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Data-driven atomistic modeling of crystalline and
glassy solid-state electrolytes

Rui Zhou, Kun Luo and Qi An *

All-solid-state batteries promise safer, more stable, and higher-energy-density storage, but progress

hinges on atomistic insight into solid electrolytes. Machine-learning force fields (ML-FFs) offer near-first-

principles accuracy at molecular-dynamics scales, enabling simulations that are orders of magnitude

larger and longer than ab initio approaches (e.g. density funcitonal theory). In this Review, we discuss

recent ML-FF frameworks and the application of them on studying both crystalline and glassy solid

electrolytes. Particually, we compare various ML-FF models and training strategies, examine trans-

ferability and uncertainty quantification, and outline best practices for data generation and validation.

The applications of ML-FF on battery systems reveal advances in illustrating ionic-transport pathways,

defect-mediated conduction, structure–property relationships, phase stability and transformations, and

interfacial phenomena at grain boundaries and electrode|electrolyte contacts. Then we conclude with

perspectives on key challenges—including long-range electrostatics, chemical reactivity, and multi-

component complexity. Together, these developments position ML-FFs to accelerate the discovery and

optimization of robust, high-performance solid electrolytes for practical all-solid-state batteries.

1. Introduction

Global decarbonization and electrification are driving a sharp
rise in battery demand.1 Conventional lithium-ion batteries
with flammable liquid electrolytes face safety risks and energy
density limits that restrict their broader deployment. All-solid-
state batteries (ASSBs) have been proposed to address these
challenges with enhanced safety and higher energy density
potential.2 However, broad commercialization of ASSBs has
yet to be realized due to challenges in cost, cycle life, and fast

charging.3 Many of these barriers are fundamentally rooted in
materials issues—most notably the solid-state electrolyte (SSE),
which strongly impacts the battery system’s safety, power
capability and durability. Despite the long commercial success
of liquid electrolytes, practical SSEs are hindered by limited
ionic conductivity, unstable and resistive electrode–electrolyte
interfacial, and manufacturing scalability constraints.4

To address the materials limitations outlined above, we
need tools that resolve the atomistic processes governing ionic
transport and interfacial stability. Computational methods now
play an important role in advancing the understanding and
design of battery materials,5–8 particularly for investigating
phenomena that are difficult to access experimentally.9
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Meanwhile, machine learning approaches are accelerating dis-
covery and optimization across battery materials research.10–13

Among these, machine learning force fields (ML-FFs) have
emerged as a powerful computational framework applied
broadly to inorganic SSEs systems from crystalline phases to
glassy solid state electrolytes (GSEs).13–16 ML-FFs bridge the
long-standing fidelity-efficiency gap in materials simulation:
classical force fields are fast but constrained by fixed functional
forms and empirical parameterization,17,18 which limits accu-
racy for multicomponent SSEs chemistries and their complex
ion transport. This transportation is often mediated by a wide
range of defects, including stacking faults,19 Li-stuffing,20

cation site disorder,21,22 and anion site disorder.23–25 First-
principles calculations (e.g. density functional theory, DFT)
offer high accuracy, but their computational cost scales drasti-
cally with system size (O(N3)–O(N7) in the number of electrons),
restricting accessible time-scales and length-scales. In contrast,
ML-FFs enable simulations that reach millions of atoms,26 and
extend into microsecond regime while retaining near-DFT
accuracy, making them ideal for examining long-timescale
ionic transport in batteries.

In this Review, we will first discuss the major families of
inorganic solid-state electrolytes and their transport and stabi-
lity characteristics. Then, we summarize recent computational
studies that employed ML-FFs to investigate SSE structures,
ionic dynamics and electrode–electrolyte interfaces. Finally, we
will present case studies illustrating how to use ML-FFs to
elucidate ionic transport mechanisms, quantify interfacial pro-
cesses, and map structure–property relationships, thereby
informing the design of next-generation ASSBs.

2. Solid state electrolytes

Based on different criteria, SSEs can be categorized into several
classification schemes. Structurally, they are commonly
grouped into crystalline SSEs, amorphous glassy solid-state
electrolytes, and glass-ceramic SSEs. Fig. 1 shows structural
schematics of typical crystalline SSEs, including oxides, sul-
fides, halides, and hydrides. Certain crystalline SSEs, such as
lithium germanium phosphorus sulfide (LGPS), achieve a high

room-temperature ionic conductivity of 12 mS cm�1, but their
macroscopic performance can be limited by grain boundaries
resistance and anisotropy.27 In contrast, GSEs are intrinsically
isotropic and free of grain boundaries.28 The ionic conductivity
of a GSE is theoretically higher than that of its crystalline
counterpart because of its typically larger molar volume.29 In
certain systems, such as NASICON-type,30 sulfide-based,31 and
halide-based electrolytes,32 an even higher ionic conductivity
can be achieved through partial crystallization of the amor-
phous precursor into a glass–ceramic solid electrolyte. This
enhancement arises from the formation of highly conductive
nanoparticles and grain-boundaries.33 The resulting glass–cera-
mic solid electrolyte combines the favorable mechanical
properties of the flexible polyanion network found in glasses
with the enhanced ionic conductivity provided by the
crystalline parts.

In addition to the crystalline–amorphous distinction, SSE
can be classified by the topology of their anion framework.34 In
polyhedral-network types SSE, polyhedral share corners or
edges to form a continuous framework, that provides migration
channels for Li+, Na+ transportation. In cluster-anion electro-
lytes, the anions arrange into fcc, hcp, or bcc sublattices

Fig. 1 Schematic structures of representative crystalline solid-state elec-
trolytes (SSEs): (a), oxides; (b), sulfides; (c), halides; (d), hydrides. For clarity,
anions at the vertices of the coordination polyhedra (O, S, and halides) are
omitted.
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without direct interconnection between them, and alkali
cations diffuse through interstitial sites.34

From a compositional perspective, SSEs are categorized into
oxides, sulfides, halides, and hydrides, as shown in Fig. 2.
Oxides electrolytes (Fig. 1(a)) generally exhibit good compat-
ibility with metal anodes and wide electrochemical windows,
but they typically possess low ionic conductivity, higher stiff-
ness, and often require high-temperature processing.27,35 Sul-
fides (Fig. 1(b)) often exhibit high room-temperature ionic
conductivity and enable low-temperature processing, yet they
suffer from narrower electrochemical stability windows,
reactivity with metal anodes, and sensitivity to air and
moisture.36,37 Halides electrolytes (Fig. 1(c)) provide wide elec-
trochemical windows,38,39 and have shown encouraging cycling
performance. For example, the recently reported LaCl3-based
LiTaLaCl SSE show 81.6% capacity retention after 100 cycles
against a Li metal anode.40 Complex hydrides (Fig. 1(d)) show
good thermal and electrochemical stability and favorable
mechanical properties, but they are sensitive to moisture and
electrode materials.41

In what follows, we focus on representative Li-based SSEs
with high ionic conductivity to illustrate these classes and to
establish structure–property links that guide materials selec-
tion and device design.

