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Real-space Kohn–Sham density functional theory
for complex energy applications

Zeyi Zhang,ab Liping Liu, d Drew M. Glenna,ac Asmita Jana,a Carlos Mora Pereza

and Jin Qian *a

Real-space Kohn–Sham density functional theory (real-space KS-DFT) enables large-scale electronic

structure simulations that is particularly well-suited for the modern high-performance computing (HPC)

architectures. This feature article reviews its theoretical foundations, highlights the algorithmic advances

and recent developments, and showcases applications in complex nano systems. We aim to provide a

perspective on the trajectory of real-space KS-DFT as an emerging tool for computational chemistry

and materials science in the exascale era.

1 Introduction

KS-DFT, commonly referred to as DFT, is a powerful and widely
used computational framework for modeling electronic struc-
ture. It has been instrumental in unraveling fundamental

insights at the atomistic level, which in turn govern
macroscopic properties. For a comprehensive review of the
theoretical and applied aspects of DFT and its extended elec-
tronic structure methods, we refer readers to the paper by
Marzari et al.1

When discussing DFT, one’s implicit assumption often
involves traditional implementations based on either the
atomic orbitals or plane-wave basis sets. These methods, as
implemented in widely used software packages such as Q-
Chem,2 Gaussian,3 or VASP,4,5 and Quantum Espresso,6 have
been highly successful but typically scale to systems containing
only a few hundred atoms. This limitation arises from the
computational cost of solving the KS equations in non-localized
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bases, where the Hamiltonian matrix is dense and diagonaliza-
tion becomes a bottleneck.

To address the growing need for simulating increasingly
complex chemical systems – such as gas–liquid–solid interfaces
and large-scale nanostructures (e.g., from B100 to B10 000
atoms), we introduce the latest advances in real-space KS-DFT.
Unlike conventional approaches, real-space KS-DFT discretizes
the KS Hamiltonian directly on finite-difference (FD) grids in
real, physical space.7,8 This results in a large but highly sparse
eigenproblem matrix, enabling massive parallelization with
minimal communication overhead, making real-space KS-DFT
particularly well-suited for the modern HPC architectures.

In recent years, several computational breakthroughs have
demonstrated the scalability and efficiency of real-space KS-
DFT. The PARSEC team9 successfully simulated a 20 nm

spherical Si nanocluster containing over 200 000 atoms, solving
the electronic structure problem in parallel across 8192 nodes.10

The ARES team performed extensive benchmarking studies,
demonstrating the accuracy of real-space KS-DFT for metallic,
semiconductor, and insulating systems directly by comparing the
results against CASTEP,11 and also showcased a demonstration of
simulating aluminum systems with 10 000 atoms for scalability.12

The RESCU team has simulated Si and Al systems contain-
ing thousands of atoms.13 The OCTOPUS team has contri-
buted significantly to time-dependent developments and appli-
cations.14,15 The SPARC team enabled not only static but also
dynamic solutions,16,17 while the DFT-FE team developed an all-
electron (AE) solution projected on a finite-element (FE) basis.18,19

Despite the these achievements, real-space KS-DFT is still in
a developmental stage, with most of its applications focused on
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model systems.8,10,20–22 In computational chemistry and mate-
rials science, practical demonstrations of its advantages remain
limited, and further benchmarks are needed for spectroscopic
validation and comparison with experimental observables.23–26

In this article, we introduce the theoretical foundations and
algorithmic innovations of real-space KS-DFT. We first review
key theoretical background, including the KS equation, pseu-
dopotentials (PPs), and FD discretization. Then we discuss
computational acceleration techniques such as subspace
filtering,27,28 Rayleigh–Ritz diagonalization,29 and space-filling
curves for parallelization.30 To bridge the gap between theory
and experiments, we developed a PP based method within the
real-space KS-DFT framework to predict X-ray photoelectron
spectroscopy (XPS) core electron binding energy (CEBE).24,26

Following this, we discuss recent applications from our group,
including studies on complex nanodroplet interactions with
gas-phase species and carbon capture near the direct air
capture (DAC) limit. These examples illustrate cases where
real-space KS-DFT provides unique insights as well as instances
where conventional DFT remains sufficient, respectively. For
completeness, alternative methods for simulating large sys-
tems, such as orbital-free DFT (OF-DFT) and linear scaling
DFT, are also reviewed. Finally, we provide an outlook on the
future of real-space KS-DFT, emphasizing its potential for
exascale computing and its evolving role in computational
materials science and chemistry. Current status quo, challenges
and gaps, along with potential solutions, are summarized in
this section, in detail. By evaluating both its strengths and
limitations, we aim to provide a clear perspective on the
trajectory of real-space KS-DFT as an emerging computational
tool in chemistry and materials science.

2 Theory
2.1 KS equation

Real-space KS-DFT is fundamentally based on the KS
equation:31,32

Ĥcið~rÞ ¼ �1
2
r2 þ V rð~r Þ;~r½ �

� �
cið~r Þ ¼ Eicið~r Þ i ¼ 1; 2; . . .

