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Enhancing deep chemical reaction prediction with
advanced chirality and fragment representation

Fabrizio Mastrolorito,ab Fulvio Ciriaco,c Orazio Nicolottib and Francesca Grisoni *a

This work focuses on organic reaction prediction with deep learning,

with the recently introduced fragSMILES representation – which

encodes molecular substructures and chirality, enabling compact

and expressive molecular representation in a textual form. In a sys-

tematic comparison with well-established molecular notations – sim-

plified molecular input line entry system (SMILES), self-referencing

embedded strings (SELFIES), sequential attachment-based fragment

embedding (SAFE) and tree-based SMILES (t-SMILES) – fragSMILES

achieved the highest performance across forward- and retro-synthesis

prediction, with superior recognition of stereochemical reaction infor-

mation. Moreover, fragSMILES enhances the capacity to capture

stereochemical complexity – a key challenge in synthesis planning.

Our results demonstrate that chirality-aware and fragment-level repre-

sentations can advance current computer-assisted synthesis planning

efforts.

Since time immemorial, operating a chemical laboratory has
required patience and meticulous attention to detail, often
resulting in long timelines and inconclusive outcomes. In the
last decades, artificial intelligence has increasingly supported
chemists in expediting their experiments, through machine
learning algorithms for process and molecule optimization1–3

and robotics-assisted laboratories that streamline the
execution.4,5 Among these advances, computer-assisted synth-
esis planning has been particularly transformed by the advent
of deep learning,6,7 which has demonstrated high accuracy and
has significantly reduced the time and resources required
compared to traditional trial-and-error approaches.7–9

Methods based on string representations of chemicals and
organic reactions have gained particular traction,10 thanks to their
ability to leverage natural language processing techniques.11,12 In

particular, reactants (or product) molecules are represented as
strings, to subsequently predict the product (or reactants) mole-
cules using machine translation models.9,13 Popular string nota-
tions for synthesis planning13–17 include the simplified molecule
input line entry system (SMILES18) strings, self-referencing
embedded strings (SELFIES19), sequential attachment-based frag-
ment embedding (SAFE20) and tree-based SMILES (t-SMILES21).

As chemical reactions involve local molecular changes (leading
to a significant overlap of reactants and products), several methods
have focused on substructure-based reasoning – for example,
extracting preserved molecular fragments to guide decoding,22

refining precursor structures through targeted string editing,23

or assembling molecules around conserved cores.24 Moreover,
substructure-based string representations have recently emer-
ged20,25,26 to enhance the expressiveness and interpretability of
molecular notations, by capturing chemically meaningful frag-
ments and their connectivity. FragSMILES was recently developed
for de novo molecule design,26 to overcome limitations of existing
string representations in capturing substructure information, by
denoting the fragments independently of the connector atoms, as
well as capturing chirality.27–29 The fragSMILES algorithm (Fig. 1a)
operates by (1) disassembling molecules via predefined cleavage
rules (exo-cyclic single bonds in this study), (2) collapsing the
resulting fragments into the edges of a reduced graph, while
keeping track of the atoms connecting the fragments, and (3)
converting this graph into a string, whose elements (‘tokens’)
represent nodes or edges.

In this study, we apply fragSMILES for synthesis planning,
under the hypothesis that its ability to encode substructures
and advanced chirality can also enhance reaction prediction
and retrosynthesis accuracy. We focused on two tasks: (1)
forward reaction prediction, where the goal is to predict the
products of a given set of reactants, and (2) retrosynthesis
prediction, where the goal is to identify potential reactants
and reagents needed to synthesize a target molecule. To this
end, we used 1 002 602 curated chemical reactions from the
USPTO database30 and represented them with different string
notations. SMILES, SELFIES, SAFE, and t-SMILES were used as
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benchmarks. Other notable string representations exist (e.g.,
DeepSMILES,31 GroupSELFIES,25 and GenSMILES32), which
were not considered due to their limited application to organic
reaction prediction. SMILES, SELFIES, SAFE and t-SMILES were
tokenized at the atom-level. FragSMILES were tokenized at the
‘chemical-word’ level, leading to remarkably more compact
sequences26 (Sup. Table 1 and Sup. Fig. 3). This characteristic
might help mitigate the memory usage associated with the
increased complexity of word-level languages.33,34 We used the
transformer architecture35 – the de facto standard for organic
reaction planning36 – and framed the prediction task as a
sequence-to-sequence translation (i.e., reactants to reagents,
or the other way around) problem.13,14 Models were optimized
and trained separately for each representation and task (Sup.
Tables 2 and 3), and used to generate molecular strings via
beam search37 (see SI). The transformer models were evaluated
on 50 234 reactions (unseen during model optimization or
training) by measuring (Table 1) (a) validity, i.e., the number
of ‘chemically-valid’ strings generated, including correct stereo-
center assignations, and (b) accuracy, computed as the number
of correct predictions over the total of considered predictions
(from top-1 to top-5 sequences).