2.1 Crystalline solid-state electrolytes

Garnet type. Garnet-type SSE with the general formular
LixM3M

0
2O12 are among the most intensively studied oxide

systems. They are structurally related to the oxide-garnet
framework of Ca3Al2(SiO4)3, with Li replacing the Si atoms
and occupying interstitial sites within the garnet lattice.
Depending on the Li content x, garnet-type SSEs are often
divided into subtypes: Li3-type (Li3La3Te2O12, Li3Ln3Te2O12),
Li5-type (Li5La3M2O12), Li6-type (Li6ALa2M2O12), and Li7-type
(Li7La3Zr2O12).27

Among these, Li7La3Zr2O12 (LLZO) is the prototypical
oxide SSEs, achieving room temperature ionic conductivity
up to 10�3 S cm�1 in optimized compositions. LLZO exists in
two polymorphs: a high-conductivity cubic phase42 and a

low-conductivity tetragonal phase.43 In the tetrahedral struc-
ture, Li ordering—including full occupation of tetrahedral
sites—reduces the number of available vacancies and narrows
migration pathways, yielding conductivities near 10�6 S cm�1.
In contrast, the cubic phase features partially occupied Li
sublattices that create a three-dimensional network of accessi-
ble sites, enabling less correlated Li+ motion and substantially
higher conductivity.34,44

Perovskite type. Typical perovskite-type SSEs, most notably
the Li3xLa2/3�xTiO3 (LLTO) family and compounds of the form
(Li, Sr)(M, M0)O3, are derived from the ABO3 perovskite struc-
ture, in which large A-site cations (e.g. La3+, Sr2+) and smaller B-
site cation (e.g., Ti4+, Zr4+) define the framework for fast-ion
conduction.

Perovskite-type SSEs are generally A-site deficient, creating
vacant A sites that enable Li+ migration through the intercon-
nected BO6 octahedral channels.45 Tetragonal LLTO attains
room-temperature ionic conductivities on the order of
10�4 S cm�1, with optimal compositions around x = 0.11,
achieving 1.3 � 10�3 S cm�1.46 In LLTO, La3+ cations are
unevenly distributed along the c-axis, resulting in La-rich and
La-poor layers. Li+ ions migrate relatively freely within the ab
plane, whereas transport along the c-axis is limited by
temperature-dependent bottlenecks associated with this La
ordering.

NASICON type. The NASICON (Na superionic conductors)
family was first reported in 1976 with the general formula
Na1+xZr2SixP3�xO12.47 Lithium-based NASICON-type SSEs
adopt the formula LiMM0(PO4)3 and typically exhibit room-
temperature ionic conductivities of 10�4 to 10�3 S cm�1. A
prototypical member is Li1+xAlxTi2�x(PO4)3 (LATP), for which
optimal Al substitution (x = 0.3) yields conductivities near
B10�3 S cm�1 at room temperature.48

In NASICON-type SSEs, MO6 octahedra connect with PO4

tetrahedra through corner-sharing oxygen atoms, forming a 3D
framework that facilitates alkali ion movement in LATP, alio-
valent Al3+ substitution for Ti4+ requires charge compensation
by additional Li+, creating preferred Li interstitial sites adjacent
to AlO6 units. Although the smaller Al3+ contracts the lattice,
the combined effects of increased charge carrier concentration
and favorable local environments enhance Li+ mobility and
boost conductivity.48–50

LGPS type. The earliest LISICON (Li superionic conductor)
materials, such as Li14Zn(GeO4)4, exhibited low room-
temperature ionic conductivity (B10�4 mS cm�1).51 Replacing
oxygen with sulfur led to thio-LISICON compositions (e.g.
Li3.25Ge0.25P0.75S4) that improved conductivity into the 10�4 to
10�3 S cm�1 range.52,53

The Li10GeP2S12 (LGPS) family, first reported in 2011,
achieves exceptional room-temperature conductivity of up to
12 mS cm�1.54–56 Unlike the orthorhombic thio-LISICON struc-
tures, LGPS adopts a P42/nmc tetragonal structure54 consisting
of a three-dimensional framework comprising (Ge0.5P0.5)S4

tetrahedra, PS4 tetrahedra, along with LiS4 tetrahedra, and
LiS6 octahedra. Li+ transport proceeds through quasi-one-
dimensional channels along the c axis that are interconnected

Fig. 2 Radar chart that compares the key performance of various types of
solid electrolytes.
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within the ab plane, yielding effectively three-dimensional
diffusion pathways.57

Argyrodite type. The original argyrodite Li7PS6 exhibits low
room-temperature ionic conductivity (10�6 S cm�1) because its
high-conductivity cubic phase is only stable at elevated tem-
peratures (e.g. 483 K).58 Deiseroth and co-workers overcame
this limitation by substituting one sulfur with a halide X (Cl, Br,
I) in the chemical unit to form Li6PS5X, thereby stabilizing the
high-temperature cubic phase at room temperature and achiev-
ing conductivities on the order of 10�3 S cm�1.59 Subsequent
studies showed that additional cation substitutions (e.g. Si, Ge)
can likewise stabilize the cubic phase and other high tempera-
ture phases at ambient conditions.60

Li6PS5X argyrodite-type SSEs adopts a crystal structure with
space group of F4%3m. The anions framework forms a cubic
close-packed sublattice in which PS4 tetrahedra occupy octahe-
dral sites, while remaining S2� anions reside in tetrahedral
sites. Li+ primarily occupies the 24g and 48h Wyckoff
positions.59,61 For Cl and Br compositions, S2� and halide
anions exhibit site disorder over the 4a and 4c positions. This
anion disorder and Cl�-induced Li+ vacancy formation has
been identified as a key contributor to the enhanced Li+

conductivity of argyrodite electrolytes.24,25,62,63

Halide type. Halide-type SSEs generally have the chemical
formula LiaMXb and can be categorized by metal center into
group 3 elements (e.g. Y, Sc, Er), group 13 elements (e.g. Al, Ga,
In), and divalent metals.38 Many group 3 and group 13 metal
halides reach room-temperature ionic conductivities on the
order of 10�3 S cm�1.

In Li3YCl6 and Li3YBr6, the halide anions form close-packed
sublattices (hexagonal close-packed (HCP) for Li3YCl6 and
cubic close-packed (CCP) for Li3YBr6), while Li+ and Y3+ cations
occupy octahedral sites. The high ionic conductivity is attrib-
uted to partially vacant octahedral sites that provide intercon-
nected diffusion pathways. Owing to its HCP stacking, Li3YCl6

exhibits strongly anisotropic diffusion: concerted Li+ migration
along the c axis dominates overall conductivity because it
proceeds with lower activation barriers than diffusion in the
ab plane.

LNCO type. Oxyhalide SSEs are an emerging class that seek
to combine the chemical stability of oxides with the high Li+

mobility often found in halides. The anti-perovskite structure
Li3OCl oxyhalide reaches room-temperature conductivities of
B10�4 S cm�1. More recently, metal oxyhalides have shown
markedly higher performance: Hu et al. reported a low-cost
LiZrClO oxyhalide SSE with a room temperature conductivity of
2.42 mS cm�1,64 and the studies on LiNbOCl4 (LNCO) and
LiTaOCl4 demonstrated ionic conductivities near 10�2 S cm�1

at room temperature.65 Their sodium counterparts can also
achieve high ionic conductivities on the order of 10�3 S cm�1.66

Despite these promising transport properties, the crystal
structure of LiNbOCl4 remains under activate debate65,67–69

due to poor crystallinity and low coherence length.67 Regard-
less, it is commonly described as consisting 1D parallel poly-
anion chains built from [NbOCl4]� octahedra, with highly
disordered Li+ ions occupying interstitial sites.68,69 Li+

transport involves two different diffusion pathways: (1) diffu-
sion along the a-axis following the polyhedral chain; and (2)
diffusion within the bc plane, with the former mechanism
generally considered energetically favored.69

