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We present an electrochemical method for sulfoximine synthesis
via radical cross-coupling of sulfonimidoyl and styryl radicals,
generated from sulfinamides and bromostyrenes. This approach
enables the efficient synthesis of vinyl sulfoximines, including
bioactive-tethered derivatives, in moderate to good yields.

Sulfoximine-containing molecules have gained significant atten-
tion in medicinal chemistry due to their unique structural
features, including a stereogenic center at the sulfur atom and
a small, hydrophilic core." These compounds exhibit diverse
biological properties; for example as a proline-rich tyrosine
kinase inhibitor (A),> cyclin-dependent kinases (CDK) inhibitors
(B),> or CYP24 hydroxylase inhibitor (C).* Beyond their pharma-
ceutical applications, sulfoximines have also been employed as
pesticides in crop protection.” Given their widespread impor-
tance in drug discovery and agrochemicals, the development of
efficient and sustainable synthetic methodologies to access
sulfoximines remains a crucial research goal. Several strategies
have been explored for sulfoximine synthesis. One of the most
common approaches involves the amination of sulfoxides using
aminating reagents.’® However, such approach is often limited
by the need for stoichiometric oxidants and low substrate
tolerance, restricting its broader applicability.” More recently,
radical methodologies have emerged as promising alternatives
for sulfoximine synthesis.'®"* Bolm'" and Gau'? reported meth-
ods using sulfonimidoyl radicals, generated from sulfonimidoyl
chloride or fluoride.

Electrochemical synthesis—the use of electric current to med-
iate redox transformations in organic synthesis—has witnessed a
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renaissance in recent years and is developing as an inherently
green and sustainable method to access radical intermediates
under precise reaction conditions."*'* In this context, Ling and
co-workers developed an electrochemical approach that generates
sulfonimidoyl radicals in situ via paired electrolysis, enabling vinyl
sulfoximine synthesis."> Against the background of recent devel-
opments in sulfoximine synthesis and our interest in this research
area,'® we herein present a modified electrochemical approach
that circumvents the need for DBU and triethylamine salts. Our
protocol employs carbonate salts as the sole additive, enabling the
efficient synthesis of vinyl sulfoximines under ambient conditions
(Scheme 1).

Initially, we investigated the reaction of sulfinamide 1a with
B-bromostyrene (2a) under electrochemical conditions, using a
graphite electrode and K,CO; as the base. To our delight, the
desired product 3a was formed in 41% yield (Table 1, entry 1).
With this positive result we then proceeded to screen other
solvents, yet both THF or methanol gave inferior results. On
increasing the ratio of water, a sharp decrease in the yield of 3a
was observed (Table 1, entry 4). We next went for evaluation of
organic and inorganic bases; using pyridine and KOH as base
the product 3a was formed only in traces while Na,CO; or
K;PO, gave 3a in 39% and 33%, respectively (Table 1, entries
5-8). When the reaction was performed in presence of electro-
Iytes in acetonitrile, the product 3a was not detected (Table 1,
entry 9); similarly, a significant decrease in the yield of 3a was
observed under aerobic conditions (Table 1, entry 10). Changing
the cathode to Ni plate resulted in a significant increase in the
yield of the desired product 3a, which could be isolated in
77% yield (Table 1, entry 11). The reaction failed to deliver
the product in absence of electric current indicating the neces-
sity of electricity. Further, on increasing or decreasing the
reaction current does not provide a better than at 3 mA
(Table 1, entry 12).

We first investigated the substrate scope (Scheme 2) by
varying the sulfinamide (1). Both pivolyl and benzoyl protecting
groups were well tolerated in this transformation; however, the
benzoyl-protected sulfinamide yielded product 3¢ in only 22%,
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Scheme 1 Biologically relevance sulfoximines bearing molecules and

strategies for the generation of sulfonimidoyl radicals.

Table 1 Optimization of reaction conditions?

O M

S\N,Boc CCE=3.0mA
JON
Me'

1

O, NBoc

NG

x-S
+ —_—_—
0o MeCN:H,0 (10:1), 11 h, Ar Me

3a

Entry Variation from condition Yield [%] of 3a
1 None 41

2 THF:H,0 39

3 MeOH : H,O Traces
4 MeCN: H,O (1:5) 13

5 Pyridine instead of K,COj3; Traces
6 KOH instead of K,CO; Traces
7 Na,COj; instead of K,COj3 39

8 K;PO, instead of K,COj; 33

9 TBAI, TBCIO,, TBABF, in MeCN —

10 Under air 14

11 Ni as cathode 84 (77)
12 No current NR

13°¢ At 5 mA/1 mA current 75/63

“ Reaction conditions: 1a (0.1 mmol), 2a (3.0 equiv.) and K,CO; in MeCN:
H,O (10:1, 2.0 mL) under argon. H NMR ylelds were calculated using

mesitylene as internal standard. ?

