflect literature trends rather than offer genuine mechanistic
insights (Fig. 7). By classifying and visualizing the chemical
space of olefins and ligands (using UMAP plots from 2D
structural fingerprints), they revealed significant biases in
frequently used olefin–ligand combinations and reaction con-
ditions (solvents, temperatures, pressures) for achieving high
enantioselectivity. For example, they showed that Ir-catalysed
AHO often favours unfunctionalized olefins with P,N-type
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ligands, while Rh catalysis is more suited for functionalized
olefins with phosphorus ligands.

Crucially, their work underscored the sparsity of explored
olefin–ligand combinations, pinpointing ‘‘empty boxes’’ (Fig. 8)
that represent specific olefin–ligand pairs not yet reported or
utilized in the extensive literature dataset on asymmetric
hydrogenation, thereby revealing unexplored regions of this
chemical space.

Notably, these uncharted areas still exhibit considerable
potential in terms of median enantioselectivity and therefore
warrant further experimental investigation. Such a detailed
understanding of data distribution and the underlying struc-
ture–selectivity relationships is invaluable for practitioners, as
it enables the design of new, diverse, and unbiased reaction
datasets, ultimately enhancing both the reliability and

predictive power of future ML models aimed at enantioselec-
tivity and stereo-control (Table 4).

The common thread through all these studies is augmenting
the chemist’s intuition: taken together, these studies illustrate
that ML is not a single method but a versatile suite of tools
adaptable to various challenges, from predicting fundamental
properties and optimizing reactions to uncovering hidden
patterns and analysing big data. The common thread is the
ability to surpass the limits of human intuition, not by repla-
cing the chemist, but by augmenting their capabilities. By
efficiently exploring chemical spaces too vast for traditional
approaches, ML acts as a compass: it does not dictate the
destination but suggests the most promising directions, redu-
cing the randomness of the discovery pathway and accelerating
the development of new stereo-controlled processes.

6.3 Ligand design and screening

The design and screening of ligands are pivotal yet challenging
aspects of organometallic catalysis, largely dictating a catalyst’s
performance, selectivity, and stability. Traditionally, catalyst
design has relied heavily on human intuition and local struc-
tural searches, often struggling to reconcile multiple conflicting
property requirements within the vast chemical space of
potential catalysts.

The sheer number of conceivable ligand structures necessi-
tates more efficient property prediction and a deeper under-
standing of quantitative structure–property relationships.
Furthermore, the profound impact of ligand flexibility on
molecular properties and catalytic activities has often been
overlooked, with systematic quantification of conformational
effects remaining underdeveloped. These complexities under-
score the need for advanced, data-driven approaches, such as
machine learning (ML), to navigate the chemical space effec-
tively and accelerate the discovery of novel and efficient
catalysts.

Fig. 7 UMAP plot of the chemical space of olefins used in Ir-, Rh-, and
Co-catalyzed asymmetric hydrogenation. The x- and y-axes correspond
to the two UMAP components obtained after dimensionality reduction.
Reproduced from ref. 58 with permission from the J. Org. Chem., copy-
right 2024.

Fig. 8 Plots of olefin–ligand combinations for (a) Ir, (b) Rh, and Co (enclosed in a black box)-catalysed asymmetric hydrogenation. The y-axis
corresponds to olefin type where each colour displays the identity of olefin. The x-axis represents the type of ligand. The circle size corresponds to the
number of reactions. The colour corresponds to the median enantioselectivity of all reactions in the given category. Reproduced from ref. 58 with
permission from the J. Org. Chem., copyright 2024.
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One significant advancement in this area is the kraken
platform, developed by Sigman group in 2022, which addresses
the challenge of comprehensively mapping the chemical space
of organophosphorus ligands and facilitating their design and
optimization for catalysis.59 The platform was created to move
beyond empirical approaches by providing a comprehensive
discovery platform for monodentate organophosphorus(III)
ligands. A key innovation of Kraken is its generation of com-
prehensive physicochemical descriptors based on representa-
tive conformer ensembles, thereby explicitly accounting for
ligand conformational flexibility, a feature previously under-
developed in ligand characterization. Using quantum-
mechanical (QM) methods, Sigman and colleagues calculated
190 descriptors for an initial set of 1558 ligands, including
commercially available examples and highly cited structures,
forming ‘‘Virtual Library 1’’ (VL1).59 To drastically expand the
explored chemical space, they developed ML models, including
a ‘‘Bag of Substituents’’ (BoS) model and more generalizable
approaches using molecular fingerprints and graph convolu-
tional neural networks (Fig. 10).

These models were trained on the QM data to predict
properties for over 300 000 new ligands (VL2, based on unary
and binary substituent combinations) and enabled on-demand
queries for approximately 191 million entries (VL3, covering
ternary combinations). The platform employs dimensionality
reduction techniques like Uniform Manifold Approximation
and Projection (UMAP) and Principal Component Analysis
(PCA) to visualize the property space, aiding in the identifi-
cation of unexplored regions and the understanding of property
limits.59

Notably, Kraken demonstrated its utility in inverse catalyst
design by building linear free energy relationships and regres-
sion models from experimental data, which could then predict

the performance of the entire ligand database to suggest
optimal candidates for subsequent experiments. This capability
was exemplified by its application to enantiospecific Pd-
catalyzed sp3–sp2 cross-coupling reactions, where it identified
structurally unique ligands optimal for the reactions and even
suggested hybrid designs.