Complex hydrides. Motivated by the discovery that LiBH4

exhibits high Li+ conduction and can function as a solid-state
electrolyte, complex hydrides have emerged as a distinct SSE
family. These materials are composed of alkali and alkaline-
earth cations (e.g. Li+, Na+, Ca2+) and complex anions such as
BH4

�, AlH4
�, and closo-type borate/carborate species (B12H12

2�,
B10H10

2�, CB9H10
�, CB11H12

�).
These materials typically exhibit ordered low-temperature

phases and disordered (often ‘‘plastic’’) high-temperature
phases, the latter displaying substantially higher ionic conduc-
tivity. For example, Li2B12H12 undergoes an order–disorder
phase transition at B615 K; in the disordered phase, rotation-
ally mobile B12H12

2� anions occupy the fcc sublattices while Li+

migrates through vacancy-rich interstitial networks. Because
these highly conducting disordered phases are typically
unstable at room temperature, compositional strategies such
as anion mixing70–72 have been employed to stabilize them
closer to practical operating conditions. In systems including
NaCB11H12–NaCB9H10 and Na2B12H12–Na2B10H10 anion mixing
has successfully suppress the order–disorder transition tem-
perature and preserved fast-ion transport at reduced
temperatures.71

2.2 Glassy solid-state electrolytes

GSEs offer unique advantages due to their amorphous struc-
ture, lower elastic moduli that mitigate stress during volume
changes under charge/discharge cycles, inherent isotropic ionic
conduction, the absence of grain boundaries and thus grain-
boundary resistance, and superior mechanical compliance.73

Their grain-boundary-free microstructure also inhibits dendrite
nucleation and growth, addressing a key failure mode of many
crystalline electrolytes.74

Theoretically, GSEs can achieve a higher ionic conductivity
than their crystalline counterparts because structural disorder
provides greater free volume and less constrained diffusion
pathways. In addition, the absence of grain boundaries elim-
inates intergranular impedance that commonly limits perfor-
mance in polycrystalline solids.

Thiophosphate glass. Li2S–P2S5 (LPS) glasses are among the
most widely studied GSEs. The 75Li2S�25P2S5 composition
exhibits a room-temperature ionic conductivity of B2 �
10�4 S cm�1 with a Li+ transport number near unity.75

Despite these advantages, LPS glass suffers from poor com-
patibility with Li anodes due to interfacial chemical reactivity.
Several modifications strategies have been developed to
address this limitation. Introducing a second network
formers, such as Si, improves cycling stability by suppressing
dendrite formation.28,76 In addition, SnS2 additions enhance
the air stability.76 Furthermore, halide additions, particularly
LiI, significantly enhance conductivity; for example, adding
20 mol% LiI to 70Li2S�30P2S5 increases conductivity from 1.3 �
10�4 to 5.6 � 10�4 S cm�1 and widens the electrochemical
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stability window.77 Oxygen doping offers another route and
typically improves chemical stability.78

LiPON glass. Lithium phosphate oxynitride (LiPON) is
another important family of the GSEs, typically achieving
conductivities of B10�6 S cm�1,79 which limits its application
primarily to thin film batteries. Despite its lower conductivity
relative to other systems, LiPON shows exceptional stability
against Li metal, sustaining over 10 000 cycles with 95% capa-
city retention. This stability makes LiPON widely used as a
protective interfacial coating on battery electrodes and electro-
lytes, where it provides chemical inertness and interfacial
stabilization.80

Oxyhalide glass. Several oxyhalide amorphous solid electro-
lytes, referred to as AMCO (where A = Li/Na; M = Mg, Al, Zr, Ta,
Nb, etc; C = Cl, I), have been developed in recent years,64,66,81–86

and exhibit both high ionic conductivity and good electroche-
mical stability. Among these oxyhalide GSEs, systems based on
earth-abundant metals such as aluminum (LiAlClO86) and
zirconum (LiZrClO64,82) are particularly promising. These com-
positions offer a cost-effective alternative to high-ionic conduc-
tivity halides (e.g. Li3YCl6, Li3InCl6), which often contain
expensive rare elements. This strategy is illustrated by the work
of Dai et al., who demonstrated that partial oxygen incorpora-
tion can transform the low-conductivity crystalline LiAlCl4 into
a vitreous lithium–aluminum oxychloride glass with signifi-
cantly enhanced ionic conductivity.86 You et al. proposed a
trimer-like Si3O2Cl8 structural motif for such this glass; their
experimental indicate that the resulting GSE lacks ionic O–Li
bonding, and that Cl� anions undergo rotational motion.85 The
introducing of oxygen promote glass formation without form-
ing non-bridging oxygen species, thereby increasing free
volume and enable greater Cl� rotational dynamics, which in
turn facilitate Li+ diffusion.87

3. Machine learning force fields

The previous section discussed the breadth of SSEs chemistries
and their rapid progress. Computational methods, particularly
molecular dynamics (MD) simulations, are well suited to bridge
the gap between macroscopic transport properties and atomic-
level structural features, providing multiscale insights to guide
materials optimization.

Historically, computational studies of SSEs have relied pri-
marily on density functional theory (DFT). While DFT is highly
accurate, its computational cost restricts accessible length and
time scales. This is a critical limitation because cation diffusion
and anion dynamics in SSEs are slow processes that require
long simulations, and because mesoscale features—such as
interfaces with cathodes or Li metal anodes and grain bound-
aries within the electrolyte—can strongly influence perfor-
mance. The classical force fields, which use fixed functional
forms and empirical parameters, often lack the flexibility and
accuracy needed across diverse SSE chemistries.88 Conse-
quently, ML-FFs that approach DFT accuracy while retaining
near-classical efficiency are particularly well suited for SSE

research, enabling larger systems, longer timescales, and expli-
cit treatment of microstructure.

Development of ML-FFs was pioneered by Behler and Parri-
nello, who firstly used neural networks to represent potential-
energy surfaces (PES).89 In their high-dimensional neural net-
work potential (HDNNP), the total energy E of a system is
decomposed into a sum of atomic contributions.

E ¼
X

Ei

Each atomic energy Ei depend on the local chemical environ-
ment of atom i. To ensure translational, rotational, and permu-
tational invariance, atomic environments are encoded as atom-
centered symmetry functions (descriptors) constructed from
the atomic coordinates; these descriptors are then passed to
element-specific neural networks to predict Ei.

Most ML-FFs adopt this PES-decomposition framework,
obtaining forces as the negative gradient of the learned with
respect to atomic positions; by contrast, approaches like sym-
metric gradient domain machine learning (sGDML) model
learn forces directly.90 The locality assumption—that each
atomic contribution depends primarily on its local environ-
ment—confers strong transferability across system sizes:
models can be trained on small DFT datasets and then applied
to large-scale MD simulations. However, it also requires exten-
sive sampling of diverse local environments and can neglect
long-range interactions that are important in some systems.18

Based on how the atomic energy Ei is mapped from the
local environment, ML-FFs can be categorized into kernel-
based, linear, and neural network-based models (Fig. 3(a)).
Kernel methods represent learning as Gaussian-process or
kernel-ridge regression over a similarity measure between local
environments; descriptors such as smooth overlap of atomic
positions (SOAP) provide rotationally invariant features. Repre-
sentative models include Gassian approximation potential
(GAP)91 and self-learning and adaptive database (SLAD),92 and
on-the-fly training/inference is available in electronic-structure
packages such as Vienna ab initio Simulation Package
(VASP).93,94 Linear models, such as moment tensor potential
(MTP), express the atomic energy Ei as a linear combination of
basis functions, offering computational efficiency and
interpretability.95 Neural network-based models employs deep
learning architectures to map local atomic energy to Ei,
enabling capture of highly non-linear PES landscapes.17,96,97

Widely used examples include the original HDNNP89 (with
implementation in aenet,98 n2p2,99 Amp,100 SIMPLE-NN101),
end-to-end models such as Deep Potential models96,97,102–104

and NEP,105,106 and graph neural network-based models such
as MACE,107 NequIP,108 DPA-3109 and CHGNet.110 In next
section, we will discuss the commonly used ML-FF models in
recent literature on SSEs studies.

