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Here we demonstrate a new approach to fluorogenic labelling,
where a cationic hemicyanine (CHyC) exhibits disaggregation-
induced emission (DIE) upon undergoing an azide—alkyne “click”
reaction. CHyC self-associates and is self-quenched in aqueous
buffer over a low micromolar concentration range. When an azido
nucleoside (AmdU) or azide-containing cellular DNA is added to
CHyC in the presence of Cu(l), a copper-catalysed azide—alkyne
cycloaddition drives dye disaggregation, significantly increasing the
fluorescence intensity of the probe upon its covalent attachment to
modified biomolecules.

Fluorogenic bioorthogonal “click” chemical reactions can enable
convenient, no-wash cellular imaging." In the context of nucleic
acids,” click reactions with fluorescent probes provide powerful
tools for characterizing DNA/RNA metabolism, cell cycle progres-
sion, viral entry, and therapeutic mechanisms of known and new
drug candidates.’ Classical fluorophores like rhodamines, cyanines,
coumarins, and others® are now widely available with clickable
handles—such as tetrazines, azides, and alkynes—to facilitate con-
jugation reactions such as copper-catalysed azide-alkyne cycloaddi-
tions (CuAAC).” Increasing the fluorescence intensity of the labelled
biomolecule as compared to the unreacted dye is an important and
challenging goal in wash-free imaging applications.”®

Cyanine dyes are a diverse family of fluorophores which are
classified by the number of methine “bridge” units and term-
inal heterocycles present.” Styryl hemicyanines containing two
methine carbons have been used in three-way junction DNA
aptamers,® fluorescent oligonucleotide probes,” and for non-
covalent binding of DNA.'® Moreover, the metabolic modifica-
tion of nucleic acids with alkene groups followed by treatment
with tetrazine-substituted styryl hemicyanines enabled inverse
electron-demand Diels-Alder (IEDDA) reactions on cellular
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DNA.'' Indeed, tetrazines are well established to quench
fluorophores,'? allowing for wash-free imaging of metabolically
labelled DNA in live cells.*”

Azides groups are invaluable in chemical biology and drug
development due to their small size and bioorthogonal reactivity."*
Despite their widespread applications,¥'* a general “turn-on”
strategy for azide-reactive dyes remains elusive. Azide-alkyne
cycloadditions are not inherently fluorogenic, although triazole
formation has been shown to result in increased in emissions of
highly tailored systems.'®> Exploring innovative turn-on mechan-
isms for azide-modified nucleic acids, such as disaggregation-
induced emission (DIE) where fluorescence is triggered by the
disaggregation of aggregated probes is a promising new approach
(Scheme 1).'® Non-covalent DIE reactions have previously been
used for detecting small molecules,"” monitoring the equilibrium
of G-quadruplexes,'® and probing cellular membranes and
proteins.'® Herein, we designed a cationic hemicyanine (CHyC)
that exhibits DIE upon reacting with an azide-containing nucleo-
side, 5-(azidomethyl)-2-deoxyuridine (AmdU),"*? via CuAAC reac-
tion. The irreversible covalent chemical reaction shifts the dye self-
association equilibrium towards disaggregation, resulting in
enhanced fluorescence emission.

To synthesize CHyC, 6-methoxy-2-naphthaldehyde 1 was
transformed into benzoindole 2 through a base-promoted

“Click” Disaggregation-
Induced Emission

micron-sized dye
aggregates
in aqueous buffer

azido DNA

no-wash imaging

Scheme 1 A quenched and aggregated alkyne-containing fluorescent
dye undergoes disaggregation and enhanced fluorescence upon CuAAC
reaction with azido DNA.
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Scheme 2 Synthesis of CHyC (5) and all relevant intermediates where EtOH = ethanol, DMF = N,N-dimethylformamide, LAH = lithium aluminium
hydride, THF = tetrahydrofuran, and ACN = acetonitrile. See the ESI¥ for the synthesis and characterization of these compounds.