Building on the utility of ML in navigating ligand space,
Schoenebeck and colleagues recently tackled the specific chal-
lenge of rationally designing multinuclear catalysts, where the
correlation between a metal’s ligand and its preferred specia-
tion (oxidation state, geometry, and nuclearity) is often
unknown.60 Their work focused on accelerating the identifi-
cation of suitable ligands to form trialkyl phosphine-derived
dihalogen-bridged Ni(I) dimers, a class of complexes previously
unexplored for bulky trialkyl phosphine ligands, and difficult to
access through conventional methods from common precur-
sors like Ni(COD)2.

To overcome the absence of known Ni(I) dimer references,
Karl et al. employed an assumption-based unsupervised
machine learning approach. They started with a subspace of
66 ligands from an existing database (LKB-P) known to be
similar to bulky trialkyl phosphines, like P(t-Bu)3. They then
introduced ‘‘pseudo-positive’’ (P(t-Bu)3) and ‘‘pseudo-negative’’
(tri(neopentyl)phosphine) references to guide the clustering
algorithm, based on the assumption that these would (or would
not) lead to the desired Ni(I) dimer geometry.60

Problem-specific descriptors, 184 in total, encompassing
steric and electronic effects of free ligands and various Ni
complexes, derived from DFT calculations, were then generated
and refined. Through sequential k-means clustering, the algo-
rithm successfully grouped 16 phosphine ligands, many of
which had not been previously utilized in Ni catalysis, along-
side P(t-Bu)3 as promising candidates for Ni(I) dimer

Table 4 Examples of machine learning models for predicting enantioselectivity and stereo-control

Study
(Year) Optimization problem addressed ML approach Key results & conclusions

Nandy et al.
(2018)

Property prediction in transition-metal
complexes (spin states, HOMO–LUMO
gaps) as a foundation for stereochemical
modelling

LASSO regression, Kernel ridge regression,
artificial neural networks (ANNs) trained on
revised autocorrelation (RAC) descriptors

ANNs achieved MAEs as low as 0.15 eV
(HOMO), identifying non-local steric
descriptors as dominant. Framework
demonstrated transferability to stereocontrol
by capturing ligand environment effects.

Shields
et al. (2021)

Optimization of Pd-catalyzed C–H aryla-
tion and Buchwald–Hartwig couplings,
with potential extension to stereo-
selective outcomes

Bayesian optimization (Gaussian process
surrogate models with DFT descriptors;
EDBO platform)

Outperformed expert chemists and DOE in
finding optimal conditions with fewer
experiments. Balance of exploration/exploi-
tation enabled systematic optimization of
selectivity-driven transformations.

Hueffel
et al. (2021)

Catalyst speciation problem: predicting
ligand-induced formation of dinuclear
Pd(I) versus Pd(0)/Pd(II) species in cross-
coupling

Unsupervised ML (k-means clustering on
ligand knowledge base of 348 phosphines;
refinement with DFT-derived problem-
specific descriptors)

Identified clusters of ligands favouring Pd(I)
dimers, reducing search space from 348 to
B25%. Experimental validation yielded 8
new air-stable Pd(I) dimers (some previously
unknown). Showcased ML’s ability to reveal
non-intuitive ligand–speciation
relationships.

Singh &
Hernández-
Lobato
(2024)

Prediction of enantioselectivity in asym-
metric hydrogenation of olefins (Ir, Rh,
Co catalysts; 412 000 reactions)

Random forests, gradient boosting, neural
networks trained on substrate/ligand finger-
prints and reaction conditions

Models achieved R2 4 0.8 for % ee in Ir/Rh
systems. Identified mechanistic trends: Ir
favours minimally functionalized olefins; Rh
requires coordinating groups. Highlighted
dataset bias toward high % ee as key
limitation.
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formation.60 Experimental validation confirmed the ML predic-
tions, leading to the successful synthesis and X-ray crystal-
lographic characterization of 12 novel dibromo-bridged Ni(I)
dimers (see Fig. 9). This ML-guided discovery enabled a sig-
nificant catalytic application: the iodo-selective arylation of
polyhalogenated arenes with competing C–Br and C–Cl sites,
achieved in under 5 minutes at room temperature with low
catalyst loading, a feat previously unmet by alternative mono-
or dinuclear Pd or Ni catalysts. This study powerfully

demonstrates the utility of ML in navigating unexplored
ligand spaces for specific metal speciation. Further refining
our understanding of ligand performance, Doyle and Sigman
addressed the challenge of ‘‘reactivity cliffs’’ in catalysis, where
a binary outcome (reaction occurs or not) depends on a critical
threshold value of a molecular descriptor (Fig. 11).61

They aimed to identify a physically meaningful descriptor that
could classify catalyst ligation states and predict reaction
outcomes.

