ChemComm

COMMUNICATION

View Article Online

Cite this: Chem. Commun., 2025, **61**, 13659

Received 9th June 2025, Accepted 30th July 2025

DOI: 10.1039/d5cc03254q

rsc.li/chemcomm

C(sp³)-H functionalization of N-protected dialkylpyrrole derivatives with azodicarboxylates

Jing Guo, (1) †** Maying Yan, (1) †* Lei Xiao, (10) * Jiajie Li, (10) * Zheng-wang Qu, (10) * Stefan Grimme (D) and Douglas W. Stephan (D) *C

A metal-free, catalytic route to the activation of C(sp3)-H bonds in N-protected dialkylpyrroles to diazodicarboxylates is reported using HB(C₆F₅)₂ as the optimized catalyst. These reactions tolerate aryl and alkyl substituents on the pyrrole N-atom as well as variation in the azodicarboxylates giving rise to 41 examples. These reactions were also performed on a gram scale and conversion to the corresponding amino-esters is demonstrated. A DFT computation study reveals that the Lewis acid adduct of azodicarboxylates generates a Lewis acidic N-atom capable of hydride abstraction from dimethylpyrrole, ultimately effecting C(sp3)-H functionalization.

Pyrrole is a privileged aromatic heterocycle that is found in chlorophyll, heme, vitamin B₁₂, and bile acids. Naturally occurring and synthetic molecules incorporating pyrrole units have been shown to exhibit a broad range of biological and pharmacological activities. For example, over 20 synthetic pyrrole derivatives are commercially marketed drugs as such species exhibit antipsychotic, anti-anxiolytic, anti-cancer, anti-bacterial, anti-fungal, anti-malarial, anti-inflammatory, and anti-hyperlipidemic behavior (Fig. 1a). 1a,1b

Synthetic efforts to derivatize pyrroles have led to the development of a wide variety of transition metal catalyzed processes.² These protocols allow the incorporation of a wide range of functional groups, typically leading to substitution at N or at the $C(sp^2)$ atoms at the C-2 or C-3 positions. These methods have been reviewed. 2b-e Alternatively main group species are known to mediate the derivatization of N-protected pyrroles.3 For example, Lewis acid mediated Friedel-Crafts methods readily provide substitution again at sp2 carbons, where the steric demands of

In 2010, we showed that N-alkylpyrroles participate in frustrated Lewis pair (FLP) alkyne-addition reactions, leading to C-C bond formation at the C(sp²) atoms at the C-3 position.⁴ Several years later, in a seminal finding, Fontaine and coworkers⁵ exploited intramolecular N/B FLPs to effect borylation of Nmethylpyrrole, thiophene and furan derivatives, again at the C-2 or C-3 positions depending on the other substituents (Fig. 1b). Subsequently, Shi and coworkers used BBr₃ to direct C(sp²)-H borylation of indoles at the C-7 or C-4 positions and other (hetero)arenes.6 More recently, Tan et al. elegantly used chiral phosphoric acid catalysts to functionalize N-protected-pyrroles at the C-3 position, affording axially chiral arylpyrroles (Fig. 1b).

In contemplating alternative strategies for the functionalization of pyrroles, we considered activation of the $C(sp^3)$ -H bonds of substituents at the C-2 position. While the majority of the activation strategies for unactivated C(sp3)-H bonds have been

Fig. 1 (a) Representative pyrrole-derived drugs. (b) Metal free C(sp²)-H functionalization of N-protected pyrroles. (c) This work – $C(sp^3)$ –H functionalization of N-protected pyrroles with azodicarboxylates.

the N-protecting group can be used to direct substitution to either the C-2 or C-3 positions.³

^a Institute of Drug Discovery Technology and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China. E-mail: guojing@nbu.edu.cn

^b Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115 Bonn, Germany. E-mail: qu@thch.uni-bonn.de

^c Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada, E-mail: douglas.stephan@utoronto.ca

[†] J. Guo and M. Yan contributed equally to this work.