(1)

where atomic units (h� = me = e = 4pe0 = 1) are used and will be
used throughout the entire manuscript. ci(

-r) is the wavefunc-
tion or eigenfunction, Ei is the energy or eigenvalue, and -

r is the
position. r(-r) represents the charge density and is defined as:

rð~r Þ ¼
Pnocc
i¼1

fi cið~r Þj j2 (2)

where nocc is the number of occupied states, fi is the number of
electrons in the occupied state. The potential V in the Hamilto-
nian can be written as:

V[r(-r),-r] = VH[r(-r)] + Vion(-r) + Vxc[r(-r)] (3)

where VH is the Hartree or Coulomb potential, which is
calculated through the Poisson equation:

r2VH[r(-r)] = �4pr(-r) (4)

Vion is the ionic potential, and Vxc is the exchange–correlation
potential, which can be approximated by local density approxi-
mation (LDA),32 generalized gradient approximation (GGA),33

other LDA/GGA variants,34–37 or higher rungs in the Jacob’s
ladder.38 After solving the KS equation self-consistently, we obtain
the KS orbitals, which give the charge density, where additional
properties can then be derived. The standard scaling for KS-DFT
calculation is O(Na

3) for GGA, where Na is the number of atoms.1,39

2.2 PP theory

In most practical electronic structure calculations, the PP
approach is preferred over the AE methods due to its substan-
tial computational advantages. By replacing the strong Cou-
lomb potential of the nucleus and tightly bound core electrons
with a smoother effective potential, PPs eliminate the need to
resolve the rapidly oscillating core wavefunctions, which
require extremely fine grids or large basis sets. Since core
electrons are usually chemically inert, this approximation
introduces little loss in accuracy for most materials properties.
As a result, PPs significantly reduce the computational cost and
improve numerical stability. Consequently, we choose to intro-
duce real-space KS-DFT in this article with a particular focus on
the FDPP approach.

2.2.1 Phillips–Kleinman cancellation theorem. The ionic
potential Vion, also called ionic core psuedopotential, in eqn (3)
is approximated by PPs in the present real-space KS-DFT
theoretical framework. The PP concept was first proposed
based on the observation that core electrons are localized and
inert while valence electrons are delocalized and active.40 Later,
it was found that the strong ionic core potential could be
replaced by a weak PP,41 and a cancellation theorem was then
developed.42 This theorem simplifies the AE problem into a PP
problem in which only valence electrons are solved explicitly.

We show the basic idea here. For an atom, we assume one
valence wavefunction can be replaced by a pseudo-
wavefunction and core wavefunctions:

cvj i ¼ fp

�� E
�
Pcores
c

ccj i ccjfp

D E
(5)

where cc, cv and fp represent core, valence, and pseudo-
wavefunctions. The coefficient hcc|fpi comes from orthonorm-
ality. Suppose Ec, Ev, and Ep are eigenvalues of corresponding
wavefunctions. Substituting eqn (5) into eqn (1), we obtain

h
Ĥ þ

Xcores
c

Ev � Ecð Þ
���cc

ED
cc

���|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V̂R

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ĥp i
fp

�� E
¼ Ev fp

�� E
(6)

where Ĥp is a newly defined pseudo-Hamiltonian, and V̂R is the
repulsive potential energy operator. Incidentally, a PP is
obtained:

Vp|fpi = (V + VR)|fpi (7)
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where V is the AE potential and VR is a repulsive potential. This
details the cancellation theorem.

In principle, if we were able to solve eqn (6), the pseudo-
wavefunction and PP can be obtained. However, V̂R is a non-
local operator which has a dependency on Ev, resulting in an
energy-dependent Hamiltonian that is impractical to solve.
Therefore, in practice, PPs are not solved from this theorem
but are constructed from the KS equation, as discussed below.

2.2.2 Construction of PPs. To construct well-behaved
pseudo-wavefunctions, the following requirements are usually
applied:43,44

(1) The eigenvalue for fp should be identical to cv with Ep = Ev;
(2) Pseudo-wavefunctions should be nodeless, leading to

fp 4 0;
(3) The pseudo-wavefunction should be equal to the AE

wavefunction beyond a chosen core radius rc, that is fp = cv,
when r 4 rc.

Based on (3), if fp is normalized, the corresponding PP is
said to be ‘‘norm-conserving (NC)’’, which encloses the same

charge density within the core region:
Ð rc
0 fp

�� ��2d~r ¼ Ð rc0 cvj j2d~r.
There are PPs that do not meet the NC condition, such as

ultrasoft PPs45 and PAW.46 However, in the FDPP method, NC-
PPs are commonly used, especially through the Martins–Troul-
lier form of pseudo-wavefunctions:44,47

fpðrÞ ¼
rl exp½pðrÞ�; r � rc

cvðrÞ; r4 rc

(
pðrÞ ¼

P6
i¼0

c2ir
2i (8)

where c2i are coefficients determined by forcing the NC condi-
tion and the continuity for fp and its first four derivatives at rc.
PPs are then obtained by inverting eqn (1):

Vion;p;iðrÞ ¼ Ei � VH½rðrÞ� � Vxc½rðrÞ� þ
�h2r2fp;i

2mfp;i

(9)

The index i in the expression indicates the state-dependent
character, which means that PPs are different for s-, p-, and
d-electrons in different shells.

2.2.3 Nonlocality. After obtaining the atomic pseudo-
wavefunctions and PPs, we construct the total ionic PP energy
operator. This operator V̂tot

ion,p, which describes the interactions
between valence electrons and pseudo-ionic cores in the
system, can then be separated into a local part and a nonlocal
part:48

V̂
tot

ion;pð~rÞ ¼
X
a

V̂
a

loc;p rað Þþ

X
a;lm

DV̂
a

p;l rað Þfa
p;lm rað Þ

��� E
fa
p;lm rað ÞDV̂

a

p;l rað Þ
D ���

fa
p;lm rað Þ DV̂

a

p;l rað Þ
��� ���fa

p;lm rað Þ
D E

ra ¼ ~r� ~Ra

�� �� DV̂
a

p;lðrÞ ¼ V̂
a

p;lðrÞ � V̂
a

loc;pðrÞ

V̂
a

p;lðrÞ ¼ V̂
a

loc;pðrÞ ¼ V̂ ion for r4 rc

(10)

where a labels the atom in the system and
-

Ra is the nucleus
position of it. fa

p,lm is the pseudo-wavefunction corresponding to

the angular momentum number l,m for the a-th atom. Va
p,l is the

PP generated by eqn (9), whereas Va
loc,p is the local PP part of

Va
p,l’s. In practice, the choice of the local part can be arbitrary.

