ChemComm

COMMUNICATION

View Article Online View Journal | View Issue

Check for updates

Cite this: Chem. Commun., 2025, 61, 10606

Received 15th April 2025, Accepted 2nd June 2025

DOI: 10.1039/d5cc02129d

rsc.li/chemcomm

Encasing the paramagnetic copper(\parallel)-ion by the ring-contracted corrin ligand of vitamin B₁₂†‡

Christoph Kieninger, ^{bab} Klaus Wurst, ^c Daniel Leitner, ^c Luis P. Peters, ^{bc} Dennis F. Dinu, ^{bc} Markus Wiedemair, ^{bab} Marc-Kevin Zaretzke, ^d Martin Bröring, ^{bd} Stephan Hohloch, ^{bc} Klaus R. Liedl ^{bc} and Bernhard Kräutler ^{b*ab}

The d⁹-Cu(11)-corrin cupribyrate (Cuby) was synthesized in 93% crystalline yield by rapid chelation of Cu²⁺-ions by the metal-free corrin-ligand of vitamin B₁₂. Single crystals of the EPR-active Cuby allowed for the first X-ray structure determination of a Cu-corrin. SCF-calculations provided insights complementary to the experimental data of Cuby and indicated an out-of-plane displacement of the reduced d¹⁰-Cu(1)-ion, consistent with the observed reductive activation of Cuby towards loss of its Cu-center.

The ring-contracted natural corrin ligand of the B₁₂-derivatives is a uniquely skewed, helical environment^{1,2} that binds cobalt-ions very tightly.^{3,4} This biosynthetically costly ligand for cobalt^{5,6} represents a precisely evolved entatic state module,² giving B₁₂-cofactors the unique capacity for their exceptional bioorganometallic catalysis.^{7–9} The complementary fundamental question, why cobalt? in B₁₂-cofactors,^{1,3,9,10} has generated the long-standing experimental quest for non-cobalt analogues of the B₁₂-derivatives,^{11,12} a challenge met by newly developed synthetic approaches.^{2,13} We have, thus, prepared Rh(m)-,^{13–17} Ni(n)-¹⁸ and Zn(n)-complexes¹⁹ of natural corrin ligands for studies of their structures and reactivity. Here, we report on cupribyrate (**Cuby**) (Scheme 1), the Cu(n)-complex of hydrogenobyric acid (**Hby**),² including the first Cu-corrin X-ray crystal structure.

The complexation of metal-free **Hby** with Cu(n)-ions occurred readily at room temperature (RT) in a 0.25 M aqueous solution of Cu(n)-acetate at pH 6 and was practically quantitative within 90 min (see the ESI‡). It did not require the reported strong heating ('brief boiling').^{11,20} Crystallization of the raw **Cuby**-isolate from water/acetonitrile mixtures furnished **Cuby** in >93% yield.

The UV/Vis-spectrum (Fig. 1) of an aqueous solution of **Cuby** exhibits a corrin-type and is comparable to the earlier reported spectra of partially characterized Cu(μ)-corrins.^{20,21} UV/Vis- and CD-spectra of **Cuby** show remarkably similar features to the corresponding spectra of the Zn(μ)-complex¹⁹ of **Hby**, consistent with the dominating role of the corrin chromophore for the spectral signature in the UV- and Vis-range. A HR-ESI mass spectrum of **Cuby** confirmed the calculated molecular formula of C₄₅H₆₄CuN₁₀O₈ (see the ESI,‡ Fig. S1).

Glassy frozen solutions of the paramagnetic Cu(π)-corrin **Cuby** in 20% glycerol in H₂O showed the typical EPR-signature (see Fig. 2, for a spectrum at *T* = 148 K) of a roughly square-planar 4-coordinate Cu(π)-N₄-complex with an index^{22,23} g^{II}/A^{II} = 98.2 cm, assigning an exceptionally low value to the encasement of the Cu(π)-ion by the corrin ligand (see the ESI‡ for further details).