3.1 Commonly used ML-FF models in SSE studies

Gaussian approximation potential (GAP). The GAP employs
Gaussian process regression with carefully designed local
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kernels.17,91 In GAP, the atomic energy for a new configuration
xi is predicted as

Ei xið Þ ¼
X
n

K di; dnð Þ

where K is the kernel, d is descriptor, and n are the
learned weights. The kernel measures the similarity (covar-
iance) between the test descriptor di and the n-th reference
descriptor dn.

The SOAP descriptor112 is commonly used in GAP to repre-
sent the many-body term,113 capturing rich geometric detail
while remaining smooth and differentiable. As a kernel-based
ML-FF, GAP often performs strongly on small to moderate
datasets relative to neural-network models.16,17,92 Its native
uncertainty estimates also enable active-learning workflows
without ensemble models. However, the inference cost scales
with the number of reference environments, which can limit
applications to very large or highly complex systems.17

Moment rensor potential (MTP). Unlike GAP, which uses
Gaussian-process kernels, the MTP represents the atomic
energy Ei as a linear expansion in a systematically improvable
basis constructed from moment tensors of the neighboring
environment:

Ei ¼
X

xaBa nið Þ

where xa are trainable parameters and Ba are the basis

functions. The basis functions Ba are invariant polynomials
constructed from contractions of moment tensor descriptors.
Similar to GAP, MTP often achieves faster training convergence
from scratch than neural-network-based approaches, while
retaining good accuracy and transferability.114

Drautz later introduced the atomic cluster expansion (ACE),
which expresses atomic properties (such as atom’s energy) as a
systematic body-order expansion using basis functions con-
structed from radial functions and spherical harmonics.115

This means that contributions from one-body, two-body,
three-body, and higher-order interactions are all included
through a complete set of radial and angular basis functions
representing the local environment. As a result, ACE offers a
complete and efficient general framework for representing
atomic interactions.116 Drautz also demonstrated that many
existing interatomic potentials can be viewed as special cases of
the ACE formalism,115 including the previous mentioned ML-
FFs such as the MTP, SOAP-GAP, SNAP.95,112,117 This aspect
reveals ACE’s broad applicability and significance in the devel-
opment of ML-FFs.

Deep potential model. Handcrafted descriptors often do
not generalize well across various chemical systems and typi-
cally require human intervention for specific settings and
optimization.17,97 To overcome these limitations of descriptor-
based neural-network ML-FFs, Zhang et al. introduced the deep
potential (DP) model as an end-to-end approach.97

In DP, the atomic energy Ei is obtained via two coupled
networks: an embedding (encoding) network that maps the
local atomic environment into a symmetry-preserving feature
space (respecting translational, rotational, and permutational
invariance), and a fitting network that converts these features
into Ei. By learning the representation directly from data, DP
obviates the need for hand-crafted descriptors. DP has been
widely applied in SSEs studies, delivering an excellent balance
between near-DFT accuracy and computational efficiency.

Neural equivariant interatomic potential (NequIP). The
NequIP is an ML-FF model belong to the class of E(3)-
equivariant graph neural network (GNN).118,119 In GNN-based
ML-FFs, a molecular or condensed-matter systems is repre-
sented as undirected graphs whose nodes are atoms and whose
edges connect neighbors within a cutoff. The atomic energy Ei

is obtained from the sequence of node embedding via trainable
readout functions, such as,

Ei ¼
X

Rt s tð Þ
i

� �

where s(t)
i is state of each node i in layer t, Rt is the trainable

readout function. In some GNN-based ML-FF architecture, an
additional energy bias or scaling term e(Zi) will be introduced
for each atom type.109 Through message-passing operations,
information flows along edges so the model can encode intera-
tomic interactions.

Earlier neural network typically enforced symmetry using
invariant scalar features. NequIP instead employs tensor (irre-
ducible) features that transform equivariantly under 3D rota-
tions and reflections, ensuring that predicted energies and

Fig. 3 Machine-learning force fields (ML-FF) and active learning. (a)
Schematics of ML-FF architectures—kernel-based, neural-network, and
graph neural-network models. (b) Common active-learning sampling
strategies. (c) Typical uncertainty-quantification metrics. (d) A generic
active-learning workflow. Kernel method illustration adapted from ref.
17. Fig. 6(B) under the terms of CC-BY-NC-ND 4.0 (https://creativecom
mons.org/licenses/by-nc-nd/4.0/) from American Chemical Society,
copyright 2021; neural network schematic adapted from ref. 111. Fig. 1(d)
with permission from Wiley, copyright 2019; illustration of graph neural
network adapted from ref. 108. Fig. 1(a) under terms of CC-BY 4.0 (https://
creativecommons.org/licenses/by/4.0/) from Springer Nature, copyright
2023. Panels b and c adapted from ref. 88. Fig. 7 and 3 under the terms of
CC-BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.
0/) from American Chemical Society, copyright 2024.
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forces obey E(3) symmetry by construction. GNN-based ML-FFs
such as NequIP can achieve data efficiency comparable to
kernel methods while retaining neural networks’ flexibility.108

GNN-based ML-FFs are considered semi-local because their
layered message-passing architecture enables the capture of
interactions beyond the typical cutoff distance. These models
are, however, often more computationally intensive than
descriptor-based or simple NN potentials due to (1) substantial
communication and memory traffic from multi-hop message
passing over large atomic neighborhoods,120,121 and (2) the
expensive Clebsch–Gordan tensor products required for equiv-
ariant feature coupling. Efforts to reduce this overhead include
GPU-optimized implementations122 and architectural innova-
tions such as Allegro’s strictly local message-passing scheme,
which reduce the number of interactions and improves parallel
scalability,121 albeit at the cost of neglecting long-range

interactions. Alternatively, ML-FFs such as the cartesian atomic
cluster expansion123 (CACE) and the cartesian atomic moment
potential124 (CAMP) construct invariant features directly in the
Cartesian space, eliminating the need for spherical harmonics.
This Cartesian approach avoids the computationally intensive
Clebsch–Gordan tensor operations, offers greater simplicity,
and improved computation efficiency.124

3.2 Active learning in ML-FFs

ML-FFs are generally unreliable under extrapolation and pro-
vide trustworthy predictions only within the domain spanned
by their training data.17 As many SSE-focused ML-FFs now
achieve high accuracy (e.g. energy errors o10 meV per atom),
as shown in Table 1, performance depends increasingly on the
breadth and fidelity of the training set rather than on archi-
tectural choice. Consequently, ML-FF development demands

Table 1 List of studies of machine learning force fields for solid-state electrolytes. AL: active learning; AIMD: ab initio molecular dynamics. Numbers in
parentheses indicate GNN interaction layers

System Year
ML-FF
model DFT level of theory

Data generation
scheme

Cutoff
(Å)

Energy error
(meV per atom)

Force Error
(eV Å�1) Ref.