t-SMILES consistently achieved 100% validity on forward
synthesis prediction with fragSMILES achieving the second highest
validity in the top-three generated candidates (Table 1). On retro-
synthesis prediction, SELFIES achieved the highest validity
(74.8%), with t-SMILES consistently achieving the second highest
validity (73.3%). In terms of accuracy, fragSMILES always yielded
the highest accuracy in both forward- and retro-synthesis predic-
tion, with at least 204 to 1784 more correct predictions in the top-1.
SMILES strings resulted in the second-best performance.

When analysing the substructure similarity between wrong
predictions and the correct outcome (forward synthesis, Tani-
moto coefficient on extended connectivity fingerprints38), all
models exhibited comparable trends, with SELFIES and t-
SMILES consistently showing lower similarity values on average
(Sup. Fig. 4). Additionally, only limited overlap of correct
predictions was observed among models using different

notations (Sup. Fig. 5), suggesting that each representation
captures distinct features of the underlying chemistry. The
highest overlaps were found between SMILES and fragSMILES,
ranging from 66% in top-1 to 78% in top-5 predictions, indicating
some redundancy but also a degree of complementarity across
models.

Moreover, we analysed the accuracy of fragSMILES on
chemical reactions involving at least one stereocenter from the
reactants or chemical product (8588 chemical reactions) as
annotated in the original dataset (Table 1). For forward synthesis
prediction, fragSMILES outperformed all tested methods, espe-
cially visible in the top-1 predictions, with differences in accu-
racy up to +5%. For retrosynthesis prediction, SMILES slightly
outperformed fragSMILES in top-1 accuracy (+0.6%). The validity
of SELFIES-generated molecules decreases when focusing on
chiral compounds, highlighting the challenge of correctly cap-
turing stereochemistry. The accuracy gap between SAFE and
SELFIES further supports this observation. The overlap of accu-
rate predictions between models is reported in Sup. Fig. 6.
Neither sequence length, sampling probability nor token fre-
quency could alone explain the general accuracy gains of fragS-
MILES. We analysed different subsets of reactions involving
stereocenters to assess the predictive accuracy of fragSMILES.
Across most subsets, fragSMILES was the top-performing repre-
sentation (Sup. Table 5). The exception was stereoselective reac-
tions, where fragSMILES ranked second (Sup. Table 5).

Finally, we examined the causes of invalid syntax (Fig. 2a)39

in forward reaction prediction. SELFIES primarily fails due to
incorrect chirality assignments, while the fragment-level toke-
nization of fragSMILES eliminates syntax errors in cyclic struc-
tures (assigned to a single token). However, fragSMILES
exhibits issues in bond assignment between fragments, as
connector tokens dominate its sequences. Due to its atom-
based tokenization, the SMILES language is more prone to
errors involving ring closures and branches. In terms of inac-
curate predictions (Fig. 2b), fragSMILES outperforms the other
notations in correctly predicting cyclic substructures and scaf-
folds, whereas SMILES has an edge in generating acyclic

Fig. 1 FragSMILES notation for reaction prediction. (a) Molecules are converted into a reduced graph, obtained via exocyclic bond cleavage (Sup. Fig. 1).
The resulting fragments (nodes) and their connecting bonds (edges) are then converted into elements (‘tokens’) that constitute the fragSMILES string. (b)
Exemplary chemical reaction (from reagents to product), encoded as fragSMILES strings. Spaces were added to highlight token separation.
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substructures, reflecting the strengths of each respective
representation.

This study demonstrates that the fragSMILES language repre-
sents an advancement in synthesis planning using deep learning,
offering enhanced accuracy and validity over traditional string-
based representations like SMILES and SELFIES. By leveraging
substructure-based tokenization, fragSMILES captures the com-
plexity of molecular stereocenters and cyclic structures, addressing
key limitations in current methods. Its performance, especially in
top-1 predictions, underscores its potential for enhancing reaction
design and retrosynthetic planning, and becoming one of the de
facto representations in the field. As AI-driven synthesis tools
become more integrated into real-world applications, the ability
to predict molecular transformations with high precision is criti-
cal, and fragSMILES can contribute to this evolution.