The neutral cupribyrate **Cuby** crystallized from an aqueous solution upon addition of acetonitrile. The monoclinic crystals (space group $P2_1$) contain two **Cuby** molecules per unit cell, as well as molecules of water and acetonitrile (ordered near the **Cuby**-carboxylate). The Cu(π)-center of the **Cuby** molecule sits only +0.033 Å above the mean plane of the four 'inner' corrin N-atoms, which span an unsymmetrical and nearly planar coordination pattern (see Fig. 3), as reflected by the value of

Scheme 1 Structure-based outline of the synthesis of cupribyrate (Cuby) from hydrogenobyric acid (Hby) (see the ESI \ddagger) and the structural formula of Co_xcyano, Co_βaquo-cobyric acid (Coby).

^a Institute of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Austria. E-mail: bernhard.kraeutler@uibk.ac.at

^b Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020 Innsbruck, Austria

^c Institute of General, Inorganic & Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria

^d Institute for Inorganic and Analytical Chemistry, TU Braunschweig, 38106 Braunschweig, Germany

 $[\]dagger$ Dedicated to the memory of Albert Eschenmoser on the occasion of his 100th birthday.

[‡] Electronic supplementary information (ESI) available. CCDC 2402239. For ESI and crystallographic data in CIF or other electronic format see DOI: https://doi. org/10.1039/d5cc02129d

Fig. 1 UV/Vis- and CD-spectra of Cuby (19 μM in 10 mM aqueous phosphate pH 7).

Fig. 2 EPR-spectrum of a 1.34 mM frozen solution (at T = 148 K) of **Cuby** in H₂O:glycerol (4:1) and its simulation with key parameters obtained by least square fitting (for details see the ESI,‡ Table S1). The spectra exhibited a significant T-dependence, with a maximum signal intensity of around 200 K and continuous decrease at lower temperatures (see the ESI,‡ Fig. S4).

the geometry index $\tau_4 = 0.17$.²⁴ However, **Cuby** exhibits a less planar arrangement around its 4-coordinate d⁹ Cu(II)-center, than in the Ni(π)-corrin nibyrate (Niby),¹⁸ which experiences a better fit of its 4-coordinate low-spin d⁸ Ni(II)-ion (see the ESI,‡ Table S3). The average Cu-N distance in Cuby amounts to 1.91 Å, merely 0.05 Å longer than in Niby, in which the 0.08 Å smaller low spin d⁸-ion Ni(1)²⁵ induced a slight contraction.¹⁸ In fact, binding of the d⁹ Cu(II)-ion largely retains the architecture of the coordination hole of the metal-free corrin ligand Hby, expanded by two 'inner' protons.² In Cuby, the critical angle parameters corrinfold²⁶ (10.0°) and corrin helicity² (12.4°) are also similar to those of the ligand Hby,² but remarkably larger than in Niby. Likewise, the angle between the planes N1-Cu-N2 and N3-Cu-N4 (roughly 13.6°) relating to the inner coordination-sphere around the Cu(II)-center (see the ESI,‡ Table S3) is close to the value derived for Hby.² Interestingly, the N1-M-N3 pseudo-diagonal in Cuby was roughly 0.07 Å shorter than the N2-M-N4 counterpart, thus

Fig. 3 X-ray crystal structure of **Cuby** in ORTEP-representations. Top: axial view from above (β -side); bottom: approximate in-plane view, revealing the slightly nonplanar 4-fold coordination of the encased Cu(\parallel)-ion.

displaying a larger difference of the distances across these pseudo-diagonals than in **Niby**. This desymmetrization of the corrin core in **Cuby** also goes along the one observed in **Hby** and its Zn(n)-complex,¹⁹ but is insignificant in the Co(n)-corrins Co(n)-cobalamin (**Cbl**^{II})²⁷ and cob(n)ester²⁸ and in typical Co(m)-corrins, such as coenzyme B₁₂ (**AdoCbl**)²⁹ and vitamin B₁₂.^{30,31}

Our self-consistent field (SCF) in the gas-phase calculation of cupribyric acid (**HCuby**+), the cationic carboxylate-protonated form of **Cuby**, used the atomic coordinates of the **Cuby** crystal structure. In this model, large artefactual electron density contributions of the carboxylate function of **Cuby** to occupied MOs were lacking, consistent with the experimental absence of such interactions. The so-derived computational