Thiophosphate Li–P–S 2021 MTP optB88-vdw AIMD 5 2.07a 0.09 132
2023 MTP PBE AIMD 5 3.86a 0.12 133
2024 GAP PBE0, PBEsol, r2SCAN AIMD 5 7.0b 0.17 134
2024 HDNNP PBE AIMD 7 12.7b 0.24 135
2024 aenet PBE AIMD 3b 136

Li–Si–P–S 2024 DeepMD PBEsol AL 6 7.57b 0.12 137
Li–P–S–B–O 2023 MTP PBE AL 4.43a 0.14 138
Na–P–S 2023 NNP pre-trained model 3.12b 139

2021 DeepMD PBE AIMD 140
2025 MACE PBE + D3 AIMD 6(� 2) 14a 0.03 141

Na–P–S–O 2024 DeepMD PBE + D3 AIMD 6 9.74b 0.21 142
Na–P–S–W 2024 Allegro r2SCAN AIMD 6.5(� 2) 0.38b 0.03 143

LGPS-type Li–Ge–P–S 2023 PaiNN PBE AL 5(� 3) 13.74a 0.03 144
2023 MTP PBE AIMD 5 2.5a 0.07 133

Li–{Ge,Si,Sn}–P–S 2021 DeepMD PBEsol,PBE AL 6 1.33b 0.08 145
LLZO-system Li–La–Zr–O 2022 NNP PBE AIMD 6 3.7b 0.17 146

2024 NEP PBEsol AL 7.5 0.66b 0.06 147
2024 DeepMD PBE Metadynamics 6 8.51b 0.27 148

Li–La–Zr–O–Nb 2018 SALD WC AIMD 5.2917 11.7a 0.26 149
Perovskite-type Li–La–Ti–O 2021 MTP optB88-vdw AIMD 5 132

Li–Sr–Ta–Hf–O 2025 DeepMD PBE AIMD 6 150
NASICON Li–Ge–P–O 2024 DeepMD PBE AL 7 5.79b 0.26 151
KTP-type Na–Ga–P–O–F 2025 MTP PBE AL 1b 0.14 152
Argyrodite Li–P–S–Cl 2024 MTP PBE AL 5 6.9 0.16 61

2024 MTP PBE AL 5 17.8b 153
2025 DeepMD PBE AL 8 1.34b 0.05 63
2025 MTP PBE + D3 AL 5 154
2025 MTP optB88-vdw AIMD 7.5b 0.37 25

Li–P–S–{Cl,Br,I} 2024 MTP optB88-vdw AL 5 3a 0.1 155
Li–P–S–Cl–O–C 2025 NequIP PBE AIMD 8(� 4) 0.5a 0.01 156

Halide Li–Y–Cl 2021 MTP optB88-vdw AIMD 1.11b 0.04 132
Li–Y–Br 2023 MTP PBE AIMD 5 1.05a 0.05 133
Li–Er–Cl 2023 MTP PBE AIMD 5 2.57a 0.05 133
Na–{Nb,Ta}–Cl 2025 DeepMD PBE AIMD 8 1.6a 0.03 157
Li–Nb–Ta–Cl 2024 GAP PBE AIMD 0.075 158

Closo-hydroborate Li–B–H 2017 SLAD PBE AIMD 4.23 2.6a 0.15 92
2023 MTP rev-vdW-DF2,PBE,PBE-D3 AL 1b 0.08 159
2025 DeepMD PBE AL 6 0.59a 0.01 160

Na–C–B–H 2025 DeepMD rev-vdW-DF2 AL 7 1.26b 0.04 161
Li–N 2019 eSNAP PBE AL 0.9a 3.77 162

2023 GAP PBEsol AIMD 5 3.61b 0.04 163
Li–P 2023 MTP PBE AL 18.5b 0.34 164
LIPON 2025 NequIP PBE AIMD 4.3(� 6) 5.5a 0.01 165

a Mean absolute error (MAE). b Root mean squared error (RMSE).
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datasets with both comprehensive configurational coverage
and high-quality labels to ensure reliability across the relevant
configuration space.

Training data may be drawn from existing DFT data-
sets—most commonly ab initio molecular dynamics (AIMD)—
or generated via active-learning workflows (Fig. 3(b)). AIMD is
computationally expensive and can under sample rare but
mechanistically important high-energy events because Boltz-
mann statistics overrepresent low-energy regions. Moreover,
AIMD is often performed at reduced precision (e.g., coarser k-
point meshes and lower plane-wave cutoffs) relative to single-
point calculations, which can degrade label quality.125 Active
learning offers a systematic alternative: a provisional ML-FF
explores configuration space, while uncertainty or diversity
criteria select configurations for DFT labeling, preserving effi-
ciency while expanding coverage.126

The general active learning workflow comprises four itera-
tive stages, as shown in Fig. 3(b): training, exploring, uncer-
tainty evaluation, and labelling.127,128 Starting with an initial
model (or ensemble) trained on an initial dataset, MD simula-
tions use the current ML-FF to explore configuration space.
When configurations exceed a predefined uncertainty thresh-
old, they are selected for DFT calculations. The newly labelled
data are then added to the training set, and the model is
retrained. This approach has been formalized in automated
pipelines such as DP-GEN,128 which systematizes the DP active
learning loop with minimum human intervene.

Two exploration strategies are commonly used (Fig. 3(c)): (1)
conventional MD simulations or Monte Carlo (MC) sampling,
typically in NPT or NVT ensembles, to sample thermodynami-
cally accessible configurations; and (2) the metadynamics sam-
pling, which applies bias potentials along carefully chosen
collective variables (CVs) to access rare events and high-
energy regions. Metadynamics offers superior exploration of
rare events but requires system-specific CV selection and tun-
ing. A recent alternative is uncertainty-driven sampling, which
uses model uncertainty as a bias to steer exploration toward
regions where the ML-FF is least reliable.129

Common uncertainty metrics (Fig. 3(d)) include: (a) Gaus-
sian Gaussian-process predictive variance, available natively in
GAP-type ML-FFs; (b) D-optimality criteria, used in MTP via an
extrapolation grade derived from the determinant of the infor-
mation matrix; and (c) ensemble disagreement, in which multi-
ple models with different random initializations are trained
and the dispersion in predicted forces is used as the uncer-
tainty estimate.93,127,130 Ensemble methods are model-agnostic
and generally robust, and are therefore widely adopted across
ML-FF frameworks.131

4. The application of ML-FFs in SSEs
research
4.1 Identification of GSEs

Because of their amorphous character, glassy SSEs present
unique structural challenges that require specialized

approaches for accurate atomic modeling. As shown in Fig. 4,
the atomic structures can be generated either by reverse Monte
Carlo (RMC) fitting to experimental data166,167 or by melt-
quenching simulations.16,168,169

The RMC method employs the Metropolis acceptance–rejec-
tion algorithm to minimize the difference between simulated
and experimental features (Fig. 4(a)). However, in its basic form
RMC is under-constrained and can yield chemically unreason-
able networks, particularly in systems with complex bonding. A
hybrid RMC-MLFF approach (RMC-DL) has been proposed to
address this issue,171 using an ML-FF to assess the energetic
plausibility and thereby produce more physically meaningful
structures, as demonstrated by Yamada et al.136

An alternative is to use ML-FFs directly to perform melt-
quench simulations (Fig. 4(b)). Due to their scalability, ML-FFs
enable larger supercells and longer trajectories than AIMD
while retaining near-DFT accuracy, yielding more representa-
tive amorphous networks. This strategy has been applied across
multiple glassy SSE families, including halide glass,158,172

sulfide glass,135,137,141,142 LiPON glass,165 amorphous LLZO
systems,148 and metal oxyhalide systems.85–87

However, developing ML-FFs for amorphous systems is
hampered by limited training data: metastable amorphous
phases are largely absent from open datasets and, by extension,
from pre-trained models. Recent evaluations of available pre-
trained ML-FFs have identified unphysical structural motifs
and poor agreement with measured mechanical properties.

