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Abstract: Chemokines such as CCL5 (RANTES) mediate immune responses via interaction with 

G-protein-coupled receptors like CCR5, which also serves as a co-receptor for HIV-1 entry into 

host cells. Modified CCL5 analogues have shown promise as CCR5 antagonists for anti-HIV 

strategies, but current approaches involve hydrolytically unstable linkages or laborious synthesis. 

Here, we demonstrate the use of an organocatalyst-mediated protein aldol ligation (OPAL) to 

construct N-terminally modified CCL5 analogues bearing hydrolytically stable carbon–carbon 

linkages. Using a recombinant CCL5 P2G mutant and selective oxidation to introduce an α-oxo 

aldehyde at the N-terminus, we achieved efficient OPAL bioconjugation with various aldehyde 

donors, including alkyl and aryl acetaldehydes. Notably, a 4-azido aryl acetaldehyde CCL5 OPAL 

product was utilised as a CCR5 photoaffinity probe. This modified chemokine successfully 

captured CCR5 from mammalian cells via photo-crosslinking, enabling receptor pull-down for 

biochemical analysis. Our work showcases cross-aldol bioconjugations as a versatile and 

convergent strategy for stable chemokine functionalisation, with potential applications in 

therapeutic development and mechanistic studies of chemokine–receptor interactions. This 

method offers a promising chemical biology platform for modulating or probing the CCL5-CCR5 

axis with enhanced precision and synthetic accessibility. 

 

Introduction: Chemokines are small proteins (8-14 kDa) that contain characteristic disulfides and 

mediate a range of functional biological processes including directed cell migration (chemotaxis) 

and activation induced-gene expression and proliferation1-4 through interaction with cell-surface 

chemokine G-protein coupled receptors. Human C-C chemokine ligand 5 (CCL5, also known as 

RANTES- regulated on activation, normal T cell expressed and secreted) is an agonistic ligand for 

the CCR5 chemokine receptor5 (Fig. 1A), and CCL5-mediated activation of CCR5 triggers a 

proinflammatory intracellular signalling cascade leading to the recruitment of immune cells to sites 

of infection and inflammation.6, 7 However, CCR5 has also been implicated in cancer progression 

and Human Immunodeficiency Virus-1 (HIV-1) immune cell entry, whereby HIV-1 can bind to both 

CD4 and CCR5, as a co-receptor on target cells.5 Notably, native CCL5 has demonstrated 

potential in blocking HIV-1 infection8 by inducing CCR5 internalisation and downmodulation9 
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stimulating further research into modified chemokines. N-terminally modified CCL5 analogues 

have led the way in this field of therapeutic CCR5 blockade, but also represent an area of 

underexplored potential as chemical biology tools for studying the CCL5-CCR5 interactome.  

 Early N-terminally modified CCL5 derivatives developed included AOP-RANTES, which 

displayed potent sub-nanomolar HIV inhibitory activity10 acting as a super-agonist inducing 

sustained CCR5 phosphorylation and down-modulation.11,12 AOP-RANTES is modified through an 

oxime bond at the chemokine N-terminus, which binds in the CCR5 cavity, and is therefore a 

target for modulating the CCL5-CCR5 interaction (Fig. 1A). Further exploration of the N-terminal 

region also led to the development of PSC-RANTES,13 which displayed increased potency 

compared to AOP-RANTES but is constructed via total chemical synthesis of the chemokine, 

which is both laborious and expensive. Notably AOP-RANTES occupied CCR5 is subjected to 

rounds of endocytosis and recycling,14 whilst PSC-RANTES sequesters CCR5 within the cell.15 

Other later approaches to generate CCL5-analogues utilised less laborious late stage convergent 

synthesis, where a synthesised CCL5 without the native N-terminus can be differentially 

elaborated with N-terminal pharmacophores.16 But this strategy primarily relies on the formation of 

carbon-heteroatom linkages including oximes, as in AOP-RANTES (CCL5) (Fig. 1B) and 

hydrazones, both of which have subsequently been shown to be hydrolytically unstable in vivo.17,18 

