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Herein, we report the synthesis of heparan sulfate (HS) proteogly-
can mimetics bearing iduronic acid (IdoA) and sulfated L-idose (Ido)
hexasaccharides to assess how these isostructural sugars with similar
charge density influence neoproteoglycan display on the cell
membrane. PG@I2, carrying sulfated L-idose, showed rapid internaliza-
tion in both cancerous and normal cells, whereas PG@l1, containing
native IdoA expressed on the cell membrane and slowly internalized,
underscoring the role of IdoA in HSPG cell surface engineering.

Heparan sulfate (HS) is a polysulfated glycosaminoglycan (GAG)
widely present on cell surfaces and within the extracellular
matrix. HS engages in interactions with a multitude of proteins,
including growth factors, chemokines, and enzymes, playing a
pivotal role in signaling pathways critical to cellular growth,
differentiation, immune responses, and angiogenesis." Structu-
rally, HS consists of repeating disaccharide units composed of b-
glucuronic acid (GlcA) or its epimer r-iduronic acid (IdoA), linked
to glucosamine (GIcN) residues.” These units exhibit diverse
sulfation patterns and acetylation. The conformational flexibility
of IdoA, particularly its ability to adopt multiple forms such as the
chair (*C,), skew-boat (*S,), and boat conformations, enables
specific and dynamic interactions with proteins.’ This structural
diversity endows HS with exceptional functional versatility and
specificity in biological recognition processes. Consequently,
there is considerable research interest in understanding the
specific roles of each component of HS in detail. Among these,
L-iduronic acid is particularly intriguing due to its synthetic
challenges and conformational flexibility. Previously, 1-iduronic
acid in the anticoagulant drug fondaparinux and idraparinux was
substituted with isostructural sugars, including p-glucuronic
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acid, pxylose and 6-deoxy-i-talose moiety respectively. These
substitutions resulted in the loss of anticoagulant activity,
emphasizing the critical importance of r-iduronic acid in the
anticoagulation activity of the drugs.>® To elucidate the impor-
tance of the specific conformation of r-iduronic acid in antic-
oagulation activity, ¢, and 2S,.conformation of r-iduronic acid
were locked in idraparinux and their anticoagulation activities
were compared.” These studies underscore the crucial impor-
tance of the 2S, conformational of r-iduronic acid in idraparinux
for its anticoagulant function. Recently, we reported the synthesis
of sulfated homo-oligo r-iduronic acid and elucidated the sig-
nificance of the trisaccharide as the minimal binding motif
required for FGF2 recognition.® Another significant characteristic
of HS is its anionic sulfate-carboxylate composition, which plays a
key role in biological recognition. However, the rationale behind
nature’s selection of such anionic combination remains unclear,
as does the potential impact of fully sulfated HS. To explore this
question, herein, we synthesized two hexasaccharides: one incor-
porating the native r-iduronic acid ligand and the other contain-
ing sulfated r-idose as the uronic acid residue and conjugated
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Fig. 1 Schematic representation of neoproteoglycans and its cell surface
engineering.
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onto a neoproteoglycan backbone to investigate their role in cell
surface engineering.® Despite both molecules possessing 12
anionic groups, they are expected to exhibit distinct cell surface
arrangement and internalization behaviors. These findings high-
light the critical importance of the r-iduronic acid of HSPGs cell
surface engineering (Fig. 1).

We synthesized sulfated 1-idose and r-iduronic acid HS
hexasaccharides using a [4+2] glycosylation strategy involving
donor 1 and acceptor 2, both prepared according to previously
reported procedures.’ The glycosylation of 1 and 2, in the presence
of N-iodosuccinimide (NIS) and trimethylsilyl trifluoromethane-
sulfonate (TMSOT{) as a promoter, resulted in hexasaccharide 3.
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This intermediate underwent acetolysis using acetic anhydride
and copper(u) trifluoromethanesulfonate as a catalyst. Subsequent
treatment with phenyl trimethylsilyl sulfide and ZnI, generated the
corresponding thioglycoside donor 5. Further, linker glycosylation
was performed, followed by selective deprotection of TBDPS
groups using a hydrogen fluoride: pyridine complex in pyridine.
Deacetylation and debenzoylation using a lithium hydroxide
solution, along with O-sulfation in the presence of SO;-Et;N in
DMF, yielded the sulfated r-idose hexasaccharide precursor 9
(Scheme 1). The C-2 azide group of 9 was then reduced to an
amine using trimethylphosphine, resulting in compound 10.
N-Sulfation of the amine was achieved using the SO;-pyridine
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Scheme 1 Synthesis of 12 and I1 hexasaccharides: (a) NIS, TMSOTf, 4 AMS —10 °C, DCM, 30 min; (b) Ac,0, Cu(OTH),, rt, 12 h; (c) TMSSPh, Znl,, DCM, rt,
2 h; (d) benzyl (3-hydroxypropyl)carbamate, NIS, TMSOTf, 4 A MS, 0 °C, DCM, 10 min; (e) HF. Py, Py, 0 °C, 12 h; (f) LIOH, H,O : THF(1: 1), rt, 12 h; (g) SOx.