Fig. 4 Frontier molecular orbitals (FMOs) of the cupribyric acid cation (**HCuby**⁺) from the self-consistent field in gas-phase calculations. From left to right: the highest occupied MO (HOMO), a corrin π -type orbital; the d_{x²-y²}-type Cu(II)-located singly occupied MO (SOMO); and the lowest unoccupied MO (LUMO), a corrin π -type orbital. Orbitals are seen from the upper side.

insights into the bonding interactions of a d⁹-Cu(II)-corrin were fully consistent with separately located calculated frontier molecular orbitals, either as π -type corrin ligand MOs or as the singly occupied $d_{x^2-v^2}$ -type orbital on the Cu(II)-center (see Fig. 4 and ESI[‡] Fig. S13). We also tested computed models of cuprobyric acid (Cu(1)by) to shed light on the difficult³² oneelectron reduction to a d¹⁰-Cu(I)-corrin (for details, see the ESI,‡ Fig. S14). The calculations suggest a large upper axial out of plane movement of the Cu(I)-ion, comparable to the position of the rather weakly bound Zn(II)-center in zincobyric acid (Znby).¹⁹ Indeed, the iso-electronic nature of the closed shell d¹⁰-ions Cu(I) and Zn(II) suggested the likelihood of the complete removal of a Cu(1)-ion from reduced Cuby in a weakly acidic aqueous medium. In an exploratory experiment, Cuby was treated with Zn-powder in an aqueous NH₄Cl solution, leading to the effective replacement of the Cu-center of Cuby by Zn(II), furnishing **Znby**,¹⁹ and its tentatively (by mass- and UV/ Vis-spectroscopy) characterized dihydro-form H₂-Znby, an unprecedented ring-reduced yellow corrinoid^{33,34} (see ESI,‡ Scheme S1). We ascribe the observed formation of Znby from **Cuby** to a transient generation of an exchange-labile d¹⁰-Cu(I)center by the Zn-reduction, thus strategically circumventing Eschenmoser's postulate that a B-type transition metal could not be removed without destruction of the corrin-ligand.³⁵

The replacement, by copper, of the biologically selected cobalt-center of a corrinoid B₁₂-derivative^{1,36,37} erases its fundamental organometallic redox-reactivity.7 The single unpaired electron of the paramagnetic Cuby does not contribute any (cobalt-mimetic) radical reactivity, but is 'buried' in a $d_{x^2-y^2}$ orbital of its d⁹ Cu(II)-center. Consistent with the EPR-spectral fingerprint of Cuby and its large ¹⁴N-hfcs with the four inner corrin N-atoms, in particular, the unpaired spin is located in a $d_{x^2-y^2}$ orbital of an effectively antibonding type with respect to the coordinating corrin N-atoms (Fig. 4). Compared to the d⁸ Ni(II)-ion in Niby, the Cu(II)-N bonds in Cuby are, indeed, longer. Copper complexes of the superficially similar corroles represent a remarkably more complex situation:^{38,39} there 'noninnocence' of the corrole ligand is caused by its extended π -system, assisting an intramolecular electron-shift and stabilizing the copper center in a higher oxidation state.⁴⁰

The chelation of the fluorescent metal-free corrin **Hby**^{2,41} by Cu(II)-ions in aqueous solution occurs cleanly at ambient temperature at pH 5. The Cu(II)-ions chelate **Hby** with a rate $k^{\text{Cu(II)}} = 0.54 \pm 0.04 \text{ L} \text{ mol}^{-1} \text{ min}^{-1}$, remarkably quicker by about 2×10^2 times than the binding of the biologically crucial Co(II)-ions ($k^{\text{Co(II)}}$ of about $3 \times 10^{-3} \text{ L} \text{ mol}^{-1} \text{ min}^{-1}$), and five times faster than Zn(II)-ions ($k^{\text{Zn(II)}} = 0.111 \pm 0.002 \text{ L} \text{ mol}^{-1} \text{ min}^{-1}$, see the ESI‡). The chelation rates of these metal ions follow the trend established with Eschenmoser's model corrin³⁵ and with a water-soluble tetra-mesopyridyl-porphyrin.⁴²