Communication ChemComm

achieved using transition-metal catalysts,8 we noted that boranes have been used as catalysts to promote C-C and C-heteroatom bond formation.9 For example, Wang and coworkers achieved C(sp3)-H alkylation of tertiary amines with electrondeficient olefins using B(C₆F₅)₃ as the catalyst. ¹⁰ In another recent breakthrough, Lin et al. 11 used frustrated radical pairs (FRPs) to functionalize the C(sp³)-H bonds of various organic substrates, affording aminoxylated products. Nonetheless, to our knowledge, C(sp³)-H bond activation of pyrrole derivatives is not known. Herein, we develop a protocol for the C(sp3)-H bond functionalization of the methyl groups of N-protected methylpyrroles with azodicarboxylates using Piers' borane $HB(C_6F_5)_2$ as the catalyst (Fig. 1c).

Our investigation began with the reaction of N-phenylpyrrole 1a and commercially available dibenzyl azodicarboxylate 2a in toluene. In the presence of 10 mol% Al(C₆F₅)₃, this gave mixtures of C(sp²)-H and C(sp³)-H activation products, with poor regioselectivity at 60 °C (Table 1, entry 1). In the presence of $B(C_6F_5)_3$ and $HB(C_6F_5)_2$, the selectivity for the $C(sp^3)$ -H functionalization product 3a improved (Table 1, entries 2 and 3). Using $HB(C_6F_5)_2$ as the catalyst, product 3a was obtained in 47% yield at 60 °C. Altering the reactant ratio of 1a:2a to 1.5:1 afforded product 3a in 61% yield with a 13% yield of the C(sp²)-H functionalization product 4a (Table 1, entries 3-6), while further variations of the solvent, temperature and catalyst loading did not increase the yield (Table 1, entries 7-12).

Using the optimized reaction conditions, the substrate scope for C(sp³)-H functionalization of N-protected dialkylpyrroles with azodicarboxylates was examined. Firstly, the reactions of a series of N-arylpyrroles with 2a in toluene were investigated. In the presence of 10 mol% HB(C₆F₅)₂, para-substituted N-arylpyrroles with electron-donating or electron-withdrawing substituents on the phenyl ring (Fig. 2, $R = C_6H_5$ 1a, 4-FC₆H₄ 1b, 4-ClC₆H₄ 1c,

Table 1 Optimized reaction conditions for C-H functionalization

HŅ	CO₂Bn N−CO₂Bn
----	------------------

Entry ^a	Cat.	1a:2a	Solvent	<i>T</i> (°C)	Yield (%) 3a ^b	Yield (%) 4a ^b
1	$Al(C_6F_5)_3$	1.0:1.5	Toluene	60	21	22
2	$B(C_6F_5)_3$	1.0:1.5	Toluene	60	43	6
3	$HB(C_6F_5)_2$	1.0:1.5	Toluene	60	47	6
4	$HB(C_6F_5)_2$	1.0:1.0	Toluene	60	47	12
5	$HB(C_6F_5)_2$	1.5:1.0	Toluene	60	61	13
6	$HB(C_6F_5)_2$	2.0:1.0	Toluene	60	55	13
7	$HB(C_6F_5)_2$	1.5:1.0	Benzene	60	57	14
8	$HB(C_6F_5)_2$	1.5:1.0	<i>p</i> -Xylene	60	52	10
9	$HB(C_6F_5)_2$	1.5:1.0	PhF	60	39	19
10	$HB(C_6F_5)_2$	1.5:1.0	Toluene	45	47	11
11	$HB(C_6F_5)_2$	1.5:1.0	Toluene	80	52	12
12 ^c	$HB(C_6F_5)_2$	1.5:1.0	Toluene	60	23	26

^a Unless otherwise noted, all reactions were performed using 10 mol% catalyst, 1a and 2a in solvent (2.0 mL) under argon for 12 h. b Isolated yield after chromatography. c 5 mol% catalyst.

Fig. 2 Scope of N-protected dialkylpyrroles. Reaction conditions: a solution of 1 (0.3 mmol), dibenzyl azodicarboxylate 2a (0.2 mmol) and $HB(C_6F_5)_2$ (10 mol%) in toluene (2.0 mL) was stirred at 60 °C for 1-2 h in argon.