For example, choosing either the 2s or 2p as the local PP is
allowed for 2nd row elements. If 2p is selected as the local PP,
then the 2p component must be subtracted from the 2s compo-
nent when constructing the nonlocal potential. It is often con-
venient to use the highest l-component of interest, which
simplifies the projection operators. To improve upon the accu-
racy, this choice can be tested by benchmarking the results from
different components and assessing the overall solutions. How-
ever, two things need to be emphasized. First, all PPs outside the
core region are the same, which are set to the real AE Vion. This
indicates that there is no nonlocal contribution outside the core
region, meaning the nonlocal potential is a short-range inter-
action. Second, the summation of l,m should be interpreted as
the inclusion of all valence orbitals. Fig. 1 shows an example of
PPs for the O atom and O1s1 atom, meaning that one 1s core–
hole (CH) is created for XPS. The cancellation of the strong
potential in the core region can be seen from the shape of the
lines. Instead of a �Zeff/r-shape curve (Zeff is the effective core
charge imposed on an electron), the PPs go to some finite values
at r = 0, showing a weak potential character. The nonlocality can
be recognized by the fact that, within the same shell, different
subshells have different PPs (as seen by the differences between
the red and black lines in Fig. 1).

2.3 FD method

The FD method lies at the heart of the real-space DFT frame-
work. Instead of relying on the atomic or plane-wave basis set,
real-space KS-DFT represents the Hamiltonian matrix in terms
of grids in real space. We can write the 3D Laplacian, which is
the kinetic part of the Hamiltonian, in terms of wave function

Fig. 1 An illustration of PPs for s and p orbitals for O atom and O1s1 atom.
Red lines are PPs for the first shell, and black lines are PPs for the second
shell. Figure is reproduced with permission from ref. 24 under a Creative
Commons License CC BY 4.0.
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values at these FD grids:7,8

r2f xi; yj ; zk
� �

¼ 1

h2

XN
nx¼�N

Cnx f xi þ nxh; yj ; zk
� �"

þ
XN

ny¼�N
Cny f xi; yj þ nyh; zk

� �

þ
XN

nz¼�N
Cnz f xi; yj ; zk þ nzh

� �#
þ O h2N

� �
(11)

where h is the grid spacing, N is the order of terms expanded,
Cnx

, Cny
, and Cnz

are the coefficients corresponding to the
expanded terms, and the Laplacian is expanded based on the
grid (xi,yj,zk). The expansion coefficients for the FD expressions
up to N = 5 are given in Table 1. Generally speaking, real-space
grids do not have to be uniform, but uniform grids are
commonly used due to their simplicity and compatibility with
FD stencils. Non-uniform or adaptive grids50,51 can offer greater
efficiency by providing higher resolution near nuclei or regions
with rapid variation, while using coarser spacing elsewhere.
Such approaches are particularly useful in systems with strong
spatial inhomogeneity. In addition, the computational com-
plexity of the real-space calculation increases cubically with the
number of grid points, meaning the user should choose a
modest N and a coarser h that still satisfies the desired energy
convergence criteria.

For isolated or non-periodic cases, we need to specify a
cutoff radius Rcut that contains the entire system and is large
enough to capture the accurate electron density. The wavefunc-
tion values are forced to be zero outside the domain defined by
Rcut. This is called Dirichlet boundary condition (DBC). A
typical geometry for a FD domian with DBC is illustrated in
Fig. 2.

With these FD grids as a ‘‘basis set’’, we can now analyze the
sparsity of the discretized Hamiltonian matrix. For the kinetic
energy component, it is a near-diagonal matrix, and the width
of the diagonal nonzero lines will depend on the order of
expansion. For the potential energy component, the VH and
Vxc matrices are strictly diagonal because of the locality. As for
the Vion part, the local term is diagonal, and the nonlocal terms
will only be nonzero around the core region for each atom due
to the short-range character. Therefore, the relatively small
width (usually with an expansion order N = 12–15) of nonzero
diagonal elements in the kinetic matrix compared to the high
dimension of the total matrix, the locality of VH, Vxc, Vloc,p, and
the short-range character of the nonlocal ionic PP lead to a

sparse Hamiltonian matrix. An example of the Hamiltonian
sparsity analysis for CH4 is illustrated in Fig. 3. Here, we set
N = 8, and h = 0.4 a.u. as an example. The darker near-diagonal
elements correspond to the Laplacian, and the light off-diagonal
elements come from the nonlocal ionic PP contribution. The
cutoff is set to 10�7 a.u. One can anticipate that lower thresholds
will give even sparser matrix form.

2.4 Algorithmic considerations

2.4.1 Subspace filtering. The Hamiltonian matrix expressed
in grid values has a large dimension (typically 106 � 106),
especially when Rcut is large and h is small. Consequently, a
great amount of computational time is consumed for the
diagonalization steps. However, not all eigenvalues are of inter-
est, and only the occupied states and a handful of virtual states
are usually needed. A clever approach is to filter out unwanted
dimensions of the matrix using subspace projection techniques.

Suppose we have the following set of grids-based wavefunctions:

C ¼

c1 ~r1ð Þ c2 ~r1ð Þ � � � cm ~r1ð Þ

c1 ~r2ð Þ c2 ~r2ð Þ � � � cm ~r2ð Þ

� � � � � � � � � � � �

c1 ~rNð Þ c2 ~rNð Þ � � � cm ~rNð Þ

2
6666664

3
7777775: ¼ c1;c2; . . . ;cm½ �

(12)

where cj(
-
rk) is the wavefunction value for the j-th eigenvalue at the

grid point rk, and N is the number of grids in the domain. We can
then construct a projection operator using a Hamiltonian form of
polynomials and apply it to one column of wavefunctions:

PðHÞcl ¼
PM
n¼1

anH
n

� 	
cl ¼

PM
n¼1

anE
n
l

� 	
cl ¼ P Elð Þcl (13)

If the factor P(El) is close to zero for eigenvalues above a
specific state and stays large for the remaining ones, we then
‘‘filter out’’ the components that have higher energies and only

Table 1 Expansion coefficients for FD expressions49

Order C0 C�1 C�2 C�3 C�4 C�5

N = 1 �2 1
N = 2 �5/2 4/3 �1/12
N = 3 �49/18 3/2 �3/20 1/90
N = 4 �205/72 8/5 �1/5 8/315 �1/560
N = 5 �5269/1800 5/3 �5/21 5/126 �5/1008 1/3150

Fig. 2 An example for the real-space grids representation, where Rcut is
shown by the blue sphere. The wave function is set to zero outside the
sphere. Figure is reproduced with permission from ref. 24 under a Creative
Commons License CC BY 4.0.
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keep the states we are interested in. An ideal design for such a
polynomial is shown in Fig. 4.

