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Unveiling the physical mechanisms underpinning
bandgap variations in chalcopyrite crystals (ABX2)
using interpretable artificial intelligence†

Xiaolan Fu,‡a Jiaqian Wang,‡b Xiaojuan Hu,*b Wenwu Xu, *a

Sergey V. Levchenkoc and Zhong-Kang Han *b

We propose an interpretable AI approach integrating hybrid DFT,

symbolic regression, and data mining to predict chalcopyrite (ABX2)

bandgaps. Key factors, including atomic size, molar volume, and

electron affinity, are identified, offering insights into bandgap-

composition relationship and guiding high-performance materials

design.

Ternary chalcopyrite crystals (ABX2) are essential in various
technological applications due to their tunable bandgaps, deter-
mined by the selection of A, B, and X elements. Large-bandgap
materials, such as ZnSnP2,1 are used in nonlinear optics
because of the strong nonlinearity and high optical damage
thresholds, making them ideal for applications like laser tech-
nology and frequency doubling. Moderate-bandgap crystals, like
CdGeAs2,2 are widely employed in photovoltaic cells due to their
high absorption coefficients, which make them excellent candi-
dates for thin-film solar cells, enhancing solar energy conver-
sion efficiency. Small-bandgap materials, such as CuMnS2,3

show promise in thermoelectric devices due to their high
electrical conductivity and thermoelectric efficiency,4,5 enabling
effective waste heat recovery and power generation in thermo-
electric modules. The broad range of ABX2 chalcopyrite crystals’
applications highlights the importance of precisely targeting
specific bandgap values to meet the demands for different
technological advancements.6 By selecting appropriate combi-
nations of A, B, and X elements, researchers can tailor the
properties of these materials to optimize their performance in
various fields, from renewable energy to advanced optical

systems. The ability to fine-tune the bandgaps of chalcopyrite
crystals underscores their versatility and significance in modern
technology. Therefore, models that can rapidly and reliably
predict the bandgaps of these materials are highly desirable.

Bandgaps of compounds are typically obtained through
experimental measurements,7,8 which often require significant
time and material resources, especially for large-scale com-
pounds. As a more efficient alternative, density functional theory
(DFT) calculations have become effective means for determining
the bandgaps of semiconductor materials.9–12 However, DFT
calculations with standard approximations to the exchange–
correlation functional (local density, generalized gradient, and
meta-generalized-gradient approximations) often significantly
underestimate bandgap values.13 On the other hand, the much
more accurate many-body perturbation theory method GW is too
computationally expensive for intermediate-throughput screen-
ing. To achieve good accuracy in bandgap calculations while
keeping computational cost not too high, hybrid functionals,
such as Heyd–Scuseria–Ernzerhof (HSE06) functional, have been
proposed.14,15 Despite having moderate computational cost,
these methods are still too expensive for high-throughput
exploration of materials space containing thousands of
candidates.16,17 The thriving development of AI has driven the
integration of machine learning with theoretical calculations to
accelerate the discovery of materials with desirable properties by
extracting informative insights from large datasets.18,19 For
instance, Gladkikh et al. trained an alternating conditional
expectation (ACE) model to predict the bandgaps of ABX3 per-
ovskites, and used a support vector machine (SVM) model to
determine the gap type.20 Tawfi et al. employed feedforward
neural network (FNN), SVM, relevance vector machines (RVM),
and random forest (RF) models to predict the electronic proper-
ties of mixed 2D materials.21 However, these models lack inter-
pretability and cannot explain the physical relationship between
the predicted bandgap and the chemical composition.22–24 The
accuracy and interpretability of machine learning models are
both crucial for the rational design of materials.25,26 In this letter,
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we introduce an interpretable AI approach that combines data
mining and compressed-sensing-based symbolic regression,
incorporating feature importance assessment in relation to the
target properties of materials. This approach not only facilitates
the high-throughput screening of materials with targeted band-
gap values, but also elucidates the underlying physical mechan-
isms driving bandgap variations. Using this strategy, we have
pinpointed the key factors influencing the bandgap values of
ternary chalcopyrite crystals.

To investigate the composition-bandgap relationship for
ABX2 crystals, we calculated the bandgap values of 122 crystals
(Table S1, ESI†) using the hybrid functional HSE06 including
spin–orbit interaction. The data for ab initio calculations were
selected via an active-learning cycle (see ESI† for computational
details). This cycle continued until bandgap values predicted by
the model aligned with those calculated by HSE06. The ABX2

ternary chalcopyrite crystals (Fig. S1, ESI†) are defined by their
composition, where the A site is occupied by transition metals
or alkaline-earth metals Be, Mg, Ca, Cu, Zn, Pd, Ag, Cd, and Au,
the B site is filled by post-transition metals or metalloids
including Al, Si, Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi, and the X
site consists of pnictogens or chalcogens N, P, S, As, Se, Sb, and
Te. We allocated 80% of these 122 datasets for model training,
reserving the remaining 20% exclusively for testing the predic-
tive accuracy of the models. A complete list of materials features
used for training AI models is provided in Table S2 (ESI†).