Knoevenagel condensation and Hemetsberger indolization
(Scheme 2).%° First, ethyl-2-azidoacetate 1a was synthesized in
a 98% yield from ethyl-2-bromoacetate.>’ 6-Methoxy-2-naphth-
aldehyde 1 and azidoacetate 1a were dissolved in ethanol along
with a sacrificial electrophile, ethyl trifluoroacetate. 20%
sodium ethoxide in ethanol was added at 0 °C and the reaction
was stirred overnight yielding the «-azido-B-arylacrylate 1b.
Thermolysis of intermediate 1b gave the benzo[g]indole 2 as
the only regioisomeric indole in a 62% yield over two-steps. The
propargyl group was introduced by treating 2 with sodium
hydride followed by the dropwise addition of propargyl bro-
mide to give the desired product 3 in an 83% yield. 3 was then
reduced to the corresponding aldehyde 4 in two consecutive
steps in a 79% yield. 4 and 1,2,3,3-tetramethyl-3H-indol-1-ium
iodide were heated to 70 °C overnight in ethanol to yield CHyC
5 as a dark purple solid with low water solubility in 91%
isolated yield (Scheme 2). The probe and all relevant inter-
mediates were fully characterized by "H NMR, *C NMR, and
high-resolution ESI MS (see ESIt). Stock solutions of CHyC for

photophysical and biological studies were prepared in DMSO
and diluted into the indicated solvents (0.5% DMSO unless
stated otherwise) prior to analysis.

The photophysical properties of CHyC 5 were evaluated at
various concentrations upon dilution into 1x PBS buffer,
pH = 7.4 (Fig. 1a). The aqueous samples displayed a linear
relationship between absorbance (Amax = 520 nm) and CHyC
concentration over the range 0.2-12.4 pM (ESL,T Fig. S1, &s550 =
32300 cm™' M™'). In contrast, non-linear concentration-
dependent effects were observed in the fluorescence emission
intensities of the same samples (ESIL, Fig. S1), giving lower
quantum yield values (@ = 1.1-0.063%) with increasing concen-
tration (Fig. 1b). Microscopic evaluation of the samples pre-
pared at 2-10 pM in PBS revealed the presence of purple, non-
fluorescent particles with diameters ranging from roughly 2-8 pm
(ESL{ Fig. S2). In contrast, CHyC samples prepared entirely in
DMSO exhibited better solubility, a higher measured extinction
coefficient (es545 41900 ecm™' M ') and concentration-
independent quantum yield (¢ = 5.4%). In DMSO, CHyC
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Fig. 1 (a) Absorbance (dashed) and fluorescence (solid) spectra of 0.2-12.4 uM solutions of CHyC 5in 1x PBS (pH 7.4, 2% EtOH). (b) Calculated quantum
yields verses CHyC concentrations in 1x PBS. (c) Absorbance (dashed) and fluorescence (solid) spectra of a 2 uM solution of CHyC 5 in various solvents
and 1x PBS (pH 7.4, 2% EtOH). (d) CuAAC reaction of CHyC 5 and AmdU where THPTA = tris(benzyltriazolylmethyl)lamine. (e) Fluorescence spectrum of a
100 pM solution of CHyC, 1 mM CuSOy, 2 mM THPTA, 1 mM AmdU, and 10 mM sodium ascorbate in PBS pH 7.4 (1.3% DMSO) at time = 0 min, 20 min,
40 min, and 60 min into the reaction. For all fluorescence: ex: 546 nm, em: 570-750 nm. See the ESI for the characterization of CHyC-AmdU-triazole 6.
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exhibited a red-shifted absorbance (1.x = 540 nm) and emis-
sion (Amax = 625 nm) as compared to 1x PBS. The absorbance
spectrum of CHyC in acetonitrile (ACN) closely resembled that
of DMSO. However, in methanol (MeOH), additional solvent
effects led to a further redshift of CHyC, albeit with a lower
quantum yield (@ = 1.0%) than the 5.4% for DMSO (Fig. 1c and
ESI,¥ Table S1). Together these results suggest that the micro-
aggregated form(s) of CHyC in PBS have some twisting about the
styryl bridge and/or self-assembly into H-type aggregates.>” The
dynamic, self-quenching and self-association behaviour of CHyC
over the low pM concentration range suggested that it may exhibit
“turn-on” fluorescence behaviour upon chemical reaction with
groups that would endow enhanced solubility properties of the
product in water.