A very common and popular choice that satisfies the require-
ment mentioned above is called the Chebyshev polyno-
mials:9,27,28

P0ðxÞ ¼ 1 P1ðxÞ ¼ x

Pnþ1ðxÞ ¼ 2xPnðxÞ � Pn�1ðxÞ n � 0
(14)

The Chebyshev polynomials stay close to zero within [�1,1]
while having large values outside [�1,1], and these polynomials
are easy to expand to higher orders by the recursion relation.

The next step is to map the unwanted states in the energy
spectrum to the range [�1,1]. Suppose that the full spectrum of
the Hamiltonian H, denoted as s(H), spans within [a0,b], and we
only want the states in the range [a0,a](a0 o a o b). So, we need
to map [a,b] to [�1,1] by:

C0 ¼ P
H � c

e

� 	
C; c ¼ aþ b

2
; e ¼ b� a

2
(15)

In practice, the lower bound a is obtained from a previous
iteration, and the upper bound b is estimated using 4 or 5
Lancozos steps.52

2.4.2 Orthonomalization. After the subspace filtering step,
we arrive at a new set of wavefunctions that contain only the states
we care about. Since the Chebychev subspace filtering is not
necessarily a unitary transformation, we need to orthogonalize

new wavefunctions:

C0 









!orthonormalization
F (16)

Gram-Schmit procedure53 is common for orthogonalization,
but Cholesky QR54 can be a more efficient alternative.

2.4.3 Rayleigh–Ritz step. Afterwards, we can then project
the real Hamiltonian into the filtered, orthonormal subspace,
solve the subspace eigenvalue problem, and project the
wavefunction back through the standard Rayleigh–Ritz steps.55

Suppose that the original full space wavefunction C and the
projected subspace wavefunction F are linked by a transforma-
tion matrix Q. Then the KS equations are satisfied as such:

HC = EC 3 H(FQ) = E(FQ) = (FQ)E (17)

where E is a diagonal matrix containing non-increasingly
ordered eigenvalues of H. Left-projected by F†, and use the
orthonormality of F, we have:

(F†HF)Q = (F†F)QE = QE (18)

We note Ĥ = F†HF as the projected Hamiltonian. After solving
this projected eigenvalue problem, we can get the transformation
matrix Q to obtain the original full space wavefunction C:

Ĥ = F†HF - ĤQ = QE - C = FQ (19)

2.4.4 Space-filling curves. As discussed above, the dimen-
sion of the Hamiltonian matrix in the real-space representation
is extremely large. However, it is quite sparse because of the
close-to-diagonal kinetic component and the short-range char-
acter of the nonlocal potential component. Therefore, it is not
wise to do the normal matrix-vector multiplication using the

Fig. 3 An example illustrating the Hamiltonian sparsity using CH4 as an
example (left). Different gradient of red is used to indicate the value of the
matrix elements, with darker color corresponding to non-zero values and
lighter color corresponding to near-zero terms (right). [This analysis is
based on the Hamiltonian matrix generated by the Matlab version of the
PARSEC code. The coordinates (in a.u.) for atoms are C(0, 0, 0), H(1.2, 1.2,
1.2), H(1.2, 1.2, �1.2), H(1.2, �1.2, �1.2), H(�1.2, 1.2, �1.2), and other critical
settings (such as N, h, cutoff) are the default values from the code].

Fig. 4 Illustration of the ideal polynomial that enhances the wanted
spectrum region and suppresses the unwanted spectrum region.
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entire matrix, especially when we need to solve the KS equation
iteratively. For better use of computational resources rather than
computation of many zeros, an efficient and parallelizable sparse
matrix-vector (SpMV) multiplication algorithm is essential. Lever-
aging space filling curves (SFCs) to partition the computational
domain is an effective approach to minimize communication
overhead and improve parallel performance.56–59

SFCs are mathematical constructs that map multi-
dimensional space onto a one-dimensional path while preserving
locality and self-similarity.60,61 Traditional Cartesian partitioning
often leads to poor load balancing and excessive inter-processor
communication. SFC-based partitioning solves this by reordering
grid points into a structured sequence, improving memory access,
and reducing data transfer costs.62,63 Among various SFCs, the
Hilbert curve stands out due to its superior locality preservation.60

The locality preservation means that grids that are spatially close
will remain adjacent along the SFC. This minimizes communica-
tion between processors, improving efficiency. Additionally, Hil-
bert SFCs coupled with blockwise operations enhance vector
processing capabilities by grouping multiple grid points, and
further optimizing computational performance.64,65 Fig. 5 illus-
trates the two-dimensional versions of the Hilbert SFCs that
convert all grids into one dimension.

With the help of Hilbert SFCs, the computations are remark-
ably accelerated. Compared to the normal Cartesian partition,
blockwise Hilbert SFCs achieved a 6-time speedup and the
scalability went up to 512 processors, whereas traditional
methods struggle beyond 100 processors.30 These improve-
ments enabled PARSEC’s simulation of silicon nanocrystals
with over 26 000 atoms, while accurately capturing Van Hove
singularities in the density of states.30 These results demon-
strate the importance of Hilbert SFCs in large-scale real-space
electronic structure calculations and suggest their potential
application in other computational fields requiring efficient
grid partitioning.

