Navigating electrochemical oxidative functionalization of olefins: selected mechanistic and synthetic examples
Abstract
The functionalization of olefins to form added-value compounds is a cornerstone of modern organic chemistry, promoting the synthesis of complex molecules from simple feedstock materials. In parallel, electrochemistry has emerged as a powerful and sustainable technique for enabling challenging transformations under mild conditions by generating reactive intermediates in a controlled manner. This review highlights recent advances in oxidative electrochemical methods for olefin functionalization, showcasing key developments that underscore the versatility of this approach. Using selected representative examples, we explore diverse mechanistic pathways, bond-forming strategies, and the integration of electrochemical techniques with catalytic systems. By providing a concise overview of this rapidly evolving field, we aim to inspire further innovation in electrochemical methodologies to expand the frontiers of olefin chemistry.
- This article is part of the themed collection: ChemComm 60th Anniversary Collection