Fig. 9 Structures of the 12 novel dibromo-bridged Ni(I) dimers (D1–D13, D16, and D17) confirmed by X-ray crystallography. These complexes were
identified using an unsupervised ML workflow combining k-means clustering of a phosphine ligand database with DFT-derived descriptors, guiding the
discovery of previously unexplored Ni(I) dimers. Selected dimers were validated experimentally via comproportionation, highlighting the ML-driven
exploration of new Ni(I) chemistry. Reproduced from ref. 54 with permission from the J. Am. Chem. Soc., copyright 2023.
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Fig. 10 (A) Above: illustrations of some properties computed for each conformer. (B) Ensembling conformer properties to generate ligand descriptors.
Note that absolute buried volume in Å3 is used in this library instead of the more common percent buried volume % Vbur (% Vbur = Vbur/1.8) to retain
comparability with the total volume. Below: using kraken for virtual ligand optimizations in asymmetric catalysis. (A) General workflow for the case study.
(B) Statistical modelling of experimental results to predict how data from one reported reaction could inform ligand choice in the other through a virtual
screen of VL1 for ligands that are predicted to result in high selectivity for the stereo-retentive cross-coupling. (C) Combining the statistical models for
both reactions to evaluate the entirety of VL2 for new selective ligands. (D) Exploring the PCA descriptor space to determine ligands with novel structures
in the high-selectivity regime. Reproduced from ref. 59 with permission from JACS, copyright 2022.
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While traditional descriptors like the Tolman cone angle
often fail to capture the nuanced topological features and
conformational flexibility that influence reactivity, Doyle and
Sigman utilized the comprehensive descriptor set from the
kraken platform.61 Their key finding was the identification of
minimum percent buried volume (% Vbur (min)) as a distinctive
steric descriptor capable of classifying reactivity cliffs in 11 Ni-
and Pd-catalyzed cross-coupling datasets. This descriptor quan-
tifies the smallest % Vbur among all energetically accessible
conformers of a ligand, effectively representing the steric bulk
within the metal’s first coordination sphere under optimal
fitting conditions.

Through spectroscopic and crystallographic organometallic
studies, they demonstrated that a % Vbur (min) threshold of
approximately 32% accurately predicted the binary outcome of
bis-ligated (L2) versus monoligated (L1) metal complexes. This
was mechanistically validated by DFT calculations showing a
sharp decrease in the free energy of ligand dissociation (DGdis-
soc) for [L2Ni(benzaldehyde)] complexes as % Vbur (min)
approached 32%, corresponding to a significant increase in
Ni–P bond length due to steric pressure. The universality of this
concept was shown by applying the classification workflow to
various Pd-catalyzed cross-coupling reactions, where % Vbur

(min) thresholds were observed, reflecting the distinct L1 or
L2 requirements of different reactions. This work provided a
robust, quantitative tool for mechanistically rationalizing
ligand performance, predicting catalyst ligation state, and even

identifying scenarios where steric properties are not rate-
determining, pointing towards ligandless reactivity or nanopar-
ticle formation.61 These studies collectively showcase the trans-
formative power of ML in organometallic catalysis for ligand
design and screening. From the comprehensive mapping and
expansion of ligand chemical space by the kraken platform,
through the targeted discovery of ligands for specific metal
speciation using unsupervised ML, to the identification of
critical reactivity cliffs and mechanistic insights offered by %
Vbur (min), ML-driven workflows are proving instrumental in
overcoming traditional limitations. These approaches not only
accelerate the discovery of novel and efficient ligands but also
deepen our fundamental understanding of structure–reactivity
relationships, paving the way for more informed and rational
catalyst design.

6.4 Mechanism prediction and pathway elucidation

Understanding reaction mechanisms remains a foundational
challenge in catalysis, as it is crucial for optimizing catalytic
processes and designing more efficient catalysts. The detailed
knowledge of how reactants transform into products allows for
better control over reaction outcomes, helping to increase
reaction rates, selectivity, and sustainability. While density
functional theory (DFT) has traditionally served this purpose
by providing accurate models of molecular interactions, ML
offers complementary capabilities. ML can efficiently navigate
complex or multistep catalytic cycles, identify patterns and

Fig. 11 (A) Examples of monodentate phosphines used in Ni and Pd cross-coupling reactions, including TyrannoPhos and TriceraPhos (DinoPhos
ligands) recently reported by the Doyle lab. TRIP, 2,4,6-triisopropylphenyl. (B) Commonly used methods for quantifying phosphine steric properties.
Cone angle is the traditionally used descriptor for quantifying monodentate phosphine steric bulk and is defined as the angular width (in degrees) of an
imaginary cone needed to encapsulate the entire phosphine structure; the vertex of the cone is defined by a metal atom bound to the ligand with a bond
length of 2.28 Å. % Vbur, a more modern descriptor designed initially to study N-heterocyclic carbenes, is defined as the volume percent of the
phosphine’s atoms that fill an imaginary sphere of 3.5 Å radius that is centered on a metal atom bound to the phosphine with a bond length of 2.28 Å.
Sterimol descriptors B1 and B5 describe the lowest and highest width of the ligand perpendicular to the metal–phosphorus axis, respectively, and
Sterimol L describes the ligand’s length along that axis. (C) Phosphine descriptor library (kraken) capturing multiple ligand conformers, with maximum,
Boltzmann average, and minimum % Vbur values of the conformational ensemble of P(i-Bu)3 shown. (D) This work. L1, one equivalent of ligand bound to
metal; L2, two equivalents of ligand bound to metal; M, metal. Reproduced from ref. 61 with permission from Science, copyright 2021.
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predict reaction pathways that might be too intricate for tradi-
tional methods. By integrating ML with DFT, researchers can
accelerate the discovery of new catalytic processes and improve
the design of catalytic systems.