2.5 Predicting experimental XPS CEBE through PPs
development

Within the PP framework, our group developed a method to
predict the XPS CEBE,24 which connects the real-space FDPP
method with real observables in experiments.

XPS CEBE (Eb) is defined as:

Eb = EN�1[nF] � EN[nI] (20)

where EN�1[nF] and EN[nI] are the energy functionals of the final
core excited state and the initial ground state, respectively, and
n represents the AE density. In our previous work,24 an estima-
tion was derived based on the accuracy of cohesive energies
obtained by PPs:

E½n� 	 E½r� �
PNa

a

E ra½ � þ
PNa

a

E na½ � (21)

where Na is the number of atoms in the system, r represents the
PP density, and E[ra], E[na] denote the AE, PP energy func-
tionals of the a-th isolated atom, which can be conveniently
obtained from the PP generator.66 With eqn (20) and (21), the
CEBEs of non-metal elements in the 2nd row24 (B, C, N, O) and
the 3rd row26 (P, S) were investigated within the DSCF25,67–75

scheme using the real-space PP method implemented in
ARES.12 The PP results are consistent with the AE results
simulated from Qchem2 using MOM76 or SGM,77 and are
comparable with the experimental results. The mean absolute
errors (MAE) of the AE and PP CEBE shifts for those elements
with respect to the experiments are summarized in Table 2.

In addition, the results from two different boundary condi-
tions, the periodic boundary condition (PBC) and DBC, are
compared. To converge the energy of the charged system, PBC
requires a much larger supercell size than DBC due to its
unavoidable inclusion of strong electrostatic interactions
between supercells.24 However, if the electron holes are not
delocalized,78 one can use the Makov–Payne equation79 to
correct the core–hole interactions75 by setting a sufficiently
large supercell.26 To test the applicability of the real-space KS-
DFT PP method for large-scale systems, the O-1s CEBE shifts in
protonated water clusters [H3O+� � �(H2O)n, n r 20],24 and the Si-
2p CEBE shifts of HZSM5 as well as its deprotonated
counterparts26 with respect to ZSM580–82 were also investigated.

3 Applications
3.1 Characterizing air–water interactions in nanodroplets
with real-space KS-DFT

Understanding ion behavior at the air–water interfaces
is crucial for diverse chemical and environmental processes,

Fig. 5 Examples of Hilbert SFCs that map the two-dimensional grids into
a one-dimensional curve and preserve the locality and self-similarity.

Table 2 Mean absolute errors of 1s, 2s, and 2p3/2 CEBE Shifts of B, C, N, O,
S and P in molecules with respect to the experiments (in eV)24,26

Core Element

AE AE AE PP PP

PBE SCAN B3LYP PBE PBE(B3LYP)

1s B 0.27 0.06 0.23 0.11
C 0.38 0.12 0.20 0.18
N 0.14 0.12 0.15 0.14
O 0.11 0.10 0.11 0.12
S 0.65 0.22 0.70 0.20
P 0.30 0.09 0.32 0.19

2s S 0.38 0.26 0.40 0.23
P 0.24 0.49 0.22 0.65

2p3/2 S 0.32 0.16 0.33 0.14
P 0.25 0.13 0.31 0.15
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with potential impacts ranging from atmospheric aerosol
chemistry,83–85 uptake of gases at the ocean surface,86 and
myriad biological processes. Here, we showcase our work of
CO2 dissolution in the NaCl nanodroplets (see Fig. 6). Insights
gained from this study can be applied to ocean acidifcation and
mammalian respiration physiology. Classical electrostatic
theory87 predicts that doubly charged carbonate ions (CO3

2�)
should have much higher solvation energies than singly
charged bicarbonate ions (HCO3

�). As a result, carbonate ions
are expected to reside predominantly in the bulk, where they
can be fully solvated, while bicarbonate ions, with their lower
charge and solvation energy, are more likely to populate the
interface. However, recent experimental work by Devlin et al.88

employing resonantly enhanced deep-UV second-harmonic
generation (DUV-SHG) spectroscopy revealed counterintuitive
behaviors at these interfaces, such as the enhanced concen-
tration of carbonate anions over bicarbonate anions at the air–
water interface, contradicting the classical electrostatic expec-
tations. This unexpected surface affinity demands additional
characterization validation and mechanistic insights beyond
conventional atomistic models.

Simulating such complex interfaces poses significant chal-
lenges for traditional DFT methods due to the sheer number of
atoms (on the order of thousands) required in the simulation
box to capture local variances and long-range phenomena.
Real-space KS-DFT addresses these challenges by providing a
framework that naturally handles nonperiodicity, disorder, and
efficient parallelization of large-scale simulations, making it
uniquely suited for exploring heterogeneous environments like
nanodroplets. Furthermore, the recent development of surface-
sensitive XPS prediction capabilities within the real-space
KS-DFT framework24,26 offers a new avenue for directly linking
computational results to experimental observables.