We recently developed ML-FF models for Li-thiophosphate
GSE and Na-oxythiophosphate GSEs (Fig. 5), namely, Li2S–SiS2–
P2S5 and Na3PS4�xOx systems.137,142 These ML-FFs reproduce
experimental densities, structure factors, radial distribution

Fig. 4 Workflow of obtaining glass structures. (a) reverse Monte Carlo
(RMC) method. (b) Melt-Quenching simulation. Panel (a) reprint from ref.
170 with permission from Wiley, copyright 2023; panel (b) reprint from ref.
168 with permission from The Royal Society of Chemistry, copyright 2022.
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functions, and mechanical properties. The larger simulation
cells accessible with ML-FF-driven melt-quench workflows
enable robust statistics; by contrast, typical AIMD supercells
(B100 atoms) provide insufficient sampling for reliable struc-
tural analysis.

Using these ML-FFs, we examined (1) oxygen doping in
NaPSO (Na3PS4�xOx) and (2) incorporation of a second network
former in Li-thiophosphate glasses. In the Li2S–SiS2–P2S5

system, compositional scans reveal that the medium-range
connectivity of short-range structural units (edge sharing,
corner sharing, or isolated motifs shown in Fig. 5(a) and (c))
strongly modulates Li-ion diffusion. In Na3PS4�xOx, oxygen
exerts dual effects—reducing free volume via increased
electronegativity while simultaneously enhancing network
flexibility—together governing ionic transport.

4.2 Phase transition

As discussed in previous sections, many SSEs exhibit
temperature-driven polymorphism, with a low-temperature
phase (typically low ionic conductivity) and a high-temper-
ature phase (typically higher conductivity). For example, LLZO
adopts a high-conductivity cubic phase (Ia%3d) and a low-
conductivity tetragonal phase (I41/acd), with a phase transition
temperature around 900 K that alter Li+ transport by orders of
magnitude. Complex hydrides, commonly transform from
ordered monoclinic structures at low temperature to disordered
phases at high temperature; in Na2B10H10, the B10H10

2� anions
undergo an order–disorder transition around B373 K, enabling
superionic conduction.173 Sulfide electrolytes (e.g., Na3PS4) and
halide electrolytes (e.g., Li3YCl6) likewise display temperature-
dependent phase transitions that strongly affect transport
properties.

Elucidating the atomistic mechanisms of these transitions is
crucial for devising strategies to stabilize high-conductivity

phases at room temperature. By delivering near-DFT accuracy
at (near) classical MD cost, ML-FFs enable the long trajectories
and large cells needed to capture nucleation pathways and
order–disorder dynamics—capabilities beyond classical
force fields and typically inaccessible to AIMD. As shown in
Fig. 6(a)–(g), Shimizu et al. tracked the crystallization of Li3PS4

glass over B100 ns, a timescale infeasible for AIMD. Maltsev
et al. investigate the temperature-induces order–disorder phase
transition in Li2B12H12 (Fig. 6(h) and (i)) and LiCB11H12 and
compared the effects of different exchange–correlation func-
tionals on crystal structure and phase transition temperature.

We developed ML-FFs for the Na–C–B–H closo-hydroborate
family and investigated the temperature-induced transition in
Na2B12H12, as shown in Fig. 6(j) and (k) The simulations reveal
a martensitic, Bain-like pathway from the room-temperature
monoclinic phase to a high-temperature bcc phase, accompa-
nied by a pronounced increase in Na+ conductivity and a
reduced barrier for anion reorientation. Despite the smaller
unit-cell volume of the bcc phase, the dense network of tetra-
hedral interstitials, together with faster anion reorientation,
yields abundant, dynamically connected migration pathways
that enable rapid Na+ diffusion.

4.3 Room temperature calculation

A primary goal of computation is to quantify ionic conductivity
and migration barriers at operating temperatures; reliable
estimates are essential for SSE screening and optimization.
Although AIMD is intrinsically accurate, it faces three major
limitations: (1) short trajectories that yield large statistical
uncertainties, (2) non-Arrhenius transport in many SSEs that
invalidates high-temperature extrapolation, and (3) computa-
tional cost that restricts accessible length and time scales.

Statistical errors arise because AIMD runs typically span only
hundreds of picoseconds, providing too few diffusion events for
well-converged transport coefficients. He et al. showed that
uncertainties in AIMD-derived transport properties can be
substantial, especially for the slow diffusion characteristic of
room-temperature SSEs.177 Moreover, as shown in Fig. 7 and 8,
the common practice of extrapolating high-T data to room
temperature with an Arrhenius law is often unjustified: materi-
als such as LGPS and Li3YCl6 exhibit non-Arrhenius behavior
due to phase transitions, temperature-dependent diffusion
mechanisms, or anion dynamics (e.g., PS4 rotational modes).
In such cases, direct room-temperature calculations are prefer-
able, as Arrhenius extrapolation can lead to errors of orders of
magnitude.

4.4 Anion rotational movement

Anions play a crucial role in SSEs performance, serving both as
the structural framework and as active participants in cation
diffusion. In particular, the rotational dynamics of complex
anions (Fig. 9) have emerged as key to understanding super-
ionic conduction.133,136,157,178–185

We recently utilized ML-FFs to study anion dynamics in
Li2S–SiS2–P2S5 GSE and in Na2B12H12 SSE. For melt-quench
glass models of xLi2S–(1 � x)P2S5 (x = 67%, 70%, 75%), we

Fig. 5 Structure of obtained Li2S–SiS2–P2S5 and Na3PS4�xOx glass
through ML-FF melt-quenching simulations. (a) 60Li2S–2SiS2–8P2S5 (b)
Na3PS3.85O0.15. (c) local environments of P and Si. Pictures adapted form
ref. 142 with permission from American Chemical Society, copyright 2023
and ref. 137 with permission from The Royal Society of Chemistry, copy-
right 2024.
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found that decreasing fractions of corner- and edge-sharing PS
units, coupled with increasing isolated PS4 tetrahedra, lead to
more bridging sulfur atoms, which allows for more rotational
movement. In 60Li2S–32SiS2–8P2S5 GSE (Fig. 9(c)), calculations
of Li+ diffusion and anion rotation show small-angle rotations
(o201) of PS units along the Li+ diffusion pathways, suggesting
that enhanced anion rotational degrees of freedom can lower
Li+ migration barriers.

We applied a similar analysis to Na2B12H12. As shown in
Fig. 9(d), in the low-temperature monoclinic phase, B12H12

2�

anions undergo slow, discrete rotations about symmetry axes
(predominantly fivefold), whereas in the high-temperature bcc
phase they reorient more rapidly with frequent hops between
symmetry-equivalent orientations. Fitting the orientational
autocorrelation to an exponential yields Arrhenius behavior
(Fig. 9(e)): the reorientation rate increases by B20� in the

high-T phase, and the activation energy drops from 0.77 eV to
0.18 eV.