Among the features listed above, number of valence electrons
(NVE) is determined by the number of electrons in an element’s
outermost shell. Thermal conductivity (TC) values are measured at
25 1C, and electronegativity (EN) is reported on the Pauling scale.
Additionally, molar volume (MV) is measured under standard
atmospheric pressure at 298 K.

We initially conducted principal component analysis (PCA)
to evaluate the potential linear relationship between primary
features and HSE06-calculated bandgap values (GHSE). Each
principal component (PC) represents a linear combination of
36 primary features. Within the training dataset, the leading
two PCs accounted for only 25.12% and 21.00% of the variance,
respectively, as shown in Fig. 1(a). To capture the essence of the
original dataset adequately, where cumulative explained var-
iance exceeds 90%, including more than seven PCs becomes
necessary. However, this contradicts the goal of efficient dimen-
sionality reduction. Fig. 1(b) further highlights this challenge,
showing a weak correlation between PC1, PC2, and GHSE. These

results indicate that neither individual features nor their sim-
ple linear combinations correlate well with GHSE, emphasizing
the need for models capable of unveiling nonlinear relation-
ships. The complexity of the bandgap-composition relationship
is reflected in the diversity of band structure types within the
considered class, including deep- and shallow-impurity-like
semiconducting structures, wide-gap semiconductors, and
metals (Fig. S2 and S3, ESI†). Consequently, we employed the
sure independence screening plus sparsifying operator (SISSO)
approach to find a nonlinear relationship between primary
features and GHSE.27–29 In SISSO, target property is expressed
as a linear combination of derived features, which are obtained
as (possibly) non-linear mathematical expressions involving
primary features. In this study, we focus on prediction of the
bandgap value. Considering the diversity of the band structure
type, it would be interesting to develop models for predicting
other features of the band structure describing its topology.
However, this is beyond the scope of this paper.

A training dataset of 60 systems was initially selected from
over 600 candidates for HSE06 calculations to determine their
GHSE. The developed SISSO model was then employed to predict
GHSE for the remaining candidates, with those exhibiting the
smallest or largest predicted GHSE systematically added to the
training dataset. This iterative refinement process continued
until the distribution ranges of calculated and predicted GHSE

closely matched, resulting in an optimized dataset of 122 sys-
tems. Fig. 2(a) and (b) show heatmap of the Pearson’s correlation
coefficient matrix among the 36 primary atomic features and the
bandgap distribution within the training dataset. In SISSO, to
prevent overfitting as model complexity increases, we employ
twenty-fold cross-validation to determine the optimal model
dimensionality (i.e., the number of derived features in the linear
combination) (Table S3, ESI†). The average RMSE of the twenty-
fold cross-validation as a function of model dimensionality is
shown in Fig. 2(c). This reveals that the five-dimensional model

Fig. 1 Results of principal component analysis. (a) The cumulative
explained variance as a function of the number of principal components
included. (b) The correlation between the calculated bandgap of the
chalcopyrite crystals and the first two principal components.

Fig. 2 Identification of optimal SISSO models. (a) Heatmap of the Pear-
son’s correlation coefficient matrix, which shows the relationships among
the 36 primary features, (b) the bandgap distribution within the training
dataset calculated using HSE06, (c) the RMSE values obtained from 20-fold
cross-validation for the 122 data, and (d) the prediction error versus the
calculated GHSE of the chalcopyrite crystals.
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possesses a balance between high accuracy and simplicity, thus
identifying it as the optimal SISSO model. The distribution of
deviations between the predicted and calculated GHSE values for this
model is shown in Fig. 2(d), with most errors concentrated below
0.2 eV. The components of the optimal SISSO model, including its
coefficients and importance scores, are collected in Table S4 (ESI†).
These complex formulas of the model highlight the intricate
relationships between the primary features and bandgap.

The most significant descriptor component, d1, has the
highest importance score, calculated as the relative increase of
fitting RMSE after this component is removed (see ESI,† for
details). It indicates that B elements with larger molar volumes
(MVb), and larger atomic radii of atoms at the X site (ARCc) typically
correspond to smaller bandgaps in ABX2 ternary chalcopyrite
crystals. A larger MVb results in the expansion of the crystal lattice,
which reduces overlap of atomic orbitals, thereby decreasing the
bandgap. Larger atomic radii at the X site have a similar effect.
Conversely, thermal conductivity of A-site elemental crystal (TCa)
results in the increase of band gap in ABX2. Since A elements are
metals at normal conditions, their thermal conductivity is deter-
mined by the presence of nearly free electrons. With right ligands
these electrons can make strong covalent or ionic bonds, which
increases the bandgap. These insights demonstrate that the SISSO
model can effectively unravel the underlying physical mechanisms
governing the properties of chalcopyrite crystals.

SISSO aids in identifying critical descriptor components by
selecting important primary features and feature combinations
relevant to GHSE values. However, it does not directly elucidate
which combinations of features are likely to result in too low or
too high bandgap. To deepen our understanding of the under-
lying mechanisms and the significance of primary features, we
employ a modified version of SGD approach.30 Here, only the
primary features from the SISSO model and SISSO-predicted
GHSE values are used for SGD analysis.

