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A metal-free, catalytic route to the activation of C(sp*)—H bonds in
N-protected dialkylpyrroles to diazodicarboxylates is reported
using HB(CgFs), as the optimized catalyst. These reactions tolerate
aryl and alkyl substituents on the pyrrole N-atom as well as variation
in the azodicarboxylates giving rise to 41 examples. These reactions
were also performed on a gram scale and conversion to the
corresponding amino-esters is demonstrated. A DFT computation
study reveals that the Lewis acid adduct of azodicarboxylates gen-
erates a Lewis acidic N-atom capable of hydride abstraction from
dimethylpyrrole, ultimately effecting C(sp®)—H functionalization.

Pyrrole is a privileged aromatic heterocycle that is found in
chlorophyll, heme, vitamin B,,, and bile acids. Naturally occurring
and synthetic molecules incorporating pyrrole units have been
shown to exhibit a broad range of biological and pharmacological
activities." For example, over 20 synthetic pyrrole derivatives are
commercially marketed drugs as such species exhibit anti-
psychotic, anti-anxiolytic, anti-cancer, anti-bacterial, anti-fungal,
anti-malarial, anti-inflammatory, and anti-hyperlipidemic behavior
(Fig. 1a).''?

Synthetic efforts to derivatize pyrroles have led to the devel-
opment of a wide variety of transition metal catalyzed processes.>
These protocols allow the incorporation of a wide range of
functional groups, typically leading to substitution at N or at
the C(sp®) atoms at the C-2 or C-3 positions. These methods have
been reviewed.?” Alternatively main group species are known to
mediate the derivatization of N-protected pyrroles.® For example,
Lewis acid mediated Friedel-Crafts methods readily provide
substitution again at sp> carbons, where the steric demands of
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the N-protecting group can be used to direct substitution to either
the C-2 or C-3 positions.’

In 2010, we showed that N-alkylpyrroles participate in fru-
strated Lewis pair (FLP) alkyne-addition reactions, leading to
C-C bond formation at the C(sp®) atoms at the C-3 position.*
Several years later, in a seminal finding, Fontaine and coworkers®
exploited intramolecular N/B FLPs to effect borylation of N-
methylpyrrole, thiophene and furan derivatives, again at the C-2
or C-3 positions depending on the other substituents (Fig. 1b).
Subsequently, Shi and coworkers used BBr; to direct C(sp®)-H
borylation of indoles at the C-7 or C-4 positions and other
(hetero)arenes.® More recently, Tan et al elegantly used chiral
phosphoric acid catalysts to functionalize N-protected-pyrroles at
the C-3 position, affording axially chiral arylpyrroles (Fig. 1b).”

In contemplating alternative strategies for the functionaliza-
tion of pyrroles, we considered activation of the C(sp*)-H bonds
of substituents at the C-2 position. While the majority of the
activation strategies for unactivated C(sp*)-H bonds have been
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Fig.1 (a) Representative pyrrole-derived drugs. (b) Metal free C(sp?)—H
functionalization of N-protected pyrroles. (c) This work — C(sp®)—H function-
alization of N-protected pyrroles with azodicarboxylates.
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achieved using transition-metal catalysts,® we noted that bor-
anes have been used as catalysts to promote C-C and C-hetero-
atom bond formation.” For example, Wang and coworkers
achieved C(sp®)-H alkylation of tertiary amines with electron-
deficient olefins using B(CgFs); as the catalyst.'® In another
recent breakthrough, Lin et al."' used frustrated radical pairs
(FRPs) to functionalize the C(sp®)-H bonds of various organic
substrates, affording aminoxylated products. Nonetheless, to
our knowledge, C(sp®)-H bond activation of pyrrole derivatives
is not known. Herein, we develop a protocol for the C(sp®)-H
bond functionalization of the methyl groups of N-protected
methylpyrroles with azodicarboxylates using Piers’ borane
HB(CgFs), as the catalyst (Fig. 1c).

Our investigation began with the reaction of N-phenylpyrrole
1a and commercially available dibenzyl azodicarboxylate 2a in
toluene. In the presence of 10 mol% Al(CeFs);, this gave
mixtures of C(sp”)-H and C(sp’)-H activation products, with
poor regioselectivity at 60 °C (Table 1, entry 1). In the presence
of B(CeFs); and HB(CeFs),, the selectivity for the C(sp®)-H
functionalization product 3a improved (Table 1, entries 2 and 3).
Using HB(C¢Fs), as the catalyst, product 3a was obtained in 47%
yield at 60 °C. Altering the reactant ratio of 1a:2a to 1.5: 1 afforded
product 3a in 61% yield with a 13% yield of the C(sp’)-H
functionalization product 4a (Table 1, entries 3-6), while further
variations of the solvent, temperature and catalyst loading did not
increase the yield (Table 1, entries 7-12).