The paddle-wheel effect has been a subject of considerable
debate in the SSEs community.157,160,178,179 This debate stems
partly from the lack of a unified definition.178 Regardless, it is
well agreed that rotational motion of anions can lower cation
migration energy barriers, as illustrated in Fig. 9(a). AIMD
simulations by Smith and Siegel (Fig. 9(b)) suggest that such
effects can operate at room temperature in glassy electrolytes:
in Li3PS4 glass, PS4

3� tetrahedra exhibit large rotational dis-
placements (B20–751) that are temporally and spatially corre-
lated with Li+ migration events.179

However, recent ML-FF studies have deepened our under-
standing of anion rotation effects. Xu et al. employed MTP to
investigate polyanion rotation effects across multiple SSEs
systems (b-Li3PS4, Li7P3S11, Li10GeP2S12, Li3ErCl6, Li3YBr6)

Fig. 6 Phase transition studies in SSEs. (a)–(g) Crystallization process of Li3PS4 GSE: (a) potential energy profile, (b) changes in crystallinity and cell
volume, (c) calculated XRD pattern, (d)–(g) snapshots from 72 ns to 87 ns. (h), (i) Order–disorder transition of Li2B12H12: (h) lattice constant during heating
and cooling, (i) crystal structures of Li2B12H12 cubic and monoclinic phases. (j)–(k) Phase transition in Na2B12H12: (j) pair distribution function of Na2B12H12

before and after phase transition, (k) illustration of Bain martensitic transition path in Na2B12H12. panel a–g reprint from ref. 135 with permission form
American Chemical Society, copyright 2024; panel h, i reprint from ref. 174 with permission form American Chemical Society, copyright 2023; panel j, k
reprint from ref. 161 with permission form American Chemical Society, copyright 2025.
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using ms-scale simulations.133 Surprisingly, they found that
only Li7P3S11 shows significant polyanion rotation at room
temperature, and that rotational [PS4]3� groups correlate
weakly and negatively with Li+ diffusion, challenging the notion

of pervasive paddle-wheel–assisted transport in crystalline sys-
tems at ambient conditions.

The current understanding suggests that the paddle-wheel
effect requires careful consideration of several factors: (1) the
need for a strict definition based on quantitative metrics rather
than qualitative observations,178 and (2) understanding that its
importance varies significantly between different materials and
temperature regimes. ML-FF simulations provide the temporal
and spatial resolution needed to disentangle coupled cation–
anion dynamics and to assess these effects rigorously.

4.5 Interface study

ML-FFs are particularly well suited to interface studies for three
reasons: (1) they enable simulations of large interfacial regions
with adequate statistical sampling; (2) they access the extended
time scales required to capture slow interfacial processes; and
(3) they explicitly describe bond breaking and formation,
allowing direct treatment of interfacial chemistry. These cap-
abilities make ML-FFs especially valuable for elucidating grain-
boundary transport, surface reactions, and solid–solid inter-
faces in SSEs.

Grain boundary. Grain-boundaries (GBs) effects vary across
SSEs systems. In oxide-based SSEs, GBs typically impede Li+

transport and potentially promote dendrite growth, whereas in
systems such as Li3InCl6 and Li3PS4 they often enhance Li
diffusion due to local amorphization. ML-FF enables detailed,
atomic-scale investigation of GBs structures and transport
properties that would be prohibitively expensive with AIMD.
As shown in Fig. 10, Ou et al. modeled S3 and S5 GBs in
argyrodite Li6PS5Cl61 and showed that the opening of Li-
coordinated cages at GBs strongly influences Li+ diffusion
(Fig. 10(b)). You et al. recently utilized an ML-FF to study the
vertical and horizontal GBs in LLZO garnet-type SSEs; in that
case, GB amorphization hinders Li transport but suppresses Li
aggregation and inhibits dendrite formation.186

Collectively, recent computational61,186 and experimental187

studies have demonstrated that grain boundary engineering
can be employed to optimize the performance of SSE by
enhancing ionic conductivity and suppressing dendrite for-
mation. Specific strategies include inducing amorphization
and increasing vacancy concentrations at GBs.138,187 By eluci-
dating the atomic-level structure–transport relationships at
interfaces, researchers can design targeted synthesis and
post-processing approaches to minimize GB resistance. This
progress presents both opportunities and challenges for ML-FF
modelling. One on hand, ML-FFs enable simulations involving
thousands of atoms with near-DFT accuracy. On the other
hand, complex atomic environments, composed of metastable
amorphous and defect-rich phases, pose significant challenges
for data-driven ML-FF approaches. Addressing these challenges
requires the development of ML-FF models with exceptional
generalizability, supported by comprehensive datasets that
capture the full spectrum of structural diversity.

SSE-surface reactions. Surface stability is crucial for SSEs
processing and long-term performance. Li et al. used an ML-FF
to study gas–solid reaction dynamics on Li6PS5Cl surfaces

Fig. 7 Temperature-dependent ionic conductivity. (a) Schematic illustra-
tion of three types of conductivity-temperature relationships, (b)–(d)
Arrhenius ionic conductivity of LGPS, closo-hydroborate SSEs, glassy
LiAlClO SSEs. Panel (a) reprinted from ref. 145 with the permission of AIP
Publishing, copyright 2021; panel (b) reprinted from ref. 144 (Winter et al.,
2023) under terms of CC-BY 4.0 (https://creativecommons.org/licenses/
by/4.0/) from IOP Publishing, copyright 2023; panel (c) reprinted from ref.
175 with permission from Wiley, copyright 2016; panel (d) reprinted from
ref. 86 with permission from Springer Nature, copyright 2023.

Fig. 8 Super-ionic transition in Li3YCl6. (a) Arrhenius plot of Li+ conduc-
tivity, (b) Li+ migration pathways in Li3YCl6, (c) structure of partially
occupied Li+ sites in Li3YCl6, (d) structure of ordered Li+ sublattice in
Li3YCl6. Reprinted from ref. 176 under the terms of CC-BY-NC-ND
4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) from Wiley,
copyright 2023.
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under CO2 and mixed CO2/O2 atmospheres (Fig. 10(a)).156 Their
NequIP model enabled nanosecond-scale simulations that
revealed detailed reaction mechanisms impossible to AIMD
approaches.

The study demonstrated that in pure CO2, the surface
evolves toward Li2CO2S via C–S bond formation, whereas in
CO2/O2 mixtures O2-mediated pathways favor Li2CO3. These
insights clarify how ambient gases govern surface chemistry
during synthesis and operation, informing atmospheric proces-
sing conditions and protective-coating strategies. More broadly,
the ability to model gas–solid reactions with near-chemical
accuracy over extended timescales provides a powerful route
to dissect SSE degradation mechanisms.

Metal-SSE interfaces. The solid electrolyte interphase (SEI)
is a critical component of ASSBs, yet most studies lack the

atomic-level resolution necessary to elucidate reaction path-
ways and structural evolution. Hence, it is important to study
and understand the reaction of SEI in SSEs. Using ML-FF, Ren
et al. studied the SEI formation at a b-Li3PS4/Li-meal contact at
300 K.188 Their MD simulations reveal a 4 stage process: (1) a
brief interdiffusion stage in which interfacial S and P migrate
toward the Li metal while Li migrates into the electrolyte,
producing an amorphous SEI with a mutual diffusion depth
up to B41 Å; (2) nucleation of a crystalline interphase at the
interface; (3) anisotropic growth that proceeds rapidly parallel
to the Li surface with comparatively slow thickening and, once
the surface is covered, expansion toward the SSE; and (4) a
quasi-steady-state regime in which SEI thickening slows and
the structure stabilizes.

