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Photocyclisations of aryl iodides to 2-indanones and 2-tetralones
give different outcomes to analogous radical reactions implicating
the intermediacy of triplet aryl cations. Additions to 2-indanones
generally give dibenzoisochromenones by sequential cyclisation,
CO extrusion and electrocyclisation. By contrast, 2-tetralones
produce benzolalphenalenones by ortho-cyclisation.

The homolytic cleavage of aryl iodides by photolysis has a long
history and is usually attributed to the formation of an excited
triplet state that collapses to give an iodine atom and an aryl
radical intermediate (Scheme 1)"? Rarely, favourable solvent
and substituent effects can combine to switch the course of the
reaction to give a triplet aryl cation intermediate via heterolysis
of the excited triplet state or by electron transfer within a short-
lived triplet radical pair.*® Indeed, we recently observed such a
phenomena in the photocyclizations of benzyl ortho-iodoaryl
ethers and related compounds, where regiochemical outcomes
differed from those given by analogous reactions via radical
intermediates.>’

Herein we show how the photocyclisations of 1-(ortho-
iodobenzyl)-2-indanones 1 give markedly different outcomes
to analogous reactions conducted under radical forming con-
ditions (Scheme 2) implicating the intermediacy of triplet aryl
cations *[3].® Thus, while radical reactions mediated by tribu-
tyltin hydride for the most part gave dibenzocyclooctananes 7
in high yield via a ubiquitous 5-exo-trig cyclisation to 4 and
fragmentation,” related photocyclisations gave dibenzoisochro-
menones 11. The dichotomy can be attributed to formation of a
triplet aryl cation *[3] that undergoes a ‘carbene like’ closure to
phenonium ion 6.% Subsequent loss of HI then gives acephe-
nanthrylenone 5, which was evidenced by NMR in crude
product mixtures and isolated as a minor component in a few
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cases (e.g. 5b Fig. 1 and 5g, vide infra).® Attempts to optimise for
this product proved unrewarding due to a facile Norrish type 1
cleavage of its 2-indanone core to biradical *[9]."® Decarbonyla-
tion to quinodimethane 8,"° cyclisation to keteneacetal 10, and
oxidation then gives dibenzoisochromenone 11 as the major
product.

Substrates bearing an electron releasing substituent at C5
of the indane ring unexpectedly gave more complex product
mixtures (Scheme 3). Thus, while prolonged exposure of the C5-
methyl analogue 1g to UVC light gave an intractable mixture of
products, more limited exposure gave acephenanthrylenone
5g in 52% isolated yield together with dibenzocyclooctane 2g
(24%). By contrast, analogues 1h and 1i bearing mesomeric
donors at C5 gave indenoindenones 15h and 15i (Fig. 1),
dibenzocyclooctane 2h and dibenzocycloheptane 15i in modest
to low isolated yield. These results lend further support to the
intermediacy of triplet aryl cation *[5] as the mechanistic course
followed would be dictated by the ease of collapse of pheno-
nium ion 6 to cation 12 or 13 (Scheme 2). Thus, for la-g
reactions via cation 12 are favoured, but for 1h, 1i and to a
lesser extent 1g, the stabilising influence of the donor substi-
tuent promotes formation of cation 13. Loss of a proton then
gives dihydroindenoindenone 15 which is prone to homolytic
cleavage to biradical intermediate 14,"" giving access to diben-
zocyclooctane 7 and dibenzocycloheptane 16 through relaxa-
tion to a cyclopropanone and decarbonylation."?

Related photocyclisations of 1-(ortho-iodobenzyl)-2-tetra-
lones 17a-k were next investigated and, in each case, gave
ring closure to the corresponding benzoanthracenones 21a-k
in modest to good yield (Scheme 4 and Fig. 1). In stark
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Scheme 1 Aryl iodide photolysis leading to radical and triplet aryl cation
intermediates.
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Scheme 2 Dichotomous reactivity of iodoarenes 1 under photolysis and
radical-forming conditions implicates the intermediacy of triplet aryl cation *[3].

contrast to analogous reactions conducted under radical
forming conditions, we saw none of the ring expansion
product 20, suggesting that these reactions also proceed via
triplet aryl cation 19 rather than aryl radical 18. Notably,
extrusion of carbon monoxide from benzoanthracenones 21
did not occur since the biradical formed by a Norish type 1
cleavage, *[24], now gives biradical 23 on decarbonylation
rather than a quinodimethane. Nor did the outcome appear
unduly influenced by substituents on the tetralone ring,
indicating that the lower acidity of the benzylic protons in
phenonium ion 22, compared to 13, reduces the tendency to form
7a,8-dihydrobenzofluorenone 25. The greater propensity for 6-ring
closure to tetralones in analogous radical reactions may also be
pertinent as it bears testament to the reduction of strain in the
tetralone series following ortho-cyclisation. Indeed, for sub-
strates lacking mesomeric donor substituents on the iodinated
arene, e.g. 17d/e, reactions may proceed, in part, by C-I bond
homolysis and radical cyclisation.

Extensions to related heterocyclic analogues 26-29 were next
examined and, for the most part, gave good yields of the ortho-
cyclisation products 30-33 (Scheme 5 and Fig. 1)."* Benzo-
oxazinone 29 was an outlier, giving 33 in 24% isolated yield.
The dichotomy can again be explained by a switch in the
favoured mode of collapse of the phenonium ion intermediate
35, from cation 34 to cation 36.
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Fig. 1 X-ray crystal structures for 5b (Scheme 2), 15i (Scheme 3), 21b, c
and e (Scheme 4), and 32 (Scheme 5).

Finally, photolysis of 3,3-bis-(0-iodobenzyl)indolinone 37
under continuous flow induced sequential 6- and 5-membered
ring formation to give azapropellane 38 in a remarkable 72%
isolated yield (Scheme 6). The structure of the product was
confirmed by X-ray crystallography (CCDC-2334898).

In conclusion, photocyclisations of o-iodobenzylindanones
and tetralones in acetonitrile give markedly different outcomes
to analogous reactions conducted under radical forming con-
ditions. Thus, while radical reactions respectively promote ring
expansion to dibenzo-cyclooctanes and cyclononanes via a
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Scheme 3 The influence of C5 indanone substituents of the course of
the reaction.
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Scheme 4 Photocyclisations of 1-(o-iodobenzyl)-2-tetralones give ben-
zoanthracenones in moderate to good yield.

5-exo-trig ipso-cyclisation and ring expansion,” photochemical
reactions induce ortho-cyclisation implicating the intermediacy
of triplet aryl cations. Cyclisations to 2-indanones and 2-tetra-
lones differ in that the former produce acephenanthrylenones
that react further by photo-extrusion of carbon monoxide to
give dibenzoisochromenones,'® while the latter produce the
homologous benzo[a]phenalenones which are not prone to
photo-extrusion of carbon monoxide. We are currently examin-
ing further
aryl iodides to better understand the opportunities triplet
aryl cation intermediates present in the context of synthetic
chemistry.
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Scheme 6 A tandem cyclisation leading to an azapropellane.
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HRMS, '"H NMR, *C NMR and '°F NMR data]. Copies of NMR
spectra accompany each account and include expansions of key
regions. X-ray data is provided for 7 representative products.
See DOLI: https://doi.org/10.1039/d5cc05185a.

CCDC 2334898, 2334954, 2339960, 2339968, 2339972, 2352648
and 2355891 contain the supplementary crystallographic data for
this paper.'*
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