4-BrC₆H₄ 1d, 4-IC₆H₄ 1e, 4-CF₃C₆H₄ 1f, 4-MeOC₆H₄ 1g, 4-MeC₆H₄ **1h**) reacted smoothly with **2a** to provide the corresponding products 3a-3h in 49-68% yields. Similarly, meta-substituted N-arylpyrroles bearing differing functional groups (Fig. 2, R = 3-FC₆H₄ 1i, 3-MeOC₆H₄ 1j, 3-MeC₆H₄ 1k) were tolerated, affording 3i-3k ChemComm

in 48-65% yields. ortho-Substituted N-arylpyrroles (Fig. 2, R = 2-FC₆H₄ 1l, 2-ClC₆H₄ 1m, 2-BrC₆H₄ 1n, 2-IC₆H₄ 1o, 2-CF₃C₆H₄ 1p, 2-MeC₆H₄ 1q, 2-iPrC₆H₄ 1r, 2-tBuC₆H₄ 1s) were also suitable

substrates, affording the C(sp³)-H functionalization products 31-3s in 30-64% yields. The identity of 3s was confirmed by X-ray crystallography (see the SI).12

In addition, N-arylpyrroles with 2 or 3 substituents on the phenyl ring (Fig. 2, $R = 2-I_3-ClC_6H_3$ 1t, $2-I_4-ClC_6H_3$ 1u, $2-I_5-I_6$ ClC₆H₃ 1v, 2-I,5-FC₆H₃ 1w, 2-I,5-BrC₆H₃ 1x, 2,5-(CF₃)₂C₆H₃ 1y, $3,5-(CF_3)_2C_6H_3$ 1z, $3,5-Cl_2C_6H_3$ 1aa, $3,5-Br_2C_6H_3$ 1ab, $3,4,5-Br_2C_6H_3$ 1ab, $3,5-Br_2C_6H_3$ $Cl_3C_6H_2$ **1ac**) were also successfully converted to the $C(sp^3)$ -H functionalized products 3t-3ac in 56-82% yields. The reactions of N-benzylpyrroles (Fig. 2, $R = CH_2Ph$ 1ad, $CH_2C_6H_4Me$ 1ae, CH₂C₆H₄Cl 1af) provided products 3ad-3af in 51-60% yields. The nature of 3ad was also confirmed by X-ray analysis (see the SI). ¹² Moreover, alkylpyrroles (Fig. 2, R = Me 1ag, C₃H₅ 1ah, C₆H₁₁ 1ai) also reacted with 2a, giving the products 3ag-3ai, albeit in somewhat reduced yields of 27-35%. Furthermore, changing the pyrrole substituents to Et groups, as in 1aj, afforded 3aj in 50% yield, while the reaction of the dissymmetric pyrrole 2-Me-5-Ph-N-(C₆H₂Cl₃)-pyrrole 1ak with 2a gave the $C(sp^2)$ -H amination product 4ak in 55% yield (see the SI).

Efforts to identify by-products were undertaken. Even on doubling the reaction scale for all reactions, most by-products were not unambiguously identifiable although the C(sp²)-H amination products 4ah and 4ai were observed in 10 and 11% yields, respectively, while the double C(sp²)-H amination product 4ag' was observed in 9% yield (see the SI).

The reaction also tolerated variations in the azodicarboxylates. Thus, the reaction of the commercially available (RO₂CN)₂ (Fig. 3, $R = CH_2C_6H_4Cl$ **2b**, Et **2c**, *i*Pr **2d**) with **1ac** proceeded smoothly to give products 3ak-3am in 43-83% yields. In contrast, the use of 2e (R = tBu) gave only a 19% yield of 3an (Fig. 3). We note that this diazo-species is known to react with boranes to liberate CO₂ and isobutylene. 13 Notably, 4-phenyl-1,2,4-triazoline-3,5-dione 2f also reacted smoothly with 1ac, affording the desired product 3ao in 40% yield.