Thus new convergent bioconjugation approaches that enable access to CCL5 analogues with 

hydrolytically stable linkages are still highly attractive, and their potential applications as chemical 

tools for further mechanistic study of the CCL5-CCR5 axis ripe for exploration. Our contribution to 

this area stems from the development of organocatalyst-mediated protein aldol ligation (OPAL) 

bioconjugations,19 which generate stable carbon-carbon linkages through cross-aldol coupling20 of 

small molecule aldehyde donors and proteins bearing reactive ⍺-oxo aldehyde acceptors.21 Herein 

we demonstrate that the OPAL can be deployed in the convergent construction of N-terminally 

functionalised CCL5 analogues, using ⍺-oxo aldehyde CCL5, accessible from recombinant protein 

and small molecule aldehyde probes (Fig. 1C). As the N-terminus of CCL5 embeds deeply into the 

extracellular cavity of its CCR5 receptor22, 23 this method constitutes a platform approach for 

modulating or ‘capturing’ CCL5-CCR5 interactions at the cell surface, and we also showcase this 

utility in the construction of a CCL5-photoaffinity probe that enables selective CCR5 pull-down 

from mammalian cells.  
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Figure 1. (A) CCL5 interaction with the extracellular cavity of CCR5 triggers a proinflammatory signaling cascade and 
the downmodulation of the receptor from the cell surface. (B) AOP-CCL5 (AOP-RANTES) is modified at the N-terminus 
with a hydrolysable oxime linkage. (C) Our convergent OPAL approach to modification of the CCL5 N-terminus via 
cross-aldol bioconjugation. 

 
Results and discussion: To facilitate studies on the convergent N-terminal bioconjugation of 

CCL5 we needed easy access to the chemokine that did not involve laborious total synthesis or 

low-yielding in vitro refolding of chemokine from inclusion bodies. We therefore opted to utilise our 

recently published method for recombinant expression of His-SUMO-CCL5 fusion protein,24 which 

following traceless cleavage of the SUMO tag under non-denaturing conditions affords soluble 

fully folded CCL5 with its native N-terminal serine residue. The presence of the N-terminal serine 

potentially enables facile access via periodate oxidation to the reactive N-terminal ⍺-oxo 

aldehyde25 CCL5 (Fig. 1C), which is required as the electrophilic partner in our cross-aldol OPAL 

bioconjugation. Although highly reactive, N-terminal ⍺-oxo aldehydes can undergo unproductive 

intramolecular cyclisation when the directly adjacent residue is a proline,26,27 as is the case in 

CCL5. Therefore, to maximise the stability of the aldehyde before bioconjugation in this study we 

used the CCL5 point mutant (P2G).  The recombinant CCL5 P2G was purified in 28 mg/L 
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purification from E. coli SHuffle LysY cells, used to aid folding of the two structural disufides that 

are required for chemokine function. Subsequent His-SUMO tag capture and SUMO protease 

cleavage afforded untagged CCL5 P2G 1 ready for screening in N-terminal periodate oxidation 

studies directly on the folded protein. Notably, CCL5 P2G was most amenable to reproducible 

periodate oxidation in acidic conditions to yield CCL5 bearing an ⍺-oxo aldehyde handle 2 for 

OPAL modifications, as at neutral pH we observed that the protein would often precipitate at 

higher concentration, likely a consequence of CCL5 well-established proclivity for self-

association,28,29 which we observed to be both buffer pH and concentration dependant, consistent 

with previous studies demonstrating CCL5 can form large aggregates at high µM concentrations at 

pH 7.30 Under the optimised conditions at pH 4.5 in NaOAc buffer oxidation reached complete 

conversion by protein mass spectrometry (MS) within 15 min at 4 °C using a 20-fold excess of 

periodate (Fig. 2A).  

Next, we set out to establish optimised OPAL conditions for modification of CCL5 P2G ⍺-

oxo aldehyde. Cognisant that the introduction of alkyl chains at the CCL5 N-terminus had 

previously yielded chemokines with non-native behaviour for CCR5 interactions, we initially 

attempted N-terminal OPAL bioconjugation using butyraldehyde 3 as the small molecule aldehyde 

donor. Following incubation with 100 equivalents of donor at pH 4.5 for 18 h in the presence of 25 

mM prolinamide 4 as an organocatalyst, protein MS analysis demonstrated OPAL product 5 

formation on the P2G mutant with 45% conversion (Fig. 2B), with wild-type CCL5 notably showing 

no turnover  (Fig. S1), presumably due to the anticipated intramolecular cyclisation onto the 

aldehyde. Although the chemokine is less prone to oligomerisation at acidic pH, analogous 

bioconjugation at pH 7 significantly increased conversion to >95% product, demonstrating the 

