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Abstract
Nucleic acids (NA), namely DNA and RNA, dynamically fold and unfold to perform 

their functions in cells. Functional NAs include NA enzymes, such as ribozymes 

and DNAzymes. Their folding and target binding are governed by interactions 

between nucleobases, including base pairings, which follow thermodynamic 

principles. To elucidate biological mechanisms and enable diverse technical 

applications, it is essential to clarify the relationship between the primary 

sequence and the catalytic activity of NA enzymes. Unlike methods for predicting 

the stability of NA duplexes, which have been widely used for over half a century, 

predictive approaches for the catalytic activity of NA enzymes remain limited due 

to the low throughput of activity assays. However, recent advances in genome 

analysis and computational data science have significantly improved our 

understanding of the sequence-function relationship in NA enzymes. This article 

reviews the contributions of data-driven chemistry to understanding the reaction 

mechanisms of NA enzymes at the nucleotide level and predicting novel NA 
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enzymes with catalytic activity from sequence information. Furthermore, we 

discuss potential databases for predicting NA enzyme activity under various 

solution conditions and their integration with artificial intelligence for future 

applications. 

1. Introduction
Program information is essential for designing reproducible systems and 

controlling their functions. In living cells, this information is held by nucleic acids 

(NA)—specifically, DNA and RNA—which are chemicals that store and transfer 

genetic information. Their nucleotide sequences are precisely replicated, 

transcribed, and translated to synthesise proteins that act as functional molecules. 

Genetic materials and their products are characterised by the fundamental rule 

that monomeric molecules, such as nucleotides and amino acids, are 

synthesised and function as one-dimensional macromolecules and units of 

information. From information decoding (via DNA transcription to RNA and RNA 

translation to protein) to functional expression (through protein folding), the 

transfer of genetic information relies on a series of molecular recognition events 

at the monomer level. The input and output of genetic information during 

transcription and translation follow the Watson–Crick base pairing rule, which 

unambiguously dictates how RNA and then protein are synthesised from a DNA 

sequence.1 However, the functional expression of such information depends on 

the chemical properties of NAs as polymers. Since the formation and melting of 

secondary NA structures, including duplex association and dissociation, play key 

roles in regulating replication, transcription, and translation,2-4 understanding their 

thermodynamic stability is crucial for programming and predicting their functions 

from sequences.

Proteins are the primary functional molecules in living organisms, but 

NAs themselves also exhibit functional activity. Recent advances, such as the 

Nobel Prize-winning methods for protein structure prediction, have made the 

design of functional proteins more feasible.5 However, even with empirical 
knowledge of protein synthesis and folding, practical challenges persist in 
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deploying designed proteins for nanotechnology and medical applications.6 On 
the other hand, NAs are easier to prepare chemically and biosynthetically than 

proteins, owing to their simple chemical composition and high water solubility. 

Therefore, research on their functional application in technology and medicine is 

highly active. Functional NAs were first discovered in self-splicing RNA for 

introns.7, 8 Such catalytic RNA sequences called ribozymes are widespread 

across genomes and participate in biological processes such as tRNA 

processing,9 rolling circle viral genome replication,10 and peptide bond 

synthesis.11 Various ribozyme families composed of different sequences and 

structures, such as hammerhead (HH),12 hepatitis delta virus (HDV),13 Varkud 

satellite (VS),14 and hairpin,15 have been isolated from cells and viruses. 

Moreover, bioinformatics approaches have contributed to the identification of 

other ribozyme families, including twister,16 twister-sister,17 hatchet,17 and pistol17. 

HH, HDV, and twister family members have relatively small molecular sizes and 

high catalytic activities. Thus, these family members have frequently been used 

for in vitro and in vivo applications to generate RNAs with precise termini.16, 18-20

Each ribozyme has its own primary sequence, which folds into the 

secondary and tertiary structures that form its active site (Fig. 1a). Natural 

ribozymes mainly catalyse the cleavage of RNA strands (Fig. 1b). The catalytic 

activity of RNA led to the RNA world hypothesis,21 which postulates that in 

prebiotic life, RNA not only replicates and transmits genetic information, but also 

catalyzes a number of metabolic reactions. In vitro selection techniques have 

generated ribozymes exhibiting various catalytic activities22, 23 including 

phosphorylation, ligation, replication, aminoacylation, and Diels–Alder 

reactions.24-27 Besides RNA, DNA has also been found to exhibit similar catalytic 

activity in the form of deoxyribozymes (DNAzymes), which act as catalysts for 

Pb2+-dependent cleavage of RNA phophodiester bonds.28 RNA-cleaving 

DNAzyme offers an attractive modality for targeting undruggable regions of the 

human genome,29, 30 since the solid-phase chemical synthesis of DNA makes it 

a more inexpensibe and scalable material than RNA. Moreover, a their targeting 

sequences can be designed for any mRNA, enabling the identification of highly 

specific, low off-target candidates for safer nucleic acid therapeutics.31, 32 NA 

enzymes combined with aptamers (having molecular recognition ability) and 
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complementary sequences (for DNA/RNA sequence recognition) have been 

actively investigated for applications such as biosensors and gene switches.33-35 