Using the optimized reaction conditions, the substrate scope
for C(sp®)-H functionalization of N-protected dialkylpyrroles with
azodicarboxylates was examined. Firstly, the reactions of a series
of N-arylpyrroles with 2a in toluene were investigated. In the
presence of 10 mol% HB(CFs),, para-substituted N-arylpyrroles
with electron-donating or electron-withdrawing substituents on
the phenyl ring (Fig. 2, R = C¢Hs 1a, 4-FC¢H, 1b, 4-CIC¢H, 1c,

Table 1 Optimized reaction conditions for C—H functionalization

CO.Bn
HN
CO,Bn HN-CO2En fi=C0:En
N |
b BnOL Bh + 5
1a 2a 3a 4a
T Yield Yield
Entry® Cat. la:2a Solvent  (°C) (%) 3a® (%) 4a®
1 Al(CFs);  1.0:1.5 Toluene 60 21 22
2 B(CeFs)3 1.0:1.5 Toluene 60 43 6
3 HB(CeFs); 1.0:1.5 Toluene 60 47 6
4 HB(CgFs), 1.0:1.0  Toluene 60 47 12
5 HB(C¢F5), 1.5:1.0 Toluene 60 61 13
6 HB(CeFs); 2.0:1.0 Toluene 60 55 13
7 HB(CeFs), 1.5:1.0 Benzene 60 57 14
8 HB(C¢Fs), 1.5:1.0 p-Xylene 60 52 10
9 HB(CeFs), 1.5:1.0 PhF 60 39 19
10 HB(CeF5), 1.5:1.0 Toluene 45 47 11
11 HB(CeFs), 1.5:1.0 Toluene 80 52 12
12¢ HB(CeFs); 1.5:1.0 Toluene 60 23 26

“ Unless otherwise noted, all reactions were performed using 10 mol%
catalyst, 1a and 2a in solvent (2.0 mL) under argon for 12 h. ? Isolated
yield after chromatography. ¢ 5 mol% catalyst.
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Fig. 2 Scope of N-protected dialkylpyrroles. Reaction conditions: a solution
of 1 (0.3 mmol), dibenzyl azodicarboxylate 2a (0.2 mmol) and HB(CgFs),
(10 mol%) in toluene (2.0 mL) was stirred at 60 °C for 1-2 h in argon.

4-BrCeH, 1d, 4-IC¢H, 1e, 4-CF;CH, 1f, 4-MeOCGH, 1g, 4-MeCsH,
1h) reacted smoothly with 2a to provide the corresponding products
3a-3h in 49-68% yields. Similarly, meta-substituted N-arylpyrroles
bearing differing functional groups (Fig. 2, R = 3-FC¢H, 1i,
3-MeOCg¢H, 1j, 3-MeC¢H, 1k) were tolerated, affording 3i-3k

This journal is © The Royal Society of Chemistry 2025
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in 48-65% yields. ortho-Substituted N-arylpyrroles (Fig. 2, R =
2-FC¢H, 11, 2-CIC,H, 1m, 2-BrCH, 1n, 2-IC¢H, 10, 2-CF;C.H,
1p, 2-MeCeH, 1q, 2-iPrC¢H, 1r, 2-tBuCgH, 1s) were also suitable
substrates, affording the C(sp®)-H functionalization products
31-3s in 30-64% yields. The identity of 3s was confirmed by
X-ray crystallography (see the SI).">

In addition, N-arylpyrroles with 2 or 3 substituents on the
phenyl ring (Fig. 2, R = 2-1,3-CIC¢H; 1t, 2-1,4-CIC¢H; 1u, 2-L,5-
CIC¢H; 1v, 2-1,5-FCeH; 1w, 2-1,5-BrCgH; 1x, 2,5-(CF3),CeH; 1y,
3,5-(CF;),CeH; 1z, 3,5-Cl,C¢H; 1aa, 3,5-Br,C¢H, 1lab, 3,4,5-
Cl;C¢H, 1ac) were also successfully converted to the C(sp*)-H
functionalized products 3t-3ac in 56-82% yields. The reactions
of N-benzylpyrroles (Fig. 2, R = CH,Ph 1ad, CH,C¢H,Me 1ae,
CH,CgH,Cl 1af) provided products 3ad-3af in 51-60% yields.
The nature of 3ad was also confirmed by X-ray analysis (see
the SI).'> Moreover, alkylpyrroles (Fig. 2, R = Me 1ag, C;Hj; 1ah,
CeH,; 1ai) also reacted with 2a, giving the products 3ag-3ai,
albeit in somewhat reduced yields of 27-35%. Furthermore,
changing the pyrrole substituents to Et groups, as in 1aj,
afforded 3aj in 50% yield, while the reaction of the dissym-
metric pyrrole 2-Me-5-Ph-N-(C¢H,Cl;)-pyrrole 1ak with 2a gave
the C(sp*)-H amination product 4ak in 55% yield (see the SI).