OPAL reaction of CCL5 is more efficient under neutral conditions. Notably, reversible self-

association could be limited by performing the OPAL at low µM CCL5 concentration at pH 7, 

followed by dialysis into lower pH with dissociation of the CCL5 into its active form. The presence 

of long alkyl chains at the N-terminus of CCL5 has afforded derivatives which can behave as 

super agonists, such as PSC-RANTES with bears a nine carbon N-terminal alkyl chain. We 

therefore also attempted to directly conjugate nonanal (9-carbon alkyl aldehyde) 6 to the ⍺-oxo 

handle on the N-terminus of CCL5 P2G 2, and observed no conversion to product at pH 4.5, but 

73% conversion to OPAL product 7 at pH 7 by protein MS when again using 100 equivalent of 

donor and prolinamide 4 as the organocatalyst (Fig. 2C). This unoptimized conversion using a 

long alkyl aldehyde, with poor aqueous solubility, is highly promising and suggests the OPAL 

bioconjugation does have potential as a platform approach to directly access a suite of alkyl 

derivatised chemokines for screening in receptors binding and activation experiments, which are 

ongoing in our group for report in due course.  
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In our previous studies, we demonstrated that aryl acetaldehydes showed even greater 

reactivity in cross-aldol bioconjugations than alkyl aldehydes, and the aromatic scaffold presents 

opportunity for facile introduction of further chemical functionality. We therefore also screened 4-  

Figure 2. (A) Optimised NaIO4 oxidation of CCL5 P2G 1 with (right) raw and deconvoluted protein MS analysis  
(deconvoluted spectrum shows mass in Da/1) demonstrating the presence of species consistent with oxidised-CCL5 
P2G 2. (B) OPAL modification of 2 with butyraldehyde 3 and prolinamide organocatalyst 4 and (right) deconvoluted 
protein MS analysis of reactions at pH 4.5 or pH 7 with starting material 2 and/or product 5 present. (C) OPAL 
modification of 2 with nonanal 6 and prolinamide organocatalyst 4 and (right) deconvoluted protein MS analysis (spectra 
show mass in Da/1) of reactions at pH 4.5 or pH 7 with starting material 2 and/or product 7 present. 
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methoxy phenylacetaldehyde 8 as an OPAL donor, using prolinamide 4 as an organocatalyst, in 

reaction with ⍺-oxo-CCL5 P2G 2 at both acidic and neutral pH (Fig. 3A). Interestingly, at pH 4.5 

with 25 equivalents of the electron rich 4-methoxy phenylacetaldehyde 8 (Fig. 3B, top right), we 

observed full conversion to species with masses consistent with single 9 and multiple additions 10 
of the aldol donor, suggestive of formation of the OPAL product 9 followed by a subsequent 

condensations between the newly appended electron rich aromatic ring on the protein and the 

protonated 4-methoxy phenylacetaldehyde 8 now acting as an aldol acceptor (Fig. 3C). Increasing 

the  4-methoxy phenylacetaldehyde 8 to 100 equivalents led to increased conversion to the 

multiple additions product 10 (Fig. 3B, bottom right), whilst increasing the pH to 7 eradicated the 

multiple addition product, affording 42% conversion to only the OPAL product 9 (Fig. 3B, top left), 

thus reinforcing the hypothesis that multiple addition is driven by protonation of the small molecule. 

To circumvent this unwanted side reaction, we then utilised the less electron rich 4-azido aryl 

acetaldehyde 11 donor for OPAL modification of ⍺-oxo-CCL5 P2G 2 (Fig. 4). As anticipated, using 

a 25 fold excess of donor and 25 mM prolinamide 4 as an organocatalyst, at both pH 7 and pH 4.5 

Figure 3. (A) Outline of OPAL modification of 2 with 4-methoxy phenylacetaldehyde 8 and prolinamide organocatalyst 
4. (B) Raw protein MS analysis of reactions using 25 and 100 equiv. of 8 at pH 4.5 or pH 7 with starting material 2 
showing formation of single OPAL addition product 9 and/or multiple additions product 10. (C) Proposed structure of 
multiple addition product 10 and mechanism for its formation under acidic conditions.  
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we observed >95% conversion to the OPAL product 12 (Fig. 4a), with no multiple addition product, 

underlining the importance of considering the electronics of the aryl ring when using the OPAL 

reaction in acidic conditions.  

