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The total syntheses of the naturally occurring diterpenoids tripto-
benzenes N (1c) and R (1d) have been accomplished via a late-stage
8-Csp®—H functionalization of an enone intermediate. The highly
functionalized dienone intermediate 2 was utilized as a common
scaffold for this study. An XRD analysis of compounds 8 and 4
confirmed the stereochemistry of the quaternary centers of the
abietane core. Finally, a chemoselective ketal protection and
reduction completed the first total syntheses of the immunosup-
pressive diterpenoids triptobenzenes N (1c) and R (1d).

The abietane diterpenoids (1a-d; Fig. 1) are architecturally
complex secondary metabolites sharing a carbotricyclic core
having a trans-decalin motif and are useful targets for drug
discovery." In the modern era, scientists have been interested in
synthesizing such diterpenoids not only because of their inter-
esting structural scaffolds but also for their important biopro-
files.! In 1999, Li et al isolated diterpenoids named
triptobenzenes L (1a) and N (1c) as well as 15 other diterpe-
noids from the Ty extract of T. wilfordii.> Later, in 2013, Song
et al. isolated triptobenzene R (1d) from the roots of T. wilfordii,
along with four more abietane diterpenoids.* Structurally, both
triptobenzenes N (1c¢) and R (1d) contain two quaternary
stereogenic centers and a primary alcohol group in the ‘A’ ring.
Triptobenzene N (1c) also contains an additional benzylic
ketone functionality. Recent studies revealed significant phar-
macological activities of the isolate of T. wilfordii, including
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antifertility,* anti-rheumatoid-arthritis® and immunosuppressive®
activities.

Structurally, abietane diterpenoids 1a-d share a common 6/
6/6 carbotricyclic framework with three contiguous stereogenic
centers [four for each of 1a and 1b] where a trans-decalin
scaffold is embedded with an aromatic ring (Fig. 1). Impor-
tantly, two stereogenic centers feature challenging all-carbon
quaternary centers situated at the 1 and 3 positions of the
cyclohexane A ring.’

Despite important bioprofiles reported for selected conge-
ners, there are only a few reports on asymmetric total syntheses
of diterpenoids 1a-d. In 2018, Carter et al. reported on an
L-proline-sulfonamide-catalyzed Yamada-Otani reaction and a
Pummerer reaction as key strategies for synthesizing aromatic
abietane diterpenoids.® In 2023, Chou et al. reported a semi-
synthetic route to aromatic abietanes starting from commer-
cially available dehydroabietic acid.® Recently, our group'®
reported a catalytic asymmetric approach to diterpenoids 1a-
b. However, no synthesis of immunosuppressive diterpenoids
triptobenzenes N (1c) and R (1d) has yet been reported.

Metal-free activation of typically inert Csp*~H bonds is one of
the most important research topics of modern organic synthesis.
In this regard, in 2022, our group reported on functionalization of
an aliphatic Csp®>-H bond of an indolosesuquiterpene moiety for
the total syntheses of naturally xiamycins C-F achieved by utiliz-
ing the pioneering work of Tahara et al.*'*” Herein, we report a
highly regioselective remote Csp®-H activation for the first total

triptobenzene N (1¢)

triptobenzene L (1a)  nepetaefolin F (1b] triptobenzene R (1d)

Fig. 1 Naturally occurring abietane diterpenoids 1a—d.
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Scheme 1 Our retrosynthetic analysis.

syntheses of the abietane diterpenoids triptobenzenes N (1c) and
R (1d). Our retrosynthetic approach is outlined in Scheme 1. It was
envisioned that a collective total synthesis of naturally occurring
abietane diterpenoids 1c-d could be accomplished from an
advanced highly functionalized enone 2 (Scheme 1). Enone 2
could be made by carrying out a B-elimination of tricyclic bromo
compound 3 followed by allylic oxidation. The secondary bromide
3 could be derived from the enone 4 via a key formal Csp’-H
functionalization,'*®” which in turn could be accessed from the
methyl calistrisate 5 in two steps (Scheme 1).

Based on above hypothesis, we started our synthesis from
abietic acid 6, a naturally occurring diterpenoid (Scheme 2).
Compound 6 was converted to methyl calistrisate 5 following
our reported procedure (Scheme 2).">*

Then, benzylic oxidation of 5 afforded product 7 in 78%
yield. Next, we thought of accessing enone 4 following a two-
step protocol, namely a-bromination of 7 with phenyl trimethyl
ammonium tribromide (PTAB) followed by B-elimination.
Although, a reaction of 7 with PTAB afforded, in 96% yield, o-
bromo ketone 8, whose identity was unequivocally proved from
an X-ray analysis [CCDC 2411032%], we were unfortunately
unable to access enone 4 from 8 under base-promoted
B-elimination. In fact, the XRD analysis of 8 (as reported earlier

CrO3, AcOH
25°C,2h

78%
MeO

(+)-abietic acid () methy! callistrisate [(+)-5]