Thus, the development and use of NA enzymes, including ribozymes and 

DNAzymes, are of great interest in biotechnology. 

NA enzymes exhibit enzymatic activity through the formation of 

secondary and tertiary structures from primary nucleotide sequences via 

intramolecular base pairing and other interactions. Therefore, understanding the 

correlation between the sequence and function of NA enzymes is of great 

importance from both fundamental and applied perspectives.36 NAs, on the other 

hand, are subject to greater solution effects than proteins due to their nature as 

polyanions.37 For example, the activity of NA enzymes is determined by their 

tertiary structure, accepting target molecules dominated by cations and 

interaction with cofactors such as divalent metal ions.38 Notable targets of NA 

enzymes include DNA and RNA in cells, where the solution conditions are 

different from in vitro test tube conditions. The intracellular environment is both 

diverse and densely packed with biomolecules at concentrations ranging 50–400 

g L-1.39 This molecular crowding profoundly affects nucelic acid conformation and 

stability.40 As the effect of solution conditions on the structural stability and 

enzymatic activity of NA enzymes is highly complex, the systematic 

demonstration of sequences and environment-dependent reactions is required to 

determine which parts of the sequence are important for the function of an NA 

enzyme. Accumulation of enzymatic data creates a database of the properties of 

NA enzymes, which can provide information as parameters to predict how the 

sequences of these enzymes correlate with their catalytic activity. Therefore, 

progress in the analysis of large RNA and DNA datasets, together with 

computational approaches using machine learning and artificial intelligence (AI), 

is expected to advance the science and technology field considerably. In this 

review, we introduce such recent advances in the development of NA enzymes 

using data-driven analysis. Additionally, we analyse a novel dataset for 

determining the activities of these enzymes and discuss their utility for future 

predictions.

2. Development and improvement of NA enzymes using a large dataset
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To determine the relationship between the sequence, reactant solution conditions, 

and activity of NA enzymes, a large dataset of enzyme activity derived from 

enzyme sequences is required. However, the analyses of enzymes with multiple 

sequences (mutations) usually rely on low-throughput experiments, including gel 

electrophoresis assays. To drastically expand the utility of NA enzymes, high-

throughput assays must be developed to analyse their activity, sequence, and 

potential targets. Next-generation sequencing (NGS) is commonly used to 

analyse large numbers of sequences. NGS technology enables the simultaneous 

reading of millions of comparatively long NA sequences.41, 42 NGS was originally 

developed for genome sequencing and has since been applied to the in vitro 

selection of NA aptamers and functional proteins that bind to or inhibit target 

proteins.43, 44 NGS not only provides sequence data, but also the number of 

sequences from the read count, which enables the rapid analysis of sequence-

function relationships in massive datasets. 

The evolution process is propelled by mutations in genetic information. 

Consequently, the generated phenotype may fit more desired (or undesired) 

characteristics than the original. Thus, evolution toward the desired functions of 

NA enzymes relies on the “fitness” of the sequence and the efficiency of catalytic 

activity during each evolutional process.45 NGS technology facilitates the 

visualization of these processes, aiding the understanding of how NA enzyme 

sequences achieve catalytic function from all possible sequences across the 

entire fitness landscape (Fig. 2).46 The concept of a fitness landscape supports 

our understanding of evolutionary dynamics, describing a topography in which 

state variables such as genotype and phenotype are used as coordinates, and 

the height at each coordinate is the degree of adaptation.47 When applied to NA 

enzymes, the fitness landscape contributes significantly to our understanding of 

the improvements in catalytic activity, as knowledge of this adaptive topography 

makes it possible to predict what evolutionary processes a sequence population 

will undergo.

The first study to create a fitness landscape for NA enzymes tested the 

class II ligase ribozyme.48 The mutated ribozyme pool, containing >1013 

sequences via error-prone replication, was incubated with the