The scalability of this protocol to gram-scale reactions was demonstrated. Thus, using over 2 grams of 1ac with 2a in the presence of 10 mol% HB(C₆F₅)₂ afforded 2.35 g of 3ac in an

Fig. 3 Scope of azodicarboxylates. Reaction conditions: a solution of 1ac (0.3 mmol), dibenzyl azodicarboxylate 2 (0.2 mmol) and $HB(C_6F_5)_2$ (10 mol%) in toluene (2.0 mL) was stirred at 60 °C for 1-2 h in argon.

This journal is © The Royal Society of Chemistry 2025

Fig. 4 Scale-up synthesis and synthetic transformation.

overall yield of 82% (Fig. 4). In addition, 3ac was reacted with bromoacetate and Cs₂CO₃ using the method of Magnus et al., 14 affording C₄H₂Me(CH₂NH(CO₂CH₂Ph)N(C₆H₂Cl₃) 5 in 70% yield (Fig. 4). This carbamate ester was characterized by X-ray crystallography (see the SI).12

The mechanism of these reactions was established via a computational study using density functional theory (DFT) computations at the PW6B95-D3/def2-QZVP + COSMO-RS//TPSS-D3/ def2-TZVP + COSMO level of theory. 15 As B(C₆F₅)₃ and HB(C₆H₅)₂ showed similar reactivity, B(C₆F₅)₃ was used in the calculations to avoid the complexity associated with the dimerization equilibrium of Piers' borane in solution. The initial interaction of B(C₆F₅)₃ with the carbonyl fragment of azodicarboxylate 2c enhances the Lewis acidity of the remote N-atom, allowing it to abstract hydride from methylpyrrole 1a over a free energy barrier of 22.5 kcal mol^{-1} (TS1). This generates the transient ion pair $1a^+$ and 2cBH (Fig. 5), which reacts exothermically to form a new C-N bond. The release of borane is slightly endergonic, allowing the catalytic reaction to continue, consistent with both experimental conditions and the improved catalysis for (C₆F₅)₂BH, where the slightly reduced Lewis acidity presumably accelerates the Lewis acid release. Regarding the role of the N-Lewis acid, we note that such species have been pioneered by Gandelman,16 although we¹⁷ and others¹⁸ have described related diazo-derived Lewis acid systems.

In conclusion, we have reported a metal-free, catalytic and scalable protocol for the functionalization of C(sp3)-H bonds in

Fig. 5 DFT computed mechanism (in kcal mol⁻¹, at 298 K and 1 M concentration) for C(sp3)-H functionalization of N-Ph-dimethylpyrrole to azodicarboxylates.

Communication ChemComm

N-protected dimethylpyrroles with azodicarboxylates. The resulting diazo-pyrrole derivatives can be converted to the corresponding amino-esters. A mechanistic study showed that the Lewis acid adduct of the azodicarboxylate generates a Lewis acidic N-atom capable of hydride abstraction from the C(sp³) carbon on the pyrrole. We are continuing to study metal-free avenues for C-H functionalization and Lewis acid applications in organic synthesis.

The authors thank the Ningbo Natural Science Foundation (No. 2023J379) and the Ningbo Top Talent Project (No. 215-432094250) for financial support. Z.-W. Q. and S. G. are grateful to the Deutsche Forschungsgemeinschaft (project 490737079). We also acknowledge the Analysis Center of Institute of Drug Discovery Technology for collecting spectral data.

Conflicts of interest

There are no conflicts to declare.

Data availability

The data that support this study are available in the SI of this article.