Most current ML-FFs cannot capture electrochemical char-
ging/discharging, limiting their ability to model dendrite
nucleation or SEI evolution under redox driving forces. To
address this gap, Hu et al. introduced the DP-QEq framework,
which enables constant-charge or constant-potential simula-
tions by decomposing the total energy into a short-range part
learned by the ML-FF and a long-range part treated via charge
equilibration (QEq).189,190 This approach allows explicit control
of electrochemical driving forces at SSE–electrode interfaces,
enabling mechanistic studies of SEI formation, growth, and
stability.

5. Future perspective and conclusion
Transferability between different studies

Transferability remains a major challenge for ML-FFs, arising
from both architectural differences and heterogeneity in train-
ing data. Although numerous SSE-focused ML-FFs and large
datasets now exist, models trained in one framework are rarely
usable without modification in another.

Data are generated at different levels of precision, using
different DFT software, exchange–correlation functionals,

Fig. 9 Anion rotation in SSEs. (a) Illustration of the effect of anion rotation on lowering cation migration energy barrier, (b) illustration of the coupling of
cation transport with the reorientation of anions in LPS glass, (c) Li+ diffusion trajectories in 60Li2S–32SiS2–8P2S5 glass over 30 ps, with PS4 (purple) and
SiS4 (brown) tetrahedra, (d) anion rotation angle and axis in low-temperature Na2B12H12 phases, (e) Arrhenius plot of anion reorientational speed in high-
temperature (g) phase and low-temperature (a) Na2B12H12 phase. Panel (a) adapted from abstract image of ref. 180 with permission from Elsevier,
copyright 2024; panel (b) reprinted from ref. 179 (Smith et al., 2020) under terms of CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/); panel
(c) reprinted from ref. 137 with permission form American Chemical Society, copyright 2024; panels (d)–(e) reprinted from ref. 161 with permission form
American Chemical Society, copyright 2025.

Fig. 10 Solid-state electrolyte interface schematics (top row) and atomic
models in argyrodite SSEs (bottom row): (a) surface of argyrodite. (b)
Argyrodite S5 grain boundary model and Li diffusion trajectory (blue). (c)
Argyrodite|Li metal interface after 90 ps. Top row schematics from ref. 13
with permission from Springer Nature, copyright 2025; bottom models
adapted from ref. 156 with permission form American Chemical Society,
copyright 2025, ref. 61 with permission form American Physical Society,
copyright 2024, and ref. 153 with permission form American Chemical
Society, copyright 2024, respectively.

Highlight ChemComm

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
2/

20
26

 2
:3

6:
40

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cc04921k


17266 |  Chem. Commun., 2025, 61, 17254–17270 This journal is © The Royal Society of Chemistry 2025

Hubbard-U corrections, and van der Waals interactions, com-
plicating cross-study reuse. The explored configurations spaces
also differ substantially. For instance, in Table 1, a ternary
Li–P–S ML-FF could be trained on crystalline b-Li3PS4 alone or
with different degrees of disorder,133 on other Li3PS4 poly-
morphs or related thiophosphates,134 on decomposition pro-
ducts such as Li2S and Li3P,145 on amorphous/glassy
structures,137 or on Li–metal interfaces.188 The adoption of
active learning in SSEs studies also depends heavily on software
ecosystems, with MTP and DP showing greater usage due to
their integration with established software packages, such as
DP-GEN and MLIP.120,127,128,191 Moreover, active-learning data-
sets are themselves conditioned by the underlying ML-FF
architecture, further hindering transfer between models.192

As a result, new systems often require training from scratch.
A pragmatic path forward is a pre-trained ‘‘foundation model’’
plus fine-tuning: large models trained on broad datasets learn
transferable atomic-environment embeddings, which can then
be adapted efficiently to target chemistries with system-specific
data, often achieving higher accuracy and computational
efficiency.130,193–196

From bulk to interfaces

Most ML-FF studies focus on bulk SSE materials, but there is
growing need for a deeper understanding of interfaces: SSE–
metal anode, SSE-high voltage cathode, and SSE–SSE interfaces.
To date, relatively few ML-FF studies have examined interfaces;
most target SSE–metal and SSE–SSE systems, with only limited
studies on SSE–cathode interfaces.

From the ML-FF development perspective, SSE–cathode
interfaces are especially challenging because they introduce
additional elements and compounds. Many ML-FFs use
element-specific descriptors or networks to improve accuracy,
so expanding the chemical space increases data requirements
and can slow inference. Moreover, transition-metal species
such as Ni, Co, and Mn add complexity through variable
oxidation states, strong correlation, and spin degrees of
freedom.197,198

Understanding how interfaces behave under realistic
mechanical and electrochemical conditions is critical for
advancing solid-state systems. This includes accounting for
GPa-level stress199 buildup at the interfaces and the variations
in chemical potentials that occur during electrochemical
cycling.73 Recent advances in ML-FFs are beginning to address
these challenges. These developments include models
designed to capture long-range interactions (e.g., 4G-
HDNNP,200 DPLR,201 Latent Ewald Summation202) as well as
those designed to predict additional scalar and tensor proper-
ties, such as charge states (e.g., CHGNET110), spin (e.g.,
DeepSPIN197), and dynamic charge-related properties such as
the Born effective charge (e.g., Equivar,203 CACE-LR204). While
these advanced models enable more accurate and physically
informed descriptions of interfacial phenomena, their perfor-
mance remains fundamentally limited by the quality and
diversity of their training data. This reveals the urgent need
for active learning workflows and pre-trained models to

efficiently sample, explore, and generalize across these highly
complex systems.196

In conclusion, ML-FFs have emerged as a powerful compu-
tational tool for studying solid-state electrolytes, bridging the
gap between the first-principles accuracy and the large-scale,
long-timescale simulations required to understand these
complex materials. As revealed in this review, the application
of ML-FFs has already provided critical atomic-level insights
across a wide range of crystalline and glassy SSEs, from
accurate modeling of structures and mechanical properties to
the study of complex transport dynamics and reactions. The
growing interest in the interfacial phenomena and studies
under more realistic mechanical and electrochemical condi-
tions demands even more accurate ML-FF models and compre-
hensive, diverse training datasets. Recent advances, including
the development of long-range models, foundation models,
and active learning workflows, enables promising pathways
towards a deeper atomic-level understanding of solid electro-
lytes, ultimately accelerating the discovery and optimization of
robust, high-performance materials for next generation all-
solid-state batteries.
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L. Simine, ACS Phys. Chem. Au, 2025, 5, 3–16.

16 S. Urata, M. Bertani and A. Pedone, J. Am. Ceram. Soc., 2024, 107,
7665–7691.

17 O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky,
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2023, preprint, arXiv:2206.07697, DOI: 10.48550/arXiv.2206.07697.

108 S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa,
M. Kornbluth, N. Molinari, T. E. Smidt and B. Kozinsky, Nat.
Commun., 2022, 13, 2453.

109 D. Zhang, A. Peng, C. Cai, W. Li, Y. Zhou, J. Zeng, M. Guo,
C. Zhang, B. Li, H. Jiang, T. Zhu, W. Jia, L. Zhang and H. Wang,
2025.

110 B. Deng, P. Zhong, K. Jun, J. Riebesell, K. Han, C. J. Bartel and
G. Ceder, Nat Mach Intell, 2023, 5, 1031–1041.

111 V. L. Deringer, M. A. Caro and G. Csányi, Adv. Mater., 2019,
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J. Chem. Theory Comput., 2025, 21, 6096–6112.

193 R. Wang, M. Guo, Y. Gao, X. Wang, Y. Zhang, B. Deng, X. Chen,
M. Shi, L. Zhang and Z. Zhong, 2024.

194 I. Batatia, P. Benner, Y. Chiang, A. M. Elena, D. P. Kovács,
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