In this context, Roet and colleagues introduced in 2021 a
novel ML-based method designed to enhance our understand-
ing of how chemical reactions occur in molecular simulations,
with a particular focus on liquid systems.62 The technique
leverages decision tree (DT) classifiers to pinpoint key
features-mainly atomic distances-that play a critical role in
facilitating a chemical reaction. Unlike traditional methods
that rely on 3D atomic positions, which can be influenced by
rotations or translations of molecules, this approach reformu-
lates simulation data into a distance matrix format. This
adaptation enhances the robustness of the analysis and makes
it more compatible with rare-event simulation methods like
replica exchange transition interface sampling (RETIS), which
tracks rare reaction events without the need for predefined
reaction coordinates. To further refine the results, the authors
employ random forests and statistical averaging to estimate
uncertainties in their predictions. Additionally, the method can
be extended to incorporate other descriptors such as velocities
or angles, allowing for more flexibility in future applications.

In a practical demonstration of the method, the authors
studied proton transfer in formic acid (FA) surrounded by four
or six water molecules, representing a simple but crucial
reaction in acid–base chemistry (Fig. 12).

Their results revealed that the number of water molecules
significantly influences both the rate and diversity of the
reaction pathways. When only four water molecules were pre-
sent, the reaction was highly specific, requiring precise align-
ment of FA and specific atomic distances below defined
thresholds. If these conditions were met, there was a 71%
chance that the system would follow a reactive pathway. In
contrast, with six water molecules, the system exhibited much
greater flexibility, with multiple combinations of atomic

distances enabling proton transfer. Though the reactivity remained
similar (72%), the reaction happened approximately 10 million
times faster compared to the case with fewer water molecules. This
shift in reaction dynamics highlights how the number of surround-
ing water molecules influences the overall structure and hydrogen
bonding network, which in turn affects the speed and variety of
reaction pathways. The method proved to be computationally
efficient, training quickly and scaling well with the amount of data,
but its accuracy was highly dependent on the quality of the input
data. If biased or low-quality simulations were used, the ML model
could highlight misleading features. Nonetheless, the approach
offers a clear, interpretable, and transferable tool for investigating
complex reaction mechanisms.

In a separate effort, Baldi and colleagues presented a new
ML framework for predicting the detailed mechanisms of
organic chemical reactions.63 Traditionally, such predictions
have relied on rule-based systems or expert chemists’ intuition.
However, the authors proposed a data-driven approach that
focuses on analysing the interactions between molecular orbi-
tals (MOs), specifically the interactions between electron
donors and acceptors in reactant molecules. This framework
considers various reaction conditions, such as temperature and
solvent type, and addresses several challenges inherent in
modelling chemical reactions. First, there was a lack of a
suitable dataset for training the model. To overcome this, the
authors used a rule-based system called Reaction Explorer,
which simulates reactions and identifies productive steps
(those leading to final products). By simulating over 6 million
reactions, they identified 2989 productive reactions and
labelled them according to whether the atoms involved parti-
cipated in a productive step. This dataset, along with labels for
‘‘reactive’’ and ‘‘non-reactive’’ atoms, served as the foundation
for training their ML model.

The second challenge the team faced was the sheer number
of possible reactions, which grows rapidly due to the many
potential combinations of molecular orbital pairs. To handle
this complexity, the authors trained two separate neural net-
works to classify atoms in reactants as likely to be reactive
under certain conditions. These networks used over 1500
chemical and structural features, such as atomic charge,
neighbouring atoms, and bond arrangements, to assess the
reactivity of individual atoms. The classification step effectively
reduced the number of reactions considered by 94%, while
maintaining a very low false negative rate of under 0.1%. This
ensured that the model could accurately classify reactions
without missing productive ones. The third challenge was
ranking the remaining reactions by their likelihood of success.
The authors treated this as a ranking problem, using pairwise
comparisons to score reactions based on their productivity. A
neural network trained for this task helped identify the most
likely reaction mechanisms, achieving impressive accuracy. In
nearly 90% of cases, the model ranked the correct mechanism
first, and in 99.9% of cases, all productive reactions were found
within the top five predictions.

The authors demonstrated the model’s ability to predict
detailed reaction mechanisms with several examples, such as

Fig. 12 Decision trees for the systems with (A) four water molecules or (B)
six water molecules around the formic acid. Reproduced from ref. 62 with
permission from the American Chemical Society, copyright 2023.
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the Claisen condensation reaction, a classic organic reaction in
which an ester undergoes an intramolecular transformation to
form a new carbon–carbon bond. The model also showed its
ability to generalize beyond the training data, correctly predict-
ing reactions that involved larger molecules, such as seven-
membered ring formations. In another example, the model
compared two competing reaction mechanisms involving an
oxonium intermediate and ranked them according to their
likelihood of success. Although the model slightly misranked
one mechanism as more favourable, this was chemically justifi-
able, as hydrogen transfer reactions are often reversible and
may be preferred under certain conditions. This highlights the
model’s potential for providing detailed mechanistic insights
in organic chemistry.