The best subgroups found are shown in Table S5 (ESI†), along
with the degenerate propositions. The degeneracy is determined
by the condition that the number of common data points in the
original subgroup and the subgroup obtained by replacing a
proposition with another one is greater than 99% of the larger
of the two subgroups. The selector of the best subgroup that
minimizes GHSE with cutoff 1 eV (i.e., under condition GHSE o
1 eV) is defined as follows: (ARCc Z 98 pm), (EAa r 125.6 kJ mol�1),
(EAa Z 53.7 kJ mol�1), and (MVb Z 11.93 cm3 mol�1). The subgroup
contains B24% of the whole dataset samples (Fig. 3a). The
selector is well consistent with the SISSO model, indicating that
larger ARCc and MVb lead to smaller GHSE. This is explained by
reduction of atomic orbital overlap when the lattice is expanded
due to larger volume of the unit cell. On top of this, SGD reveals
that the electron affinity of atom A is an important feature that
controls whether bandgaps are lower than 1 eV. In particular,
the electron affinity should not be too low (EAa Z 53.7 kJ mol�1)
or too high (EAa r 125.6 kJ mol�1). The latter condition is
degenerate with AWa r 112.41 a.m.u. and ENa r 2.20.
Lowering the cutoff to 0.5 eV results in the best subgroup
(AWb Z 72.64 a.m.u.) AND (TCa o 120 W m�1 K�1) AND
(IEc r 999.6 kJ mol�1). The first proposition is degenerate with

MVb Z 13.65 cm3 mol�1, which is similar to the proposition
MVb Z 11.93 cm3 mol�1 in case of a 1 eV cutoff, indicating that
a larger size of atom B consistently leads to a smaller bandgap in
ABX2. The proposition TCa o 120 W m�1 K�1 is also consistent
with a straightforward interpretation of the SISSO model. Lower
thermal conductivity of elemental A metals implies more tightly
bound and localized electrons that do not form strong bonds.
The proposition IEc r 999.6 kJ mol�1 rules out X = N and P,
which could make strong covalent bonds with A, resulting in
increased bandgap.

The selector for the best subgroup that maximizes bandgaps
above 2 eV is defined as follows: (AWa 4 112.41 a.m.u.),
(HFb Z 6.30 kJ mol�1), (MVb r 18.27 cm3 mol�1), and
(IEc Z 941 kJ mol�1). Increasing the cutoff to 2.5 eV yields best
subgroup (ARCc o 103 pm), (EAa 4 125.6 kJ mol�1), (HFb Z

7 kJ mol�1), and (MVb r 18.18 cm3 mol�1). Consistently, these
subgroups contain conditions opposite to those for the sub-
groups with smaller gaps. A smaller atomic radius of X and a
smaller molar volume of B result in shorter interatomic distances,
improving orbital overlap and therefore increasing bandgap.
The degenerate propositions AWa 4 112.41 a.m.u. and EAa 4
125.6 kJ mol�1 select only one element (Au), whose high electron
affinity makes possible formation of strong covalent bonds with
neighboring atoms. Similarly, degenerate propositions HFb Z

7 kJ mol�1 and EAb Z 42.5 kJ mol�1 select atoms that can form
strong localized bonds, resulting in larger gap (Table S5, ESI†).

Relying solely on elemental and atomic features, the SISSO
model enables us to predict the bandgap for a wide array of
chalcopyrite crystals. We predicted the GHSE values for 506 new
chalcopyrite crystals, and the results are shown in Fig. 4. Based on
the high-throughput screening results, we have identified chalco-
pyrite materials with bandgaps in a range suitable for tandem solar
cell and other applications.31,32 In Table S6 (ESI†) we list 43
materials with direct HSE06 bandgaps in the range 0.6–2 eV.

In summary, we have developed a unified model that quanti-
tatively describes bandgap variations in chalcopyrite crystals by

Fig. 3 Exploration of physical insights into the SISSO model. The bandgap
distribution for the whole dataset, and the subgroups selected by SGD: (a)
and (b) The results of minimizing the bandgap with the cutoff smaller than
1 and 0.5 eV, respectively. (c) and (d) The results of maximizing the
bandgap of crystals greater than 2.5 and 2 eV, respectively.
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integrating HSE06 calculations with AI. This model not only
accurately describes composition-bandgap relationship, but also
elucidates the underlying physical mechanisms responsible for
these variations. Using data mining approach SGD, we identified
combinations of features that result in a reduction or an increase
of bandgap. SGD finds that size of atom X, molar volume of
elemental B crystal, and electron affinity of atoms A and B are
important for maximizing or minimizing the gap. The geometric
features describe orbital overlap, which directly affects the band-
gap. The electron affinity describes the ability of atoms form
stronger covalent bonds with neighboring atoms, which leads to
higher bandgaps. These findings underscore the transformative
potential of interpretable AI algorithms in paving new paths for
the rational design of high-performance materials.
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