Obviously, the biological roles of $\text{Co}^{7,8,43}$ and Cu^{44-47} do not match. However, the 4-coordinate $\text{Cu}(\pi)$ -complexes of natural corrin ligands may serve as structural mimics of reduced B_{12} derivatives. In concert with the divergent reactivity profiles of copper- and cobalt-corrins, biologically interesting applications are likely. **Cuby** is structured similar to the corrin-core of enzyme-activated 4-coordinate Co(π)-cobamides, first characterized in an ATP:Co(η)-corrinoid adenosyltransferase that generates **AdoCbl** from 4-coordinate Co(π)-Cbl.⁴⁸ With their largely inert 4coordinate d⁹- and d⁸-metal-centers, respectively, Cu(π)- and Ni(π)-corrins¹⁸ may effectively mimic the structures of the highly activated 4-coordinate Co(π)- and Co(η)-corrins. Indeed, nibalamin (**Nibl**), the diamagnetic Ni(π)-analogue of 'base-off' Co(π)-Cbl, was shown to be an effective inhibitor of the corrinoid adenosyltransferase BtuR from *Brucella melitensis*.¹⁸ The crystal structure of **Cuby** qualifies Cu(π)-containing B₁₂-derivatives, such as cupribalamin (**Cubl**), for similar inhibitory effects.

Transition metal analogues of vitamin B₁₂ and other cobalamins (Cbls), also classified as metbalamins (Metbls),^{49,50} lack the precise cobalt-dependent reactivity of Cbls^{8,43} and, when mimicking Cbl-structures, may represent genuine antivitamins B_{12} .^{50,51} This is the case for rhodibalamins (Rhbls), the Rh(III)homologues of Cbls. Surprisingly, their Rh(m)-center has even been revealed to experience a slightly better fit to the corrin ligand than the naturally selected Co(III)-ions.¹³⁻¹⁵ Whereas uptake and physiological activity of Metbls with stable 4coordinate corrin-bound metal centers are still unknown in humans and animals, microorganisms are typically more structure-promiscuous for B₁₂-import, satisfying their supply with cobamides by *de novo* biosynthesis⁵ or by partial assembly from salvaged natural corrinoids.52,53 As deduced for some Rhbls^{13,15} and for Nibl,¹⁸ transition metal-based structural mimics of B12-cofactors or of corrinoid B12-biosynthesis intermediates¹⁷ may selectively inhibit bacterial growth. As mimics of enzyme-bound Cbl-structures in B12-dependent enzymes at intermediate stages of catalysis, Metbls may specifically act as very effective enzyme inhibitors. The Cu(II)analogues of natural B12-derivatives are, hence, EPR-active candidates for their applications as B12-antimetabolites for B_{12} -dependent microorganisms, an expansion of the toolbox of Cu-coordinating natural products⁴⁷ as antimicrobial agents.

Synthetic, analytical and spectroscopic work: C. K. and M. W.; crystallography: C. K. and K. W.; theoretical and computational study: L. P. P., D. F. D., and K. R. L.; EPR-spectroscopy – data acquisition, supervision and data curation: D. L., M.-K. Z., M. B., and S. H.; and research conceptualization and conduction and original draft: B. K.; all authors have reviewed and contributed to the final draft.

We are particularly grateful to Evelyne Deery and Martin Warren for a generous supply of hydrogenobyric acid. This work was supported by the Austrian Science Fund (FWF projects P-28892 and P-33059 to BK and P-34626 to SH and DL).

Conflicts of interest

There are no conflicts to declare.

Data availability

See the ESI.[‡] Crystallographic data for cupribyrate (Cuby) have been deposited at the Cambridge Crystallographic Data Center (CCDC) and are available under accession number CCDC-2402239.