In addition to predicting reaction outcomes, the system was
also capable of predicting the type of reaction (polar, radical, or
pericyclic), allowing for more nuanced predictions (Fig. 13).64

Following the classification and ranking steps, the model was
able to generate multi-step synthetic routes using a depth-first
search algorithm, successfully finding plausible reaction path-
ways, including sequences involving protecting group forma-
tions and classic synthetic reactions like the Robinson
annulation (Fig. 13(B)). The authors argue that their system
offers a powerful tool for both research and education in
chemistry. The system is publicly available through a web-
based interface, making it accessible to the broader scientific
community.

In 2023, Schaaf and De introduced an active learning pro-
tocol for developing ML force fields (MLFFs) to model catalytic
reactions at the atomic scale.65 Their method aims to overcome
the limitations of traditional density functional theory (DFT)
methods, which are accurate but computationally expensive. By
combining DFT data with ML, the protocol efficiently predicts
minimum energy paths (MEPs) for catalytic reactions. It was
applied to the hydrogenation of CO2 to methanol on indium
oxide, and the results demonstrated the model’s ability to
reproduce reaction intermediates and transition states with
high accuracy (Fig. 13(C)). The approach also allowed for the
identification of previously unrecognized rate-limiting steps
and provided more realistic free energy profiles by incorporat-
ing thermal and entropic effects. This framework could signifi-
cantly reduce computational costs while maintaining high
accuracy, opening new possibilities for detailed mechanistic
studies in catalysis and materials science.

In another application of ML, Sui and Zhao developed two
models for optimizing peracetic acid (PAA)-based advanced
oxidation processes (AOPs) for environmental water
treatment.66 These processes are important for degrading
recalcitrant organic pollutants, but traditional methods can
be expensive and produce harmful by-products.67 The CRCO-
ML model (CRCO = catalyst and reaction condition optimiza-
tion), trained on a dataset of over 1000 experimental cases,
predicted the most influential factors affecting PAA activation,
such as catalyst composition, dosage, and environmental con-
ditions (Fig. 14). The model was validated experimentally, and
its predictions showed high accuracy, with errors below 10%.

The MI-ML model (MI = mechanism identification) focused on
identifying the degradation mechanisms of pollutants, using
quantum chemical descriptors and quenching experiments.
This model successfully identified key reactive oxygen species,
such as hydroxyl radicals and organic radicals, which play a
critical role in the degradation process. The study demonstrates
the potential of ML to optimize environmental processes,
although the authors stress the need for larger datasets and
more interpretable models.

Finally, in 2024, Reiher and colleagues introduced STEER-
ING WHEEL, a novel and flexible algorithm designed to guide
the automated exploration of chemical reaction networks
(CRNs).68 CRNs-graph-based representations of chemical trans-
formations involving nodes for compounds and reactions-are
crucial for understanding complex catalytic mechanisms. Tra-
ditionally, building such networks through first-principles cal-
culations has been both time-consuming and computationally
demanding, often limited by the lack of universal, scalable
methods. Fully automated tools can be efficient but tend to
oversimplify, while semi-automated approaches require expert
intervention and do not scale well. The STEERING WHEEL
addresses these limitations by combining the autonomy of
algorithmic exploration with intuitive user control, offering a
dynamic balance between automation and expert guidance.

Embedded in the SCINE software suite and operated
through its user-friendly interface HERON, the STEERING
WHEEL enables real-time interaction with the evolving
chemical space. Users can alternate between network expan-
sion steps-which introduce new reactions and intermediates-
and selection steps, which filter, prioritize, or redirect the
search based on criteria such as structural motifs, reactive site
types, or computational cost. This hybrid strategy allows che-
mists to strategically target relevant regions of the reaction
space without specifying individual intermediates, while also
ensuring reproducibility by requiring each expansion to com-
plete before advancing.

The framework was tested across diverse and increasingly
complex systems. In the study of Wilkinson’s catalyst, the
method successfully reconstructed both the Halpern and
Brown mechanisms for olefin hydrogenation,69 preserving the
full triphenylphosphine ligand environment to maintain elec-
tronic and steric accuracy (Fig. 15(A)). This level of detail
revealed multiple novel isomeric intermediates and agostic
interactions not previously documented. While some config-
urations deviated from expected geometries, density functional
theory (DFT) optimizations confirmed the validity of key five-
coordinate structures. The exploration also clarified which
sterically hindered isomers were thermodynamically unfeasi-
ble, supporting their absence in automated outputs.

In a separate application to Ziegler–Natta-catalysed propy-
lene polymerization,64 the method modelled two polymeriza-
tion cycles and a termination step, simulating monomer
insertions and chain termination via b-hydride elimination
(Fig. 15(B)).48 This enabled the identification of expected pro-
ducts like 2-methylpropene and 2,4-dimethylpentene, along
with 18 additional hydrocarbon by-products. Although the use
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of the semi-empirical GFN2-xTB model limited energy preci-
sion, the protocol demonstrated its capacity to handle growing
conformational complexity through the integration of confor-
mer generation tools and post-processing with RDKit and
XYZ2MOL.