Accelerated molecular dynamics (MD) simulations were
initially performed by Jamnuch et al.,88 which were used to
generate snapshots for the electronic structure calculations.
Each set of simulations had representative structures of the
targeted carbon containing chemical species at the air–water
interface and in the bulk. Then, we calculated the C 1s CEBE
shifts for carbonate and bicarbonate at the air–water interface
using real-space KS-DFT code ARES. Due to the enormous

computational cost associated, a novel PBE(B3LYP) one-shot
strategy was developed in ARES to further accelerate these
calculations while maintaining a desired accuracy that is
comparable to AE-B3LYP.24 This entails non-SCF calculations
at the B3LYP level based on the converged PBE charge density.
As a result, all calculations reported were performed at this
PBE(B3LYP) level. As shown in Fig. 7(a), our calculations reveal
that the XPS spectra were invariant to the displacement of the
anion relative to the air–water interface as well as to the
coordination number of the carbonate species. In Fig. 7(b),
the surface-sensitive AP-XPS spectra measured by Lam et al.89 are
reproduced. The relative shift between the experimental carbo-
nate/bicarbonate spectral signatures agrees well with the shift in
the calculated binding energies, with a difference of only 0.1 eV,
indicating indeed that the spectral fitting and relative concen-
trations reported by Lam et al.89 are of the distinct carbonate/
bicarbonate peaks and not some convolution of the two due to
spectral shifts. By tuning the incident photon energy, the experi-
ments can explore different attenuation lengths of the emitted
photoelectron with a depth profiling as shallow as B2 nm,
therefore gaining interfacial concentration information for the
different ions presented in the system. Finally, these calculations
support the hypothesis that strong ion pairing of CO3

2� with Na+

counterions leads to the formation of near neutral agglomerates,

Fig. 6 Schematic of the experimental design for probing a carbonate
cluster residing near the liquid water surface. Figure is reproduced with
permission from ref. 88, Copyright 2023 American Chemical Society and
licensed under a Creative Commons License CC BY 4.0, respectively.

Fig. 7 (a) Simulated XPS CEBEs for C(1s) excitation of carbonate and
bicarbonate at the air–water interface. Individual data points indicate the
calculated CEBE and the associated coordination number with the anion.
Calculated binding energies are ‘‘energy-aligned’’ to the experimental
carbonate peak at 289.1 eV. (b) C(1s) XPS binding energies with an incident
photon energy of 490 eV from 0.5 M solutions of NaHCO3 and Na2CO3

and their CEBE shift estimated from the real-space PP methods. Repro-
duced with permission from ref. 88, Copyright 2023 American Chemical
Society and licensed under a Creative Commons License CC BY 4.0,
respectively.
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which are more surface affinity than their singly charged bicar-
bonate counterparts.

3.2 Studying carbon capture near the DAC limit with
real-space KS-DFT

The rising concentration of atmospheric CO2 has intensified the
search for effective carbon capture strategies,90–92 with DAC
emerging as an intriguing avenue due to its potential for
negative emissions. However, capturing CO2 directly from air
presents unique challenges, stemming from its low concen-
tration (B400 ppm) and the weak adsorption characteristics of
CO2, a linear molecule with high kinetic stability. Consequently,
DAC systems require adsorbents capable of both effective CO2

capture under these dilute conditions and efficient release
during regeneration to minimize energy costs.93

Our vision, as shown in Fig. 8, is to couple carbon-based solid
sorbents with a steam-assisted temperature vacuum swing
desorption (TVSD) process for energy- and cost-effective carbon
capture and release. Activated carbon (AC)-based sorbents,
derived from abundant and economical resources like wood
and biochar, offer a promising pathway for scalable DAC. These
materials can be chemically and structurally engineered to
preferentially adsorb CO2 over other atmospheric gases like N2

and O2, while high-temperature steam aids desorption by driving
CO2 into a collection reservoir. Integrating these materials into a
dynamic energy supply has the potential to further reduce the
overall cost of carbon capture. To identify optimal AC-based
adsorbents for DAC applications, Glenna et al.94 proposed a
hierarchical selection criterion integrating experimental insights
and computational techniques. The primary criterion focuses on
the CO2 adsorption energy, Eads, which determines the balance
between strong binding for effective capture and weak binding
for energy-efficient desorption. Eads is defined as:

Eads = Egrapheneder+CO2
� (Egrapheneder

+ ECO2
) (22)

where all terms represent the total energies of the respective
relaxed structures. An optimal Eads of �0.41 eV was identified,
marking the boundary between physical and chemical adsorption.
Various dopants, functional groups, and structural modifications
were examined via DFT simulations to tune Eads to this ideal
value. Notably, methylamine (NH2CH3) and pyridine (C5H5N)
decorated graphene achieved this balance through an insertion
mechanism.95 Secondary criteria ensured long-term feasibility by
considering thermal stability, defect sensitivity, and gas selectivity.
Thermal stability is critical for maintaining structural integrity
during high-temperature desorption cycles, ensuring consistent
performance over time. Defect sensitivity accounts for real-world
material imperfections that may affect adsorption properties.
Selectivity of CO2 over other gases like N2 and O2 is equally
important for practical deployment. Finally, ternary criteria
focused on mimicking adsorption capacity under realistic envir-
onmental conditions by incorporating both selectivity and surface
coverage into the evaluation.

A critical question that arose from this framework was
whether Eads changes when system size increases to reflect the
near-zero surface coverage relevant to DAC conditions. Tradi-
tional DFT methods, constrained by scaling limitations, cannot
easily probe these effects, making it difficult to assess adsorption
behavior at ultra-low coverages. Real-space KS-DFT, however,
addresses this gap by enabling simulations at the scale required
to explore such regimes, leveraging favorable parallelization.

To study coverage effects, the Langmuir isotherm model was
applied to predict CO2 coverage on graphene:

y ¼ kp

1þ kp
(23)

where y is the coverage (CO2 molecules per carbon atom), k is
the Langmuir constant (1.12 bar�1 for CO2), and p is the partial
pressure of the gas (bar). At 400 ppm, the pristine graphene
(PG) surface coverage for CO2 is around 2211 carbon atoms per
CO2 molecule. Simulating such large systems is infeasible for

Fig. 8 Schematic showing the steam-assisted temperature vacuum
swing desorption process with wood-derived AC as the CO2 adsorbent.
Graphene-derived materials are suitable templates for evaluating AC-
based materials. Integrating with a dynamic energy supply results in
energy- and cost-effective solutions for carbon capture. Figure is repro-
duced with permission from ref. 94 under a Creative Commons License
CC BY 4.0.