   Notably aryl azides are well established as chemically stable handles that can be 

activated by irradiation with light to generate highly reactive intermediates31,32 that have been 

widely used for protein crosslinking and profiling.33 Therefore, we sought to exploit the potential of 

the appended aryl azide functionality for capturing the non-covalent CCL5-CCR5 interaction by 

protein-protein photo-crosslinking, stabilising the cell surface interaction for downstream 

immunoprecipitation or “pull-down” of the receptor. As small amounts of CCL5 P2G precipitation 

were observed in OPAL reactions at pH 7, large scale OPAL bioconjugation with the 4-azido 

phenylacetaldehyde donor 11 was performed at pH 4.5 before non-selective biotin NHS-coupling 

Figure 4. (A) OPAL modification of 2 with 4-azido phenylacetaldehyde 11 and prolinamide organocatalyst 4 and 
(right) deconvoluted protein MS analysis (spectra show mass in Da/1) of reactions at pH 4.5 or pH 7 with starting 
material 2 (and/or product 12 present. (B) Western blot analysis of bifunctional biotinylated aryl azide CCL5-P2G 13 
with biotin visualisation by streptavidin-HRP chemiluminescence, note the potential presence of well-established 
CCL5 oligomerisation29 at 15 kDa. (C) Photo-crosslinking and immunoprecipitation of CCR5 on CHO-CCR5 cells with 
analysis of unbound fraction and immunoprecipitated fraction using anti-CCR5 MC5 antibody, following incubation 
with 13 and UV irradiation (365 nm). 
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performed to afford the bifunctional CCL5 P2G 13, confirmed by western blot with streptavidin-

HRP mediated chemiluminescent visualization (Fig. 4B). CCR5 pull-down using the biotinylated 

aryl azide CCL5 P2G 13 was then attempted on a chinese hamster ovary cell line (CHO), stably 

expressing CCR511. The chemokine photoaffinity probe was first prebound to CCR5 presenting 

cells, before the chemokine-receptor interactions were stabilised through photo-crosslinking at 365 

nm for varying lengths of time ranging from 0.5-20 minutes. The cells were lysed and supernatants 

containing cytosolic proteins were incubated with streptavidin magnetic beads and the resulting 

unbound supernatant fraction collected for later analysis. Following washing, any protein bound to 

the beads were eluted and subjected to western blot alongside the unbound supernatant fraction. 

Monomeric CCR5 (~36 kDa) was detected in the unbound fractions using an anti-CCR5 MC5 

antibody western blot (Fig. 4C), with a slight band shift observed for CCR5 when comparing the no 

chemokine treatment control to samples treated with the CCL5 probe, potentially indicative of 

CCR5 phosphorylation following activation by the ligand.14,24 Whilst the biotin pull-down elution 

fractions contained CCR5-CCL5 complex (~50 kDa) primarily in samples that had been exposed 

to chemokine probe and irradiated with UV light with a irradiation-time dependent increase in 

protein concentration, and only low level ‘pull down’ of the CCL5-CCR5 complex in the absence of 

photo-crosslinking.  

 

Conclusions: In conclusion these experiments unequivocally demonstrated the capability of our 

N-terminally modified aryl azide chemokine to capture transient ligand-receptor interactions on 

mammalian cells. Although our approach requires the use of a CCL5 P2G variant to facilitate the 

OPAL reaction, we showed this mutant was still able to bind the receptor, albeit with a 3 fold 

reduction compared to wild-type CCL5 (Fig. S14), and that the mutant and its modified biotinylated 

aryl azide CCL5 P2G 13 both trigger characteristic phosphorylation of CCR5 Ser 349 and 

subsequent receptor endocytosis6 (Fig. S15). This exemplifies that chemokines modified under 

mild OPAL conditions retain functional biological activity and highlights the potential utility of cross-

aldol OPAL as an efficient bioconjugation for exploring the chemokine ligand-receptor interactome, 

augmenting the existing chemokine chemical biology toolbox. 

 

Data availability 
The data supporting this article have been included as part of the electronic supporting 

information. 
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