The approach also proved effective for analysing the Mon-
santo process,70 an industrial reaction involving methanol
carbonylation catalysed by a rhodium complex.65 This reaction
poses significant challenges due to the presence of multiple
intertwined catalytic cycles and the complexity of transition

Fig. 13 (A) Workflow diagram and (B) examples of mechanisms interpreted by the ReactionPredictor algorithm. (C) Workflow diagram and reaction
profile of the hydrogenation of CO2 to methanol studied by Schaaf and De. Fig. 2(C) is reproduced from ref. 65 with permission from Nature, copyright
2023 for both.
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metal and solution-phase chemistry (Fig. 15(C)).71 Using the
guided exploration protocol, the authors successfully recon-
structed the known mechanism and uncovered new catalytic
pathways, including one initially appearing stoichiometric but
shown to be catalytic upon additional exploration. The ability to
adaptively refine exploration protocols allowed for the detec-
tion of mechanistic features previously missed by automated
methods, such as the methyl iodide activation step. Here,
switching from GFN2-xTB to DFT resolved missing pathways

and improved energy profiles, underscoring the importance of
high-level methods for accuracy.

In the most complex application, the authors investigated
olefin polymerization catalysed by a gallium single-site complex
on silica.72 This system required deeper exploration-spanning
19 network expansion steps-due to the disordered silica surface
and the variety of possible hydrocarbon rearrangements. The
method reproduced known reaction intermediates, identified
unexpected products such as trans-butene and 1,3-butadiene,
and corrected previously misunderstood steps, including
enantioselective transformations. Although more computation-
ally intensive, the guided approach yielded an expansive net-
work of nearly 1800 species and over 14 000 reactions,
including degradation and side reaction paths, demonstrating
its scalability and effectiveness.

The authors emphasize that while the current method-
ology allows for exhaustive and adaptive exploration, its
modular architecture also supports further integration of
advanced tools. Potential extensions include multi-level
electronic structure models, automated solvation corrections,
expanded conformer generation, and the incorporation
of ML, kinetic simulations, and path-based heuristics to auto-
mate selection decisions. The infrastructure is fully open-
source and freely available through SCINE HERON, pro-
moting transparency, reproducibility, and community-driven
development.

Fig. 14 (A) Architecture of CRCO-ML and MI-ML models. (B) Feature
importance from the CRCO-ML model’s predictions analysis. Fig. 3(B) is
reproduced from ref. 64 with permission from Elsevier, copyright 2023 for
both.

Fig. 15 Examples of mechanisms ((A) Rh-based olefin hydrogenation, (B) Ziegler–Natta propylene polymerization and (C) monsanto methanol
carbonylation) interpreted by the STEERING WHEEL algorithm. Reaction schemes are reproduced from ref. 68 with permission from Nature, copyright
2023 for both.
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In the broad field of reaction mechanisms, Li and colleagues
have systematically evaluated three advanced strategies---trans-
fer learning, delta learning, and feature engineering—to
enhance activation energy prediction using graph neural net-
works (GNNs) trained on low-cost semiempirical quantum
mechanical (SQM) data.73 Using the Chemprop/D-MPNN fra-
mework, the authors investigated how each approach balances
accuracy and computational cost when high-level data are
scarce. Among the tested methods, delta learning proved most
effective, accurately mapping low-level SQM activation energies
to high-level CCSD(T)-F12a targets while requiring only 20–30%
of the high-level data used by other methods. Although delta
learning demands computationally intensive transition state
searches, it offers remarkable efficiency gains in data-limited
contexts. Transfer learning showed variable results depending
on the alignment of pretraining and target datasets, whereas
feature engineering provided modest improvements, particu-
larly for thermodynamic descriptors. Overall, the study offers
practical guidelines for selecting data augmentation strategies
in ML-driven reaction engineering and underscores the trade-
offs between accuracy, data availability, and computational
efficiency in predicting activation energies.

6.5 Discovery of novel catalysts and complexes

The discovery of novel catalysts and complexes is a critical yet
challenging endeavor in chemistry, often limited by the vast-
ness of chemical space and the complexity of predicting mole-
cular properties through traditional methods or intuition. ML
is a powerful tool to overcome these limitations, significantly
accelerating the identification of new functional materials. By
training models on computational or experimental data, ML

enables the rapid prediction of key properties. This accelerated
prediction allows for the systematic exploration and enumera-
tion of vast candidate catalyst spaces, even those encompassing
previously unsynthesized ligands or counterintuitive combina-
tions, to uncover unexpected design rules and exceptions to
conventional chemical wisdom. Ultimately, ML-driven discov-
ery empowers researchers to identify and validate entirely new
complexes with desired properties, expanding the frontiers of
catalyst design beyond human-biased approaches.