Fig. 9 Single point configuration of CO2 on PG in 36 (a), 252 (b), 780 (c),
and 1152 (d) C atom sheets using ARES. Figure is reproduced with
permission from ref. 94 under a Creative Commons License CC BY 4.0.
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conventional plane-wave-based DFT methods, making real-
space KS-DFT essential for capturing these low-coverage effects.

Using ARES, real-space KS-DFT calculations were performed to
predict CO2 adsorption on PG sheets containing 36, 252, 780, and
1152 carbon atoms (Fig. 9). Importantly, the result for the 36-
carbon atom system was validated against an exemplary Quantum
Espresso calculation at the same level of theory, confirming the
accuracy of the real-space KS-DFT approach. Results showed that
Eads converges rapidly even with relatively small simulation boxes,
as shown in Table 3. Importantly, the adsorption energy remained
consistent across different system sizes, indicating that enthalpy
alone does not significantly affect coverage. As such, conventional
DFT methods are likely sufficient to accurately capture thermo-
dynamic properties like Eads for AC-based DAC materials.

4 Alternative methods for large-scale
simulations

In addition to the real-space DFT techniques, recent years
witnessed exciting booming in other method developments
for large-scale simulations.

Orbital-free DFT (OF-DFT) bypasses the need to compute
Kohn–Sham orbitals and instead approximates the total energy
directly as a functional of the electron density. This enables
formally linear scaling with system size, making OF-DFT attrac-
tive for large-scale simulations.96–101 However, a key limitation
of OF-DFT lies in the construction of accurate orbital-free
kinetic energy functionals (KEFs).96,102 Additionally, by design,
OF-DFT does not yield wavefunctions, and as such, it cannot be
directly used to compute spectroscopic properties. Machine
learning (ML) approach103 can be useful, but usually with a
total energy focus and at high cost in terms of physics and
explainability. Therefore, while OF-DFT and ML approaches
represent powerful additions to the computational toolbox for
large-scale materials simulations, they often complement
rather than replace the capabilities of real-space KS-DFT,
especially in scenarios where electronic structure solution and
spectroscopic accuracy are critical, such as in the example of
nanodroplet. In this case, the absence of explicit wavefunctions
in OF-DFT makes it unsuitable for spectroscopic simulations
such as XPS, where access to orbital information is essential for
accurately predicting CEBE. By contrast, real-space KS-DFT
provides direct access to the electronic structure, enabling
reliable and accurate spectroscopic predictions in such
complex, inhomogeneous environments. Moreover, for systems
like graphene with delocalized character, the construction of
accurate KEFs becomes particularly problematic, while real-
space DFT overcomes this limitation.

Likewise, other linear-scaling DFT frameworks have been
developed to reduce the computational complexity of electronic

structure simulations by avoiding explicit diagonalization of the
Kohn–Sham Hamiltonian. These methods rely on the locality of
the electronic density matrix and typically reformulate DFT in
terms of localized orbitals or sparse density matrices by truncation,
enabling formal linear scaling with system size. Examples include
ONETEP, which uses variationally optimized non-orthogonal gen-
eralized Wannier functions (NGWFs);104,105 CONQUEST, which
employs localized support functions with density matrix minimi-
zation;106,107 and BigDFT, which leverages wavelet bases to capture
real-space locality efficiently.108,109 While these methods are
powerful for modeling large insulating and semiconducting sys-
tems, it remains challenging to construct a single and general-
izable scheme that yields accurate and transferable descriptions of
metals, molecules, and heterogeneous systems. In particular,
linear-scaling DFT techniques often require strict localization of
orbitals or density matrices, which breaks down for delocalized
states or systems with long-range interactions. As such, while
linear-scaling DFT methods complement conventional and real-
space KS-DFT in certain regimes, they do not fully replace them,
particularly in charged, metallic, or highly delocalized systems, like
the absorption of CO2 on graphene. For graphene, the delocalized
p-electron structure poses a significant challenge to linear-scaling
DFT approaches, which depend on strict localization of orbitals or
density matrices. In contrast, real-space KS-DFT handles both
localized adsorption interactions and extended delocalized states
without imposing localization constraints, making it better suited
for such systems. Likewise, the nanodroplet involves long-range
ion–ion interactions, which violate the locality assumptions
required for density matrix truncation or localized orbitals,
whereas real-space KS-DFT can capture both short- and long-
range interactions without enforcing localization.

5 Outlook

As energy applications grow increasingly complex, the need for
computational tools capable of accurately simulating large,
disordered systems with unbalanced charge is becoming more
evident. Real-space KS-DFT has shown promise in addressing
these challenges, as demonstrated by its application to the air–
water interface in nanodroplets and carbon capture near the
DAC limit. In both cases, real-space KS-DFT enabled simula-
tions of large, non-periodic systems and captured subtle inter-
facial effects that conventional DFT methods and other linear-
scaling techniques could yet resolve. These examples highlight
the method’s ability to provide valuable insights into complex
chemical environments at scales relevant to practical applica-
tions. As research continues to tackle more intricate problems
in energy storage, conversion, and environmental remediation,
real-space KS-DFT is poised to become an increasingly impor-
tant tool for computational chemistry and materials science.

From a computational perspective, the transition into the
exascale era presents new opportunities for leveraging HPC
infrastructure. For example, Oak Ridge National Laboratory’s
Frontier supercomputer110 – the first to break the exascale
barrier – performs over a quintillion calculations per second,

Table 3 CO2 Eads (eV) on PG with respect to coverage

CO2 concentration (ppm) 25 000 3520 1135 768
# C atoms/CO2 molecule 36 252 780 1152
PG (ARES) �0.201 �0.194 �0.196 �0.192
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enabling simulations at unprecedented scales. Real-space KS-
DFT’s inherently parallelizable structure aligns well with large-
scale HPC environments, making it particularly suited for het-
erogeneous CPU–GPU architectures. As computational power
grows, improving the efficiency of distributed algorithms –
particularly for operations and memory management – will be
crucial to realizing the full potential of this method. The
increasing complexity of modern simulations calls for the con-
tinued adoption and development of real-space KS-DFT to
address scientific challenges that demand large-scale modeling.