Efforts to identify by-products were undertaken. Even on
doubling the reaction scale for all reactions, most by-products
were not unambiguously identifiable although the C(sp®)-H
amination products 4ah and 4ai were observed in 10 and 11%
yields, respectively, while the double C(sp”)-H amination pro-
duct 4ag’ was observed in 9% yield (see the SI).

The reaction also tolerated variations in the azodicarboxylates.
Thus, the reaction of the commercially available (RO,CN), (Fig. 3,
R = CH,C¢H,Cl 2b, Et 2¢, iPr 2d) with 1ac proceeded smoothly to
give products 3ak-3am in 43-83% yields. In contrast, the use of
2e (R = ¢Bu) gave only a 19% yield of 3an (Fig. 3). We note that
this diazo-species is known to react with boranes to liberate CO,
and isobutylene.’® Notably, 4-phenyl-1,2,4-triazoline-3,5-dione
2f also reacted smoothly with 1ac, affording the desired product
3ao0 in 40% yield.

The scalability of this protocol to gram-scale reactions was
demonstrated. Thus, using over 2 grams of 1lac with 2a in the
presence of 10 mol% HB(C4Fs), afforded 2.35 g of 3ac in an
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Fig. 3 Scope of azodicarboxylates. Reaction conditions: a solution of 1lac
(0.3 mmol), dibenzyl azodicarboxylate 2 (0.2 mmol) and HB(CgFs)s
(10 mol%) in toluene (2.0 mL) was stirred at 60 °C for 1-2 h in argon.
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Fig. 4 Scale-up synthesis and synthetic transformation.

overall yield of 82% (Fig. 4). In addition, 3ac was reacted with
bromoacetate and Cs,COj; using the method of Magnus et al.,"**
affording C,H,Me(CH,NH(CO,CH,Ph)N(C¢H,Cl;) 5 in 70%
yield (Fig. 4). This carbamate ester was characterized by X-ray
crystallography (see the SI)."*

The mechanism of these reactions was established via a
computational study using density functional theory (DFT) com-
putations at the PW6B95-D3/def2-QZVP + COSMO-RS//TPSS-D3/
def2-TZVP + COSMO level of theory."® As B(C¢F5); and HB(C¢H),
showed similar reactivity, B(C¢F5); was used in the calculations to
avoid the complexity associated with the dimerization equili-
brium of Piers’ borane in solution. The initial interaction of
B(CgF5); with the carbonyl fragment of azodicarboxylate 2c
enhances the Lewis acidity of the remote N-atom, allowing it to
abstract hydride from methylpyrrole 1a over a free energy barrier
of 22.5 keal mol " (TS1). This generates the transient ion pair 1a*
and 2¢BH (Fig. 5), which reacts exothermically to form a new
C-N bond. The release of borane is slightly endergonic, allowing
the catalytic reaction to continue, consistent with both experi-
mental conditions and the improved catalysis for (CeFs),BH,
where the slightly reduced Lewis acidity presumably accelerates
the Lewis acid release. Regarding the role of the N-Lewis acid, we
note that such species have been pioneered by Gandelman,'®
although we'” and others"® have described related diazo-derived
Lewis acid systems.

In conclusion, we have reported a metalfree, catalytic and
scalable protocol for the functionalization of C(sp®*}-H bonds in
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i
/’N\
e /@ _ CO,Et

F':h H2

Q/%(Cef'_s)a

Cy
2||EtO” ‘l;l

1a* LV COE
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-12.6

EtO,C~NH
3ac'-24.1 / \ N-COzEt
H;C
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Fig. 5 DFT computed mechanism (in kcal mol™, at 298 K and 1 M
concentration) for C(sp®)-H functionalization of N-Ph-dimethylpyrrole
to azodicarboxylates.
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N-protected dimethylpyrroles with azodicarboxylates. The resulting
diazo-pyrrole derivatives can be converted to the corresponding
amino-esters. A mechanistic study showed that the Lewis acid
adduct of the azodicarboxylate generates a Lewis acidic N-atom
capable of hydride abstraction from the C(sp®) carbon on the
pyrrole. We are continuing to study metal-free avenues for C-H
functionalization and Lewis acid applications in organic synthesis.
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