In homogeneous catalysis, a major challenge is to predict
and understand the speciation of metal catalysts, that is, the
specific forms they adopt in solution, defined by their nucle-
arity (e.g., monomer vs. dimer), oxidation state, and ligation
state. These features are crucial because they directly influence
a catalyst’s reactivity, efficiency, and selectivity. In the case of
palladium (Pd) catalysis, a long-standing question has been
why certain ligands promote the formation of dinuclear Pd(I)
complexes rather than the more common Pd(0) or Pd(II)
species.10 This knowledge gap has posed a major obstacle to
the rational design of such highly effective catalysts. While
traditional ligand maps have provided useful insights, they fall
short of fully capturing the intricate relationships between
ligand characteristics and catalyst speciation. Compounding
the problem, machine learning (ML) approaches typically
require large experimental datasets, which are rarely available
for such complex speciation problems. To overcome these limita-
tions, Schoenebeck and colleagues10 developed an innovative
unsupervised ML workflow that remarkably required only five
experimental data points for its successful implementation.10

Their strategy involved a multi-step approach: initially, a large
database of 348 phosphine ligands (LKB-P) was subjected to

Fig. 16 Newly synthesized Pd(I) dimers and their X-ray crystallographic structures. The figure is from ref. 10 with permission from Science, copyright
2021.

Highlight ChemComm

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/1
0/

20
26

 4
:3

6:
59

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cc05274b


This journal is © The Royal Society of Chemistry 2025 Chem. Commun., 2025, 61, 18247–18272 |  18269

clustering based on general properties to effectively reduce the
vast ligand space (Fig. 17). Crucially, they then introduced 42
problem-specific descriptors, derived entirely in silico via DFT
calculations. These specialized descriptors were designed to cap-
ture the effects of ligands on the stability and geometry of Pd(I)
dimer formation, focusing on aspects like Pd–ligand bond proper-
ties, conformational effects, electronic charges, and various reac-
tion energies. A second round of clustering, utilizing these
problem-specific descriptors, allowed the algorithm to identify
21 promising ligand candidates, including some that had not
been previously synthesized. This ML-driven discovery led to the
experimental verification and synthesis of eight new air-stable
Pd(I) dimers, notably including a previously unknown phosphi-
nane ligand (Fig. 16).

Another significant challenge in catalysis is designing highly
selective catalysts for reactions, like in the Doyle work dealing
with alkane partial oxidation.74

This complexity largely stems from the spin-state-dependent
reactivity of metal-oxo intermediates, which makes it difficult to
establish robust structure–property relationships using conven-
tional methods. While high-throughput computational screen-
ing is powerful, it becomes combinatorially prohibitive when
considering multiple metals, spin states, and a wide array of
ligands. Furthermore, widely successful approaches in compu-
tational screening, such as linear scaling relationships, often
prove limited and break down for isolated, under-coordinated
metal sites or for spin-state-dependent metal-oxo formation.

Doyle and collaborators addressed these challenges by train-
ing Machine Learning (ML) models, specifically Kernel Ridge
Regression (KRR) and Artificial Neural Networks (ANNs), to
predict spin-state-dependent metal-oxo formation energies
(DEoxo). For their models, they developed ‘‘revised autocorrela-
tions (RACs)’’ as novel connectivity-only features specifically
tailored for inorganic chemistry. KRR models were initially

Fig. 17 (A) Initial clustering of the LKB-P using the unsupervised k-means algorithm (k = 8; see Fig. S8 and S9 for further visualization). (B) Newly
introduced descriptors relating to Pd(I)-dimer formation (see Table S2 for details). (C) Illustration of the differentiation of ligands after initial clustering
(middle) and second, problem-specific refinement (right; see Fig. S16 for detailed plot) versus original database (left). The same subset of ligands is
illustrated. The three schemes are from ref. 10 with permission from Science, copyright 2021.
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employed for feature selection and analysis, revealing the
dominance of nonlocal, electronic ligand properties in influen-
cing DEoxo, a finding that contrasts with previous observations
for other transition metal complex properties. Subsequently,
ANNs were utilized to enumerate a vast theoretical catalyst
space, encompassing over 37 000 candidates. This extensive
exploration not only uncovered expected design rules, such as
the destabilization of metal-oxo species with increasing
d-filling, but also revealed unexpected trends and exceptions,
including the orthogonal tunability of oxidative stability and
oxo formation energies. Finally, by integrating the ANNs with a
genetic algorithm (GA) optimization, the researchers system-
atically explored this expanded chemical space. This approach
led to the discovery of novel and often counterintuitive combi-
nations of metals and oxidation states with unexpected oxo
formation energies for oxidatively stable complexes.

These two studies collectively demonstrate the transforma-
tive potential of ML in overcoming fundamental challenges in
catalyst discovery. From deciphering complex speciation beha-
viors to navigating vast chemical spaces for novel reactive
intermediates, ML provides unprecedented capabilities to iden-
tify, predict, and synthesize new catalysts and complexes. By
moving beyond intuition and traditional screening, ML accel-
erates the research pipeline, offering a data-driven path to more
efficient, selective, and sustainable catalytic processes. Future
research continues to integrate these sophisticated ML meth-
odologies with experimental and computational techniques,
paving the way for autonomous catalyst discovery and the
elucidation of complex catalytic phenomena.