Experimental and spectral data are available as SI See DOI: https://doi.org/10.1039/d5cc03254g

3s: CCDC 2434837; 3ad: CCDC 2434838 and 5: CCDC 2434839 contain the supplementary crystallographic data for this paper. 19-21

Notes and references

- 1 (a) B. H. Ganesh, A. G. Raj, B. Aruchamy, P. Nanjan, C. Drago and P. Ramani, ChemMedChem, 2024, 19, e202300447; (b) T. Biswas, R. K. Mittal, V. Sharma, Kanupriya and I. Mishra, Med. Chem., 2024, 20, 369-384; (c) B. S. Manya, M. R. P. Kumar, K. Rajagopal, A. M. Hassan, S. O. Rab, M. A. Alshehri and T. B. Emran, Chem. Biodiversity, 2024, 21, e202400534.
- 2 (a) A. M. Wagner and M. S. Sanford, Org. Lett., 2011, 13, 288-291; (b) M. K. Hunjan, S. Panday, A. Gupta, J. Bhaumik, P. Das and J. K. Laha, Chem. Rec., 2021, 21, 715-780; (c) K. Pedretty, K. Tillett, W. Tsuei and J. M. Lopchuk, Prog. Heterocycl. Chem., 2021, vol. 32, pp. 193-240; (d) B. Prabagar and Z. Shi, Recent Advances in C-H Functionalization of Five-Membered Heterocycles with Single Heteroatoms, John Wiley & Sons, Inc., 2023; (e) J. W. Campbell, M. J. Cotnam, F. R. Annan, J. W. Hilborn and A. Thompson, Chem. Commun., 2024, 60, 11385-11414.
- S. Rej and N. Chatani, Angew. Chem., Int. Ed., 2022, 61, e202209539.
- 4 M. A. Dureen, C. C. Brown and D. W. Stephan, Organometallics, 2010, 29, 6422-6432.
- (a) M. A. Legare, M. A. Courtemanche, E. Rochette and F. G. Fontaine, Science, 2015, 349, 513-516; (b) S. K. Bose and T. B. Marder, Science, 2015, 349, 473-474; (c) J. Legare Lavergne, A. Jayaraman, L. C. Misal Castro, E. Rochette and F.-G. Fontaine, J. Am. Chem. Soc., 2017, 139,
- 6 J. Lv, X. Chen, X.-S. Xue, B. Zhao, Y. Liang, M. Wang, L. Jin, Y. Yuan, Y. Han, Y. Zhao, Y. Lu, J. Zhao, W.-Y. Sun, K. N. Houk and Z. Shi, Nature, 2019, 575, 336-340.
- 7 L. Zhang, S. H. Xiang, J. J. Wang, J. Xiao, J. Q. Wang and B. Tan, Nat. Commun., 2019, 10, 566.