NMesz, DMF, MW, 100 °C, 30 min; (h) PMes. THF, THF, 1 N NaOH, rt, 12 h; (i) SOz. Py. MeOH, 1IN NaOH, 48 h; (j) H,, Pd(OH)5,

H>O, rt, 48 h; (k) (i) benzyl

(3-hydroxypropylicarbamate, NIS, TMSOTF, 4 A MS, —10 °C, CH,CL,; (i) NaOMe, CH,Clo/MeOH (1/1); (i) TEMPO, CH,Cly/MeOH (1/1); (iv) Mel, K,COs, DMF;

(v) LIOH. H,O, H,O/THF (1/1); (1)

This journal is © The Royal Society of Chemistry 2025

(i) HF. Py/Py 0 °C; (ii) SOs. NMes, DMF, 60 °C; (m) (i) LIiOH, MeOH; (i) IM PMes. THF, 0.IM NaOH,; (iii) SOs. Py, MeOH.
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complex. Finally, global deprotection through hydrogenolysis
afforded the desired I2. Similarly, deacetylation of intermediate

!, followed by TEMPO-mediated oxidation and subsequent
methyl esterification, yielded compound 12. Compound 12 was
further subjected to selective TBDPS deprotection, O-sulfation,
reduction, N-sulfation, and global deprotection following the pre-
viously described procedures, yielded I1.° Both hexasaccharide were
conjugated to DBCO linker and the crude DBCO conjugates were
functionalized with a fluorescent amphiphilic peptide PG@N3, to
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obtain desired neoproteoglycans (neoPGs: PG@I1 and PG@I2).
NeoPGs were purified by HPLC using MeOH/H,O as an eluent.
The product purity and conjugation were confirmed from IR, HPLC
and mass spectra of the complex.

To decode the role of r-idose and r-iduronic acid in the
synthesized compounds PG@I1 and PG@I2 in cell surface engi-
neering, MDA-MB-468 (aggressive breast cancer cell line), MCF-7
(mild breast cancer cells) and NIH-3T3 (normal fibroblast cell line)
were used. A solution of neoPGs (2 uM) was incubated with the
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ii) confocal images illustrating time-dependent uptake of

proteoglycan mimic PG@l1 and PG@l2 (red fluorescent) DAPI (blue fluorescent) in MDA-MB-468 cell line (images taken at 100X); (iii) co-localization of
PG@I1/12 (red) with anti-cadherin antibody (green) on the cell surface of MDA-MB-468 cells after 4 h; (iv) average fluorescence quantification of PG@ll
and PG@l2 on cell membrane of MDA-MB-468 cell line at different time intervals, n = 50 cells; (v) flow cytometric analysis of PG@ll and PG@I2 uptake
after 1.5 h incubation in MDA-MB 468 cells.
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cells for 30 minutes, followed by washing to remove the excess
neoPGs from the medium. For understanding the internalization
of neoPGs in the cell line, time dependent confocal imaging was
performed. Confocal images revealed significant differences in
the plasma membrane (PM) expression and internalization of the
neoPGs. In MDA-MB-468 cells, PG@I2 demonstrated internaliza-
tion within 30 minutes (Fig. 2(ii)), whereas PG@I1 exhibited
intense fluorescence on the PM and continued to localize there
even after 4 hours. The flow cytometric measurement after 1.5 h
showed similar amount of neoPGs internalization, indicating that
the structural heterogeneity on neoPGs modulates the cell surface
engineering process (Fig. 2(v)) This noteworthy difference in the
colocalization process suggests that PG@I1 is more effective in
decorating the cell membrane compared to PG@I2. To confirm
the decoration of the cell membrane and internalization of PG@I1
and PG@I2, co-staining was performed using a green fluorescent
anti-cadherin antibody (Fig. 2(iii)). Surprisingly even at 4 h of
incubation of neoPGs there was a clear difference between PG@I1
(Pearson coefficient: p ~ 0.5) and PG@I2 (p ~ 0.29). A distinct
coalescing of both green and red fluorescence on the cell
membrane was observed for PG@I1, revealing a better ability of
glycocalyx engineering. Interestingly, PG@I1 exhibited slightly
faster internalisation in MCF-7 and NIH-3T3 cells compared to
MDA-MB-468. In contrast, PG@I2 showed no evident cell surface
decoration. These observations align with our previous findings,**
highlighting that variations in glycocalyx composition and surface
receptors between normal, mild and triple negative breast cancer
cells influence neoproteoglycan cell surface presentation.

This differential behaviour can be attributed to two key
structural factors. Firstly, PG@I2 exhibits a significantly higher
negative charge than PG@I1 at physiological pH, which enhances
its interaction with positively charged domains on cell surface
receptors. This stronger electrostatic attraction facilitates more
efficient endocytosis. Given that NIH-3T3, MCF-7, and MDA-MB-
468 cells possess distinct surface zeta potentials,'® molecules with
higher negative charge densities are internalized more rapidly
than their less charged counterparts. Secondly, the native I1 is
likely to interact with a broader spectrum of cell surface receptors
and exhibits greater stabilisation on the cell membrane compared
to 12. Overall, native heparan sulphate (HS) ligands appear to be
crucial for the expression of neoPGs on the cell surface, whereas
the highly sulphated PG@I2 primarily promotes endocytosis and
may serve as a promising platform for cargo delivery applications.

In summary, we successfully synthesized HS hexasaccharides
of t-iduronic acid (I1) and 6-O-sulfated r-idose residue (I12) using
a [4+2] glycosylation strategy. These HS ligands were functiona-
lized on amphiphilic glycopeptides through a copper-free click
reaction. Cell surface engineering experiments revealed marked
differences between the two molecules. PG@I1 remained asso-
ciated with the cell membrane for an extended period, while
PG@I2 was internalized within minutes. These findings high-
light the critical role of the r-iduronic acid in the cell surface
decoration of proteoglycans, whereas complete sulfation of HS

This journal is © The Royal Society of Chemistry 2025
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ligands promotes endocytosis.** We are currently exploring the
potential cargo delivery applications of PG@I2 and the glycoca-
lyx remodeling capabilities of PG@I1.
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