PTAB, THF
0-25°C,2h
_

96 %

XRD of 8
DBU, oxylene or CCDC: 2411032
140°C, 6 h Cs,CO3, DMF
155 °C, 4 h
[(+)-4]

Scheme 2 Synthesis of a-bromo ketone 8.
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by Clark et al.,'*” CCDC 2411032%) showed a syn orientation of
B-H with the o-Br atom. Additionally, epimerization of a-Br was
considered probably not possible due to the ‘a-H’ of keto 8
being stabilized through an H-bonding interaction with ‘O’ of
the ester (Scheme 2). Gratifyingly, a one-step procedure using
Se0, under an elevated temperature afforded 4 in 82% yield."
The structure of 4 was also confirmed from an XRD analysis
(CCDC 2417922%). A plausible mechanism for enone formation
through intermediate 7a is shown in Scheme 3.

Having secured enone 4, we next looked into the key Csp*-H
functionalization (Table 1). Towards this goal, we screened
various conditions under metal-free formal C-H activation path-
way affording Csp®>-H halogenation. Initially, we tried several
reactions using iodine with PhI(OAc), in the presence of light or
under an elevated temperature. However, to our displeasure, these
reactions led to a multitude of spots or decomposition of the mass
balance. Initially, it was believed that the presence of angular
methyl and axial ester at the 1,3-position of the A ring (Fig. 1)
would create difficulties for the Csp>~H bond activation.

Thus, we thought of investigating our previously reported con-
ditions on the formal Csp®>-H functionalization (Table 1)."'“? We
hence carried out a thorough screening of acids, solvents, electro-
philes, and the best result was obtained using NBS as an electro-
phile in the presence of catalytic sulfuric acid in acetic anhydride
solvent (Table 1). Following an exhaustive optimization, it was
found that product 3 could be obtained in an isolated yield of
68% (entry 8, Table 1). Delightfully, secondary bromide 3 was
obtained as a single diastereomer (dr > 20: 1), suggesting a highly
face-selective nature of this 5-Csp>~H functionalization.

A proposed mechanism for the Csp®-H functionalization of
4 with NBS in the presence of catalytic sulfuric acid is illu-
strated in Scheme 3. According to this proposal, activation of
the enone 4 with acetic anhydride leads to enol acetate carbo-
cation intermediate 4b via protonated species 4a (Scheme 3).
Next, a syn-selective 1,2-migration of the angular methyl group
occurs, forming olefin intermediate 4d via a relatively stable
benzylic carbocation 4c¢ (Scheme 3). Subsequently, the for-
mation of a bromonium ion intermediate 4e from the convex

face is followed by another syn-selective 1,2-migration of the

methyl group (see, intermediates 4f-g) ultimately resulting in
11bh

compound 3 as a single diastereomer (Scheme 4).

SeO,
AcOH:H,0 (3:1)
110 °C,4h

82%

(7a) Qj ~OAc XRD of 4
plausble TS CCDC: 2417922

Scheme 3 Synthesis of enone [(+)-4].
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Table 1 Optimization of 8-Csp*~H functionalization of [(+)-4]

Me
Me condition
(see table)
83
H up to 68%
84
H— 5 Csp3—-H
MeO [)-4] functionZlization
H'source Temp Time Yield™”

Entry Solvent Br' source (cata.) (°Q) (h) (%)
1. CH,Cl, Br,(1.1eq.) HCI 20 8 —
2. Ac,0 Br, (1.2 eq.) AcOH 25 8 —
3. AcOH  NBS (1.2 eq.) H,S0, 20 6 4
4. CH,Cl, NBS(1.1eq.) H,S0, 20 4 13
5. CH,Cl, NBS(1.1eq.) H,SO, 25 8 17
6. DCE°  NBS (L.1eq.) H,S0, 25 8 38
7. Ac,0  NBS(1.1eq) H,SO, 25 2 57
8. A0  NBS (L.1eq) H,S0, 25 4 68
9. Ac,0 NBS (1.1 eq.) H,SO, 30 4 63
10.  Ac,0  NBS(L.leq.) H,S0, 40 6 62

“ Optlmlzatlon reactions were carried out on 0.10 mmol of substrate.

b Yields are reported for products obtained after column chromatogra-
phy. © Starting materials at levels of 48-56% were recovered in addltlon
to decomposition products. ¢ Complex mixture of products. ° DCE =
1,2-dichloroethane.

After successful 8-Csp®-bromination, an E2-elimination of
secondary bromide 3 was performed to achieve olefin 9 in 96%
yield (Scheme 5 and Table 2)."*

Next, allylic oxidation of olefin 9 with SeO, under an
elevated temperature afforded allylic alcohol 10 in 84% yield
as a single diastereomer (dr > 20:1). A plausible transition
state for the allylic oxidation is depicted in Scheme 5. Due to
steric hindrance created by the angular methyl group, SeO, was
believed to approach from the a-face of 9, forming a single
diastereomer of 10. Next, DMP oxidation of 10 afforded diketo
intermediate 2 in 97% yield (Scheme 5). Furthermore, hydro-
genation of bis-enone derivative 2 in the presence of 10% (w/w)
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Se0, Meo,C ME . ot
1,4-dioxane ==
100°C, 4 h 7
. Ml d [}
0%Se~gy

plausible TS (9a)
84% l

DMP, CH,Cl,
25°C,1h

97%

MeO

[(+)-2]

Scheme 5 Synthesis of di-enone [(+)-2].