Notes and references

- 1 A. Eschenmoser, Angew. Chem., Int. Ed. Engl., 1988, 27, 5–39.
- 2 C. Kieninger, E. Deery, A. D. Lawrence, M. Podewitz, K. Wurst, E. Nemoto-Smith, F. J. Widner, J. A. Baker, S. Jockusch, C. R. Kreutz, K. R. Liedl, K. Gruber, M. J. Warren and B. Kräutler, *Angew. Chem.*, *Int. Ed.*, 2019, **58**, 10756–10760.
- 3 J. M. Pratt, Inorganic Chemistry of Vitamin B_{12} , Academic Press, New York, 1972.
- 4 N. J. Lewis, R. Nussberger, B. Kräutler and A. Eschenmoser, Angew. Chem., Int. Ed. Engl., 1983, 22, 736-737.
- 5 D. A. Bryant, C. N. Hunter and M. J. Warren, *J. Biol. Chem.*, 2020, **295**, 6888–6925.
- 6 E. Raux, H. L. Schubert and M. J. Warren, *Cell. Mol. Life Sci.*, 2000, 57, 1880–1893.
- 7 B. Kräutler, in *Adv. Bioorganomet. Chem.*, ed. T. Hirao and T. Moriuchi, Elsevier, Cambridge, USA, 2019, pp. 399–429.
- 8 K. L. Brown, Chem. Rev., 2005, 105, 2075–2149.
- 9 H. M. Marques, J. Coord. Chem., 2024, 77, 1161-1210.
- 10 E.-I. Ochiai, J. Chem. Educ., 1978, 55, 631.
- 11 V. B. Koppenhagen, in *B*₁₂, *ed. D. Dolphin*, John Wiley & Sons, 1982, vol. 2, pp. 105–150.
- 12 G. Holze and H. H. Inhoffen, Angew. Chem., Int. Ed. Engl., 1985, 24, 867–869.
- 13 F. J. Widner, A. D. Lawrence, E. Deery, D. Heldt, S. Frank, K. Gruber, K. Wurst, M. J. Warren and B. Kräutler, *Angew. Chem., Int. Ed.*, 2016, 55, 11281–11286.
- 14 F. J. Widner, C. Kieninger, K. Wurst, E. Deery, M. J. Warren and B. Kräutler, *Synthesis*, 2021, 332–337.
- 15 M. Wiedemair, C. Kieninger, K. Wurst, M. Podewitz, E. Deery, M. D. Paxhia, M. J. Warren and B. Kräutler, *Helv. Chim. Acta*, 2023, **106**, e202200158.
- 16 M. Ruetz, R. Mascarenhas, F. Widner, C. Kieninger, M. Koutmos, B. Kräutler and R. Banerjee, *Biochemistry*, 2024, 63, 1955–1962.
- 17 F. J. Widner, C. Kieninger and B. Kraeutler, *J. Porph. Phthal.*, 2025, 29, 408–417.
- 18 C. Kieninger, K. Wurst, M. Podewitz, M. Stanley, E. Deery, A. D. Lawrence, K. R. Liedl, M. J. Warren and B. Kräutler, *Angew. Chem.*, *Int. Ed.*, 2020, **59**, 20129–20136.
- C. Kieninger, J. A. Baker, M. Podewitz, K. Wurst, S. Jockusch, A. D. Lawrence, E. Deery, K. Gruber, K. R. Liedl, M. J. Warren and B. Kräutler, *Angew. Chem., Int. Ed.*, 2019, 58, 14568–14572.
- 20 V. B. Koppenhagen and J. J. Pfiffner, J. Biol. Chem., 1970, 245, 5865–5867.
- 21 V. B. Koppenhagen and J. J. Pfiffner, J. Biol. Chem., 1971, 246, 3075–3077.
- 22 M. Ray, R. Mukherjee, J. F. Richardson, M. S. Mashuta and R. M. Buchanan, J. Chem. Soc., Dalton Trans., 1994, 965–969.
- 23 U. Sakaguchi and A. W. Addison, J. Chem. Soc., Dalton Trans., 1979, 600–608.
- 24 L. Yang, D. R. Powell and R. P. Houser, Dalton Trans., 2007, 955-964.