- 8 (a) J. He, M. Wasa, K. S. L. Chan, Q. Shao and J.-Q. Yu, Chem. Rev., 2016, 117, 8754-8786; (b) B. Liu, A. M. Romine, C. Z. Rubel, K. M. Engle and B. F. Shi, Chem. Rev., 2021, 121, 14957-15074; (c) Y. Yang, W. Gao, Y. Wang, X. Wang, F. Cao, T. Shi and Z. Wang, ACS Catal., 2021, 11, 967-984; (d) K. P. Bryliakov, ACS Catal., 2023, 13, 10770-10795; (e) M. Sadeghi, ACS Catal., 2024, 14, 15356-15373.
- 9 (a) S. Basak, L. Winfrey, B. A. Kustiana, R. L. Melen, L. C. Morrill and A. P. Pulis, Chem. Soc. Rev., 2021, 50, 3720-3737; (b) G. Kumar, S. Roy and I. Chatterjee, Org. Biomol. Chem., 2021, 19, 1230-1267; (c) A. Dasgupta, E. Richards and R. L. Melen, ACS Catal., 2021, 12, 442-452; (d) J. Guo, M. Yan and D. W. Stephan, Org. Chem. Front., 2024, 11, 2375-2396; (e) T. Liu, Org. Chem. Front., 2025, 12, 2481-2498; (f) B. Rao and R. Kinjo, Chem. - Asian J., 2018, 13, 1279-1292.
- 10 X.-Y. Zhou, Y.-B. Shao, R.-T. Guo, Y.-L. Zhang, X.-S. Xue and X.-C. Wang, ACS Catal., 2024, 14, 8041-8049.
- 11 Z. Lu, M. Ju, Y. Wang, J. M. Meinhardt, J. I. Martinez Alvarado, E. Villemure, J. A. Terrett and S. Lin, Nature, 2023, 619, 514-520.
- 12 The X-ray data have been deposited in the CCDC 2434837 (3s), 2434838 (3ad) and 2434839 (5).
- 13 Z. Hussain, Y. A. Luo, Y. Wu, Z. W. Qu, S. Grimme and D. W. Stephan, J. Am. Chem. Soc., 2023, 145, 7101-7106.
- 14 P. Magnus, N. Garizi, K. A. Seibert and A. Ornholt, Org. Lett., 2009, 11, 5646-5648.
- 15 (a) A. Klamt and G. Schüürmann, J. Chem. Soc. Perkin Trans. 2, 1993, 799–805; (b) K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, Theor. Chem. Acc., 1997, 97, 119-124; (c) F. Weigend, M. Häser, H. Patzelt and R. Ahlrichs, Chem. Phys. Lett., 1998, 294, 143-152; (d) F. Eckert and A. Klamt, AIChE J., 2002, 48, 369-385; (e) J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett., 2003, **91**, 146401; (f) F. Weigend, F. Furche and R. Ahlrichs, *J. Chem. Phys.*, 2003, 119, 12753-12762; (g) P. Deglmann, K. May, F. Furche and R. Ahlrichs, Chem. Phys. Lett., 2004, 384, 103-107; (h) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305; (i) Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 5656-5667; (j) F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057-1065; (k) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104-154119; (1) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465; (m) S. Grimme, Chem. - Eur. J., 2012, 18, 9955-9964; (n) F. Eckert and A. Klamt, COSMOtherm, Version C3.0, Release 16.01, COSMOlogic GmbH & Co., Leverkusen, Germany, 2015; (o) TURBOMOLE V7.4, 2019, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from https://www.turbomole.com., 2019.
- 16 (a) Y. Tulchinsky, S. Kozuch, P. Saha, M. Botoshansky, L. J. W. Shimon and M. Gandelman, Chem. Sci., 2014, 5, 1305-1311; (b) Y. Tulchinsky, S. Kozuch, P. Saha, A. Mauda, G. Nisnevich, M. Botoshansky, L. J. W. Shimon and M. Gandelman, Chem. - Eur. J., 2015, 21, 7099–7110; (c) A. Pogoreltsev, Y. Tulchinsky, N. Fridman and M. Gandelman, J. Am. Chem. Soc., 2017, 139, 4062-4067; (d) I. Avigdori, A. Pogoreltsev, A. Kaushanski, N. Fridman and M. Gandelman, Angew. Chem., Int. Ed., 2020, 59, 23476-23479.
- 17 (a) A. E. Waked, R. O. Memar and D. W. Stephan, Angew. Chem., Int. Ed., 2018, 57, 11934–11938; (b) J. Zhou, L. L. Liu, L. Cao and D. W. Stephan, Chem. Commun., 2018, 54, 4390-4393; (c) J. L. Zhou, L. L. Liu, L. L. Cao and D. W. Stephan, Angew. Chem., Int. Ed., 2018, 57, 3322-3326.
- 18 E. Habraken, A. Jupp and J. Slootweg, Synlett, 2019, 875-884.
- 19 J. Guo, M. Yan, L. Xiao, J. Li, Z.-W. Qu, S. Grimme and D. W. Stephan, CCDC 2434837: Experimental Crystal Structure Determination, 2025, DOI: 10.5517/ccdc.csd.cc2mqn45.
- J. Guo, M. Yan, L. Xiao, J. Li, Z.-W. Qu, S. Grimme and D. W. Stephan, CCDC 2434838: Experimental Crystal Structure Determination, 2025, DOI: 10.5517/ccdc.csd.cc2mqn56.
- 21 J. Guo, M. Yan, L. Xiao, J. Li, Z.-W. Qu, S. Grimme and D. W. Stephan, CCDC 2434839: Experimental Crystal Structure Determination, 2025, DOI: 10.5517/ccdc.csd.cc2mqn67.