Table 2 Optimization of E2-elimination of secondary bromide 3

Entry’  Solvent  Base Temp (°C)  Time (h)  Yield” (%)
1 o0-Xylene = DBU 140 6 45
2. DMF Na,CO, 155 6 52
3. DMF K,CO, 155 4 77
4 DMF Cs,CO; 155 1 9%

“ Optimization was carried out on 0.10 mmol of substrate. ” Yields are
reported for products obtained after column chromatography.

Pd/C and H, (1 atm.) furnished 11 in 85% yield along with 12 as
an over-reduced product (Scheme 6). During a longer period of
hydrogenation, the benzylic enone could also co-ordinate with
the Pd surface and stereoselectively transfer H, onto the more
exposed o-face of enone 2 (Scheme 6).

Next, a highly diastereoselective reduction of diketone 11
with NaBH, at —10 °C for 30 min furnished diol 13 in 98% yield
with a dr > 20:1 (Scheme 7). With diol 13 secured, we then
moved ahead with the synthesis of triptobenzene L (1a).
Accordingly, chemoselective reduction of 13 using TFA/Et;SiH
furnished the B-hydroxy ester 14 in 88% yield, which was
followed by LiAlH, reduction to complete the synthesis of
triptobenzene L (1a) (Scheme 7). Along a similar line, a site-
selective monoacetylation of triptobenzene L (1a) completed
the total synthesis of nepetaefolin F (1b) (Scheme 7).

Next, total syntheses of triptobenzene N (1c) and triptoben-
zene R (1d) were undertaken (Schemes 8 and 9). In this regard,
bis-ketal protection of 11 using excess equivalents of ethylene
glycol in the presence of catalytic p-TSA under refluxing toluene

Me
Pd/C (10% wiw)
Hy (1 atm.), MeOH
h

= YOH
. 0 M 12
12%
MeO,C
o'mé ijf‘ HiH ©
H Pd
(22) plausivle TS
Scheme 6 Synthesis of di-ketone [(+)-11].
Chem. Commun., 2025, 61, 11053-11056 | 11055
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Me
NaBH, MeOH M TrA. EtsSiH
210 °C, 30 min CH,Cl
[(+)-11] ——— 25°C,2h
98%  HO” OH
dr>20:1 s M=o 88%

[(+)-13]

LiAIH, THF Ac0, EN
0°C 1h CH,Cl
0°C, 30 min
HO =

91%
) HO AcO
triptobenzene L [(+)-1a] nepetaefolin F [(+)-1b]

Scheme 7 Total syntheses of triptobenzene L [(+)-1a] and nepetaefolin F
[(+)-1b].

Me
(CH,0H), LiAIH,, THF
p-TsOH, PhMe 0°C, 30 min
phalbii =
140°C, 12 h
Me

Me 4 (N) HCl
25 °C, 30 min

96%
over 2 steps

HO (18b) HO
triptobenzene N [(-)-1¢]

Scheme 8 Total synthesis of triptobenzene N [(—)-1c].

Me
Me LiAlH,, THF
(CH0H), 0°C, 30 min
p-TsOH, PhMe then, 4 (N) HCI
120°C,5h 25°C,1h
- . -
64% 94%
MeO  [(+)}11]
TFA. Et3SiH M
CH,Cl, ©
25°C,2h
_

86%

triptobenzene R [(+)-1d]

Scheme 9 Total synthesis of triptobenzene R [(+)-1d].

furnished bis-ketal 18a (Scheme 8).'*> Next, LiAlH, reduction of
18a in the same pot (see 18b) followed by deprotection of bis-
ketal completed the first total synthesis of triptobenzene N (1c)
(Scheme 8).

Conversely, the chemoselective ketal protection in refluxing
toluene afforded 15 in 64% yield (Scheme 9).'® Finally, LiAIH,
reduction of ester 15 followed by the ketal deprotection (see
diol 16), and subsequent treatment with TFA/Et;SiH completed
the first total synthesis of triptobenzene R (1d) (Scheme 9).
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In conclusion, the first total syntheses of the immunosup-
pressive diterpenoids triptobenzenes N (1c) and R (1d) have
been accomplished via a key Csp>-H functionalization. XRD
analyses of enone 4 and o-bromoketone 8 indirectly confirmed
the stereochemistry of the quaternary centers of these diterpe-
noids. Further application of this Csp®-H functionalization
strategy in the context of total syntheses of other complex
natural products is ongoing in our laboratory.
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