Isolated yield. © Nickel as cathode.

whereas the Boc- and pivolyl-protected variants afforded pro-
ducts 3a and 3b in significantly higher yields of 77% and 67%,
respectively.
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Scheme 2 Substrates scope; 1 (0.2 mmol), 2 (3.0 equiv.) and K,COs
(4.0 equiv.) in MeCN:H,O (10:1, 2.0 mL) were electrolyzed at 3 mA CCE
using GF (anode) and Ni (cathode) under argon. FE = faradaic efficiency.

Next, we explored the effect of the aryl ring substitutions on
the sulfinamide. A wide range of substituents, including
electron-donating, electron-withdrawing groups, and halogens,
were well-tolerated. Phenylsulfinamide yielded product 3d in
70%. Halogenated sulfinamides produced 3e and 3f gave
slightly lower yields, whereas the methoxy-substituted sulfina-
mide gave product 3g in 56%. Notably, mono-CF;-substituted

This journal is © The Royal Society of Chemistry 2025
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A Scale-up reaction
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H
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Scheme 3 Scale up reaction and post-synthetic transformations.

arylsulfinamide provided product 3h in only 22% yield, while
3,5-CF; and CN-substituted sulfinamides failed to generate the
corresponding sulfoximines (see ESIT). The presence of two CF;
groups (see, ESIT) at the meta positions of the sulfinamide
failed to provide the desired product, possibly due to their
strong electron-withdrawing nature. Similarly, substitutions at
the ortho position e.g. Cl or Me, (see ESIf) did not yield the
corresponding sulfoximines, which may be attributed to steric
hindrance. The thiophene-derived sulfinamide afforded pro-
duct 3i in a good yield of 75%, whereas the naphthalene
analogue provided 3j in 43%. We then assessed the influence
of the substituents on the aryl ring of bromo styrene 2. The
reaction tolerated diverse substitution patterns, including
electron-donating, electron-withdrawing groups, and halogens,
affording the respective products in moderate to good yields.
Electron-donating groups positively influenced the yields (3k, 3I),
while halogenated substrates led to moderate yields (3m, 46%; 3n,
55%). Strongly electron-withdrawing substituents such as CN and
CO,Me gave 30 and 3p in lower yields (30% and 32%, respectively),
whereas CF;-substituted styrene gave 3q in an excellent 73% yield.
meta- and ortho-substituted bromostyrenes reacted efficiently, deli-
vering products 3r (50%) and 3s (56%). The tri-methoxy-substituted
bromostyrene provided 3t in 75% yield. Additionally, heterocyclic
bromostyrenes were well tolerated; pyridine- and furan-containing
derivatives gave products 3w and 3v in lower yields, while the
thiophene analogue afforded 3u in 73%. Finally, bioactive tethered
bromostyrene derivatives were also compatible, yielding products
3x-3z in moderate yields. The observed faradaic efficiencies (6.9-
30.9%) are relatively low, which may be due to competitive hydro-
gen evolution resulting from water present in the reaction medium.

To demonstrate the applicability of the developed electro-
chemical protocol, a scale up reaction at 2 mmol scale were

This journal is © The Royal Society of Chemistry 2025
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Scheme 4 Control experiment and possible reaction mechanism.

performed under the standard reaction condition to provide
the desired product in 72% yield (Scheme 3A). Additionally,
Michael addition reaction of 3a with thiol and pyrrolidine have
been performed and the products 4 and 5 were isolated in 83%
and 57% yield, respectively (Scheme 3B). Furthermore, the Boc-
protecting group could be easily removed under acidic condi-
tion to deliver the free sulfoximine 6 (Scheme 3B).

We then performed several control experiments to get
insight into the reaction mechanism (Scheme 4A). When the
reaction was performed using TEMPO as radical quencher the
reaction failed to provide the product 3a suggesting the radical
nature of the reaction. Further, using 1,1-diphenyl ethene as
radical trapping agent, we observed the formation of the adduct
7. Based on these control experiments and previous literature
reports,'” we postulated that the sulfinamide anion 8 undergoes
anodic oxidation to generate the N-centred radical intermediate
which could undergo electronic rearrangement to generate the
sulfonimidoyl radical 9 (Scheme 4B). At the cathode, the bro-
mostyrene undergoes one-electron reduction to generate the
styryl radical 10, which finally undergoes radical cross coupling
with 9 to provide the sulfoximine 3a (Scheme 4B).

In conclusion, we have demonstrated the application of
electrochemistry to access vinyl sulfoximines through a radical

Chem. Commun., 2025, 61, 11017-11020 | 11019
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cross-coupling of the sulfonimidoyl and styryl radicals under
metal- and additive-free conditions. The developed protocol
successfully delivered a variety of sulfoximine derivatives in
moderate to good yields. This strategy was further applied to
synthesize bioactive tethered vinyl sulfoximines in moderate
yields. Additionally, the synthetic applicability of the protocol
was demonstrated through a scale-up reaction and subsequent
post-synthetic modifications.
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King Abdullah University of Science and Technology (KAUST)
under Award No. ORFS-CRG12-2024-6438.
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