To evaluate if a click reaction involving a partially soluble
dye can induce disaggregation-induced emission (DIE), a 100 uM
solution of CHyC 5 was subjected to standard CuAAC conditions
with a 10-fold excess of AmdU in 1x PBS containing 1% DMSO
(Fig. 1d). The reaction was monitored by fluorescence (Fig. 1e) as
well as high performance liquid chromatography (ESLT Fig. S3).
Both analyses indicated complete consumption of CHyC 5 in less
than one hour. Remarkably, the fluorescence intensity of the
solution showed a ~ 3-fold increase; reminiscent of the changes
observed in DMSO (Fig. 1c). The CHyC-AmdU-triazole reaction
product 6 was isolated in a 70% yield and was characterized to
confirm its identity (see ESIT). These results demonstrate that DIE
during a bioorthogonal chemical reaction can be used to track
reaction progress in real time.

To evaluate the potential utility of DIE of CHyC in no-wash
cellular staining and imaging, HeLa cell cultures were treated with
100 pM of an AmdU monophosphate derivative bearing two 5'-
pivaloyloxymethyl masking groups “POM-AmdU”,* for 17 hours
prior to fixation and staining with 10 pM CHyC in 1x PBS
containing 1% DMSO and Cu(1). The cells were imaged while still
in the staining solution, revealing large fluorescence enhance-
ments of the nuclei in cells pre-treated with POM-AmdU as
compared to those receiving vehicle only. As a control, we com-
pared the performance of CHyC with a commercially available Cy5
alkyne derivative “Alexa Fluor™ 647 Alkyne” that was also found to
be compatible with no-wash imaging, but it displayed little or no
selectivity for the cellular nuclei of cells that had been pre-treated
with POM-AmdU (ESL Fig. S4). To evaluate the DNA selectivity of
CHyC staining in POM-AmdU treated cells, the CHyC staining
solutions were removed by aspiration, and a second solution
containing the non-covalent DNA stain Hoechst 33342 was added
to the cells and imaged without washing (Fig. 2). Only cells
receiving POM-AmdU exhibited CHyC “turn-on” fluorescence that
co-localized with Hoechst staining with a Pearson correlation
coefficient (PCC) of 0.76 £+ 0.03 as compared to a PCC = 0.31 +
0.08 for the control cells not pre-treated with POM. A perfect
correlation of 1.0 was not expected because only a fraction of the
cells had passed though S-phase during the 17-hour incubation
with POM-AmdU.

In summary, CHyC is a novel cationic hemicyanine dye that
undergoes disaggregation-induced emission (DIE) after CUAAC
click reactions. In the current example, DNA is targeted by
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Fig. 2 Visualization of azide-modified DNA in Hela cells treated with
100 uM of POM-AmdU for 17 hours followed by fixation and no-wash
CUuAAC staining with 10 uM CHyC 5 in the presence of 1 mM CuSQOy, 2 mM
THPTA, and 10 mM sodium ascorbate for 2 hours. The CuAAC solution was
aspirated without washing, and Hoechst 33342 was used added as nuclear
co-stain and directly imaged. Negative control samples received no POM-
AmdU but were otherwise treated identically.

virtue of AmdU incorporation into cellular DNA. In theory, RNA
could be targeted by CHyC by using appropriate metabolic labels
such as N°ethylazido-adenosine or 2'-azidoadenosine.'¥ While
fast, the CuAAC reaction is limited to fixed cells due to its
toxicity,> and hence catalyst-free DIE reactions based on
SPAAC?® or vinyl-tetrazine ligation® could provide future access
to wash-free imaging of live cells.
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