The USPTO dataset, while widely used as a benchmark, has
known limitations.40,41 Incorporating more rigorous data

curation, especially when dealing with stereochemistry,
will further benefit the field. Future work integrating
fragSMILES with more advanced machine learning techniques
(e.g., large language models42) or in combination with
complementary molecular representations (e.g., molecular
graphs), might further push the boundaries of chemical
automation.

Author contributions: Conceptualization: FM and FG. Data
curation: FM and FC. Formal analysis: FM, FG, ON. Investiga-
tion: all authors. Methodology: FM and FG. Software: FM.
Visualization: FM and FG. Writing – original draft: FM and
FG. Writing – review and editing: all authors.

This research was co-funded by the European Union (ERC,
ReMINDER, 101077879 to FG). Views and opinions expressed
are, however, those of the author(s) only and do not necessarily
reflect those of the European Union or the European Research
Council.

Table 1 Prediction accuracy of SMILES, SELFIES, SAFE, t-SMILES and fragSMILES, on the total set of reactions considered and on a subset of reactions
involving stereocenters. Results are reported for both reaction prediction and for retrosynthesis prediction, in terms of validity (i.e., number of ‘chemically
valid’ strings generated) and of top-k accuracy (50 234 in total, and 8588 when considering reactions involving stereocenters). Metrics are analysed for
the top-k generations (from 1 to 5) of beam search. Best (bold) and the second best (underline) metrics are highlighted

Task Metric Notation Top-1 Top-2 Top-3 Top-4 Top-5

Forward synthesis Validitya SMILES 48 366 (96.3%) 49 470 (98.5%) 49 798 (99.1%) �4�9��9�2�7 (
��

9�9�:�4%
�

)
� �5�0��0�05��

(
��

9�9�:�5%
�

)
�SELFIES 48 418 (96.4%) 48 857 (97.3%) 49 075 (97.7%) 49 213 (98.0%) 49 325 (98.2%)

SAFE 46 619 (92.8%) 48 020 (95.6%) 48 544 (96.6%) 48 824 (97.2%) 49 008 (97.6%)
t-SMILES 50 231 (100.0%) 50 234 (100.0%) 50 234 (100.0%) 50 234 (100.0%) 50 234 (100.0%)
fragSMILES �4�8��8�7�9 (

��
9�7�:�3%

�
)
� �4�9��5�5�3 (

��
9�8�:�6%

�
)
� �4�9��8�1�2 �9�9�:�2%

�
)
�

49 918 (99.4%) 49 989 (99.5%)
Accuracy SMILES �2�5��0�5�3 (

��
4�9�:�9%

�
)
� �2�9��2�6�1 (

��
5�8�:�2%

�
)
� �3�1��1�3�3 (

��
6�2�:�0%

�
)
� �3�2��3�0�5 (

��
6�4�:�3%

�
)
� �3�2��9�8�8 (

��
6�5�:�7%

�
)
�SELFIES 10 538 (21.0%) 13 415 (26.7%) 14 911 (29.7%) 15 904 (31.7%) 16 591 (33.0%)

SAFE 15 151 (30.2%) 18 758 (37.3%) 20 557 (40.9%) 21 609 (43.0%) 22 169 (44.1%)
t-SMILES 3087 (6.1%) 4358 (8.7%) 5125 (10.2%) 5611 (11.2%) 6013 (12.0%)
fragSMILES 26 826 (53.4%) 30 287 (60.3%) 32 026 (63.8%) 33 015 (65.7%) 33 692 (67.1%)

Retro-synthesis Validitya SMILES 20 924 (41.7%) 28 481 (56.7%) 33 894 (67.5%) 37 763 (75.2%) 40 743 (81.1%)
SELFIES 40 042 (79.7%) 45 139 (89.9%) 47 366 (94.3%) 48 397 (96.3%) 48 968 (97.5%)
SAFE 21 890 (43.6%) 28 193 (56.1%) 32 939 (65.6%) 36 289 (72.2%) 39 018 (77.7%)
t-SMILES �3�6��8�0�5 (

��
7�3�:�3%

�
)
� �4�1��1�8�8 (

��
8�2�:�0%

�
)
� �4�4��2�2�8 (

��
8�8�:�0%

�
)
� �4�5��9�3�2 (

��
9�1�:�4%

�
)
� �4�7��0�4�7 (

��
9�3�:�7%

�
)
�fragSMILES 28 054 (55.8%) 35 323 (70.3%) 39 682 (79.0%) 42 443 (84.5%) 44 369 (88.3%)