7. Challenges and future directions

Over the past decade, ML has evolved from a niche tool to a
central component of research in organometallic catalysis.
From optimizing conditions and predicting yields to uncover-
ing new mechanisms and designing novel ligands, ML has
demonstrated its versatility and power. However, despite the
field’s momentum, several challenges remain that must be
addressed to fully realize ML’s potential in catalysis. As Sigman
and Doyle argue, many datasets used in ML are biased or
incomplete, leading to models that lack generalizability.75

Advances in automated experimentation and standardized data
reporting will be crucial to overcome this limitation. Data
sparsity, especially for negative or low-yielding reactions, limits
model generalization, and many ML models remain ‘‘black
boxes’’, hindering interpretability and trust.

Furthermore, transferring models across different reaction
classes or catalyst families often leads to performance degrada-
tion. Fortunately, solutions are beginning to emerge. Active
learning frameworks enable models to iteratively query new
data, thereby improving themselves over time. Transfer learn-
ing and domain adaptation techniques show promise in help-
ing models generalize across diverse chemical spaces.
Additionally, interpretability methods, such as SHAP and atten-
tion mechanisms, can reveal which features are driving

predictions. Looking ahead, the integration of ML with auton-
omous labs, robotic synthesis, and real-time feedback loops
may define the next generation of catalyst discovery and
optimization. As datasets continue to expand and models
become more sophisticated, ML is poised not only to assist
chemists but to transform how catalysis research is conducted.
The rapid progress of the field, driven by interdisciplinary
collaboration between chemists, data scientists, and engineers,
suggests that the next decade will see even greater integration
of ML into the workflows of catalytic science, heralding a new
era of accelerated, data-driven discovery and innovation.
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35 J. Gasteiger, J. Groß and S. Günnemann, Directional Message Passing
for Molecular Graphs, arXiv, 2020, preprint, arXiv:200303123, DOI:
10.48550/arXiv.200303123.

36 Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P. S. Yu and A. Com-
prehensive, Survey on Graph Neural Networks, IEEE Trans. Neural
Netw. Learn. Syst., 2020, 32, 4–24.

37 Z. Wang, W. Li, S. Wang and X. Wang, The Future of Catalysis:
Applying Graph Neural Networks for Intelligent Catalyst Design,
Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2025, 15, e70010.

38 R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti and
D. Pedreschi, A Survey of Methods for Explaining Black Box Models,
ACM Comput. Surv. CSUR, 2018, 51, 1–42.

39 Y. Nohara, K. Matsumoto, H. Soejima and N. Nakashima, Explana-
tion of Machine Learning Models Using Shapley Additive Explana-
tion and Application for Real Data in Hospital, Comput. Methods
Programs Biomed., 2022, 214, 106584.

40 S. M. Lundberg and S. I. Lee, A Unified Approach to Interpreting
Model Predictions, Adv. Neural Inf. Process. Syst., 2017, 30,
4765–4774.

41 X. Wang, Y. Jin, S. Schmitt and M. Olhofer, Recent Advances in
Bayesian Optimization, ACM Comput. Surv., 2023, 55, 1–36.

42 E. Brochu, V. M. Cora and N. A. De Freitas, Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active
User Modeling and Hierarchical Reinforcement Learning, arXiv, 2010,
preprint, arXiv:10122599, DOI: 10.48550/arXiv.10122599.

43 A. Jalali, J. Azimi and X. Fern, Exploration vs. Exploitation in
Bayesian Optimization, arXiv, 2012, preprint, arXiv:1204.0047,
DOI: 10.48550/arXiv.1204.0047.

44 P. Feliot, J. Bect, E. Vazquez and A. Bayesian, Approach to Con-
strained Single-and Multi-Objective Optimization, J. Glob. Optim.,
2017, 67, 97–133.

45 H. Clavier and S. P. Nolan, Percent Buried Volume for Phosphine
and N-Heterocyclic Carbene Ligands: Steric Properties in Organo-
metallic Chemistry, Chem. Commun., 2010, 46, 841–861.

46 T. Burzykowski, M. Geubbelmans, A. J. Rousseau and D. Valkenborg,
Validation of Machine Learning Algorithms, Am. J. Orthod. Dentofac.
Orthop., 2023, 164, 295–297.

47 H. Struebing, Z. Ganase, P. G. Karamertzanis, E. Siougkrou,
P. Haycock, P. M. Piccione, A. Armstrong, A. Galindo and
C. S. Adjiman, Computer-Aided Molecular Design of Solvents for
Accelerated Reaction Kinetics, Nat. Chem., 2013, 5, 952–957.

48 G. Marcou, J. Aires de Sousa, D. A. Latino, A. de Luca, D. Horvath,
V. Rietsch and A. Varnek, Expert System for Predicting Reaction
Conditions: The Michael Reaction Case, J. Chem. Inf. Model., 2015,
55, 239–250.

49 L.-Y. Chen and Y.-P. Li, Machine learning-guided strategies for
reaction conditions design and optimization, Beilstein J. Org. Chem.,
2024, 20, 2476–2492.

50 H. Gao, T. J. Struble, C. W. Coley, Y. Wang, W. H. Green and
K. F. Jensen, Using Machine Learning To Predict Suitable Condi-
tions for Organic Reactions, ACS Cent. Sci., 2018, 4, 1465–1476.

51 L.-Y. Chen and Y.-P. Li, AutoTemplate: enhancing chemical reaction
datasets for machine learning applications in organic chemistry,
J. Cheminf., 2024, 16, 74.
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