Recently, the real-space DFT community has made notable
progress, and various codes now support a broad range of
applications. For instance, OCTOPUS enables real-time and
linear-response time-dependent DFT (TDDFT) calculations,111

making it well suited for computing optical absorption spectra,
dielectric functions, and photoelectron spectra.112 DFT-FE and
SPARC now support CPU–GPU heterogeneous architectures,19,113

further advancing real-space DFT toward the exascale era. PAR-
SEC has also implemented more efficient subspace filtering
techniques and eigenvalue solvers, enhancing its computational
performance.114–116 In addition, PARSEC provides real-space
implementations for systems with general or partial periodicity
by directly incorporating Bloch’s theorem into the Kohn–Sham
equations.117 Combined with appropriate k-point sampling tech-
niques, this enables calculations of band structures and densi-
ties of states (DOS).

Despite its strengths, real-space DFT also faces key chal-
lenges that currently limit its broader adoption. One major
issue is that, compared to traditional basis-based methods, it is
much more memory-intensive, especially when using fine
grids. A powerful strategy to address this is the use of matrix-
free methods, where the Hamiltonian is never stored explicitly
but applied on-the-fly during matrix-vector multiplications. The
Laplacian-vector products can be computed directly using FD
stencils or FE operators.118 This drastically reduces memory
usage and enables highly scalable matrix-vector operations.
Similar strategies can be used to handle the nonlocal part of
the Hamiltonian as well. Moreover, adaptive mesh refinement
(AMR)50,51 can be employed to concentrate grid resolution
near nuclei or chemical interfaces while using coarser grids
elsewhere, reducing the number of required grid points
for systems with high spatial heterogeneity. Another major
issue is the computational cost of diagonalizing the sparse
Hamiltonians. Even though advanced techniques such as Che-
byshev subspace filtering and Rayleigh–Ritz projection are
under active development to reduce this bottleneck by focusing
only on the eigenspace near occupied levels, further algorith-
mic implementations for sparse-matrix eigensolvers119,120

or alternative strategies towards linear-scaling are worth
exploring. One possible idea is to gain inspiration from density
matrix purification121,122 that avoids the direct diagonalization
of the Hamiltonian. Additionally, the Hartree potential
evaluation step is often time-consuming for large systems.
Therefore, efficient Poisson solvers123–125 for both periodic
and non-periodic systems are critical for accelerating the
simulations.

In terms of status quo, certain capabilities remain more mature
in conventional plane-wave and localized basis set codes. For
example, hybrid functional calculations involving exact exchange
are not yet fully implemented in real-space DFT frameworks due
to the significant computational cost associated with the nonlocal
nature of Fock exchange. However, strategies such as projection
schemes have been proposed,126,127 and the ARES team has
implemented a one-shot B3LYP (double hybrid functional) strat-
egy based on the wavefunctions from PBE calculations.24,26 The
SPARC team also has made notable progress in this area
recently.128 Features such as phonon calculations, density func-
tional perturbation theory (DFPT) or double hybrid, and response
properties like Raman and dielectric tensors are also less
commonly implemented in real-space frameworks compared to
well-established packages like VASP or Quantum Espresso.
Furthermore, real-space codes often rely on norm-conserving
PPs and may lack support for PAW, ultrasoft PPs or relativistic
effects, which are important for transition metals and heavy
elements. Finally, compared to mainstream DFT codes, real-
space codes currently offer limited support for high-throughput
workflows, automated job management, and integration with
materials databases. A more mature ecosystem will be essential
for accelerating discovery and enabling complex, multi-step simu-
lations, particularly in large-scale screening and materials design
efforts. Bridging this gap will be important for broadening the
adoption of real-space methods and ensuring their accessibility to
a wider research community.

Looking ahead, further methodological developments are
needed to keep pace with the hardware advancements.129,130

Establishing new protocols for modularization and interoper-
ability will help real-space KS-DFT integrate more seamlessly
into broader computational frameworks. Additionally, advance-
ments in exchange–correlation functionals,38 post-DFT
methods,19,107,109 excited-state techniques,131,132 and fast mole-
cular dynamics133,134 will remain essential to enhancing pre-
dictive accuracy and expanding the method’s applicability.
Importantly, as real-space KS-DFT matures, identifying unique
applications where its massive parallelization capabilities are
truly warranted will help ensure its continued impact in both
method development and scientific discovery. The path for-
ward lies not only in scaling computations but also in finding
the right questions to answer with this powerful approach.

Conclusions

Real space KS-DFT has emerged as a compelling computational
framework capable of meeting the increasing demands of
modern electronic structure problems. This article reviewed
the foundational theories, algorithmic developments, and
recent applications that illustrate the method’s potential for
tackling large, complex, and disordered systems. Through a
FDPP approach, real-space KS-DFT enables scalable, accurate
simulations of complicated systems while naturally integrating
with HPC architectures. We demonstrated the predictive power
of real-space KS-DFT in chemically and environmentally
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relevant systems. From capturing the nuanced behavior of
carbonates at air–water interfaces to modeling CO2 adsorption
in carbon-based sorbents under DAC conditions, the method
proves effective in bridging quantum-scale phenomena with
experimental observables. Notably, innovations such as real-
space XPS predictions and efficient algorithmic strategies (e.g.,
subspace filtering and space-filling curve partitioning) further
enhance the method’s capability and performance. Looking
forward, as computational chemistry continues to scale into the
exascale era, real-space KS-DFT is poised to play an important
role through its parallelization capability. Continued progress
in methodological development, especially in exchange–corre-
lation approximations, excited-state modeling, and real-time
dynamics, will be essential to fully realize its impact. Ulti-
mately, real-space KS-DFT represents not just a technical
advancement, but a versatile toolset for exploring the frontiers
of chemical and materials discovery.
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