- 25 B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan and S. Alvarez, *Dalton Trans.*, 2008, 2832–2838.
- 26 V. B. Pett, M. N. Liebman, P. Murray-Rust, K. Prasad and J. P. Glusker, J. Am. Chem. Soc., 1987, 109, 3207–3215.
- 27 B. Kräutler, W. Keller and C. Kratky, J. Am. Chem. Soc., 1989, 111, 8936–8938.
- 28 B. Kräutler, W. Keller, M. Hughes, C. Caderas and C. Kratky, J. Chem. Soc., Chem. Commun., 1987, 1678–1680.
- 29 L. Ouyang, P. Rulis, W. Y. Ching, G. Nardin and L. Randaccio, *Inorg. Chem.*, 2004, 43, 1235–1241.
- 30 C. Kratky and B. Kräutler, in *Chemistry and Biochemistry of B*₁₂, ed. R. Banerjee, John Wiley & Sons, New York, Chichester, 1999, pp. 9–41.
- 31 B. Kräutler, R. Konrat, E. Stupperich, G. Färber, K. Gruber and C. Kratky, *Inorg. Chem.*, 1994, **33**, 4128–4139.
- 32 K. A. Rubinson, J. Caja, R. W. Hurst, E. Itabashi, T. M. Kenyhercz, W. R. Heineman and H. B. Mark, J. Chem. Soc., Chem. Commun., 1980, 47–48.
- 33 G. Schlingmann and V. B. Koppenhagen, Zürich Switzerland, 1979.
- 34 G. Schlingmann, B. Dresow, L. Ernst and V. B. Koppenhagen, *Liebigs Ann. Chem.*, 1981, 2061–2066.
- 35 H. U. Blaser, E. L. Winnacker, A. Fischli, B. Hardegger, D. Bormann, N. Hashimoto, J. Schossig, R. Keese and A. Eschenmoser, *Helv. Chim. Acta*, 2015, **98**, 1845–1920.
- 36 G. A. Holliday, J. A. Thornton, A. Marquet, A. G. Smith, F. Fabrice Rebeille, R. Mendel, H. L. Schubert, A. D. Lawrence and M. J. Warren, *Nat. Prod. Rep.*, 2007, 24, 972–1087.
- 37 A. Eschenmoser, Angew. Chem., Int. Ed., 2011, 50, 12412-12472.
- 38 A. Ghosh, Chem. Rev., 2017, 117, 3798-3881.
- 39 M. Bröring, F. Brégier, E. C. Tejero, C. Hell and M. C. Holthausen, Angew. Chem., Int. Ed., 2007, 46, 445-448.
- 40 C. M. Lemon, M. Huynh, A. G. Maher, B. L. Anderson, E. D. Bloch, D. C. Powers and D. G. Nocera, *Angew. Chem., Int. Ed.*, 2016, 55, 2176–2180.
- 41 S. Jockusch and B. Kräutler, Chem. Commun., 2025, 61, 3904-3907.
- 42 P. Hambright, *in The Porphyrin Handbook*, Academic Press, 2000, vol. 3, pp. 129–210.
- 43 B. Kräutler, in *Compreh. Organomet. Chem. IV*, ed. G. Parkin, K. Meyer and D. O'Hare, Elsevier, Oxford, 2022, pp. 73–95.
- 44 E. I. Solomon, R. K. Szilagyi, S. D. George and L. Basumallick, *Chem. Rev.*, 2004, **104**, 419–458.
- 45 E. Kim, E. E. Chufan, K. Kamaraj and K. D. Karlin, *Chem. Rev.*, 2004, 104, 1077–1133.
- 46 G. E. Kenney and A. C. Rosenzweig, Ann. Rev. Biochem., 2018, 87, 645-676.
- 47 O. M. Manley and A. C. Rosenzweig, J. Biol. Inorg. Chem., 2025, 30, 111–124.
- 48 M. S. S. Maurice, P. Mera, K. Park, T. C. Brunold, J. C. Escalante-Semerena and I. Rayment, *Biochemistry*, 2008, 47, 5755–5766.
- 49 F. Zelder, M. Sonnay and L. Prieto, *ChemBioChem*, 2015, 16, 1264–1278.
- 50 B. Kräutler, Chem. Eur. J., 2020, 26, 15438-15445.
- 51 B. Kräutler, Chem. Eur. J., 2015, 21, 11280-11287.
- 52 S. Gude, G. J. Pherribo and M. E. Taga, Msystems, 2022, 7, 00288.
- 53 J. C. Escalante-Semerena, J. Bacteriol., 2007, 189, 4555-4560.