Accuracy SMILES �4�0�3�1 (
��

8�:�0%
�

)
� �5�6�0�2 (

��
1�1�:�2%

�
)
� �6�7�0�9 (

��
1�3�:�4%

�
)
� �7�5�9�0 (

��
1�5�:�1%

�
)
� �8�3�0�2 (

��
1�6�:�5%

�
)
�SELFIES 8 (0.0%) 19 (0.0%) 29 (0.1%) 36 (0.1%) 49 (0.1%)

SAFE 3731 (7.4%) 4886 (9.7%) 5674 (11.3%) 6392 (12.7%) 6978 (13.9%)
t-SMILES 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
fragSMILES 4230 (8.4%) 6129 (12.2%) 7588 (15.1%) 8905 (17.7%) 10 091 (20.1%)

Forward synthesis (chiral) Validitya SMILES 8088 (94.2%) 8298 (96.6%) 8404 (97.9%) 8444 (98.3%) 8480 (98.7%)
SELFIES 6847 (79.7%) 7267 (84.6%) 7478 (87.1%) 7609 (88.6%) 7712 (89.8%)
SAFE 7814 (91.0%) 8026 (93.5%) 8099 (94.3%) 8142 (94.8%) 8182 (95.3%)
t-SMILES 8587 (100.0%) 8588 (100.0%) 8588 (100.0%) 8588 (100.0%) 8588 (100.0%)
fragSMILES �8�2�3�9 (

��
9�5�:�9%

�
)
� �8�3�8�4 (

��
9�7�:�6%

�
)
� �8�4�4�9 (

��
9�8�:�4%

�
)
� �8�4�8�0 (

��
9�8�:�7%

�
)
� �8�4�9�8 (

��
9�9�:�0%

�
)
�Accuracy SMILES �3�3�3�1 (

��
3�8�:�8%

�
)
� �4�1�4�4 (

��
4�8�:�3%

�
)
� �4�4�7�6 (

��
5�2�:�1%

�
)
� �4�6�7�8 (

��
5�4�:�5%

�
)
� �4�8�0�9 (

��
5�6�:�0%

�
)
�SELFIES 1170 (13.6%) 1548 (18.0%) 1732 (20.2%) 1859 (21.6%) 1956 (22.8%)

SAFE 1609 (18.7%) 2095 (24.4%) 2343 (27.3%) 2495 (29.1%) 2575 (30.0%)
t-SMILES 80 (0.9%) 126 (1.5%) 162 (1.9%) 177 (2.1%) 193 (2.2%)
fragSMILES 3801 (44.3%) 4345 (50.6%) 4652 (54.2%) 4825 (56.2%) 4957 (57.7%)

Retro-synthesis (chiral) Validitya SMILES 3425 (39.9%) 4576 (53.3%) 5551 (64.6%) 6255 (72.8%) 6760 (78.7%)
SELFIES 6421 (74.8%) 7356 (85.7%) 7816 (91.0%) 8029 (93.5%) 8142 (94.8%)
SAFE 3823 (44.5%) 4793 (55.8%) 5563 (64.8%) 6082 (70.8%) 6524 (76.0%)
t-SMILES �6�1�6�7 (

��
7�1�:�8%

�
)
� �6�8�1�7 (

��
7�9�:�4%

�
)
� �7�3�1�6 (

��
8�5�:�2%

�
)
� �7�5�9�7 (

��
8�8�:�5%

�
)
� �7�8�0�1 (

��
9�0�:�8%

�
)
�fragSMILES 4485 (52.2%) 5678 (66.1%) 6452 (75.1%) 6958 (81.0%) 7318 (85.2%)

Accuracy SMILES 669 (7.8%) 933 (10.9%) �1�1�0�8 (
��

1�2�:�9%
�

)
� �1�2�4�9 (

��
1�4�:�5%

�
)
� �1�3�4�3 (

��
1�5�:�6%

�
)
�SELFIES 8 (0.1%) 19 (0.2%) 27 (0.3%) 32 (0.4%) 43 (0.5%)

SAFE �6�3�5 (
��

7�:�4%
�

)
�

805 (9.4%) 924 (10.8%) 1048 (12.2%) 1125 (13.1%)
t-SMILES 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
fragSMILES 620 (7.2%) �9�1�9 (

��
1�0�:�7%

�
)
�

1128 (13.1%) 1297 (15.1%) 1469 (17.1%)

a Computed by considering both syntactic validity (Sup. Table 4) and correct chirality annotation.
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Fig. 2 Top-1 predictions (forward synthesis) per representation. (a) Syntax
errors of invalid predictions; (b) correctly generated substructures among
incorrectly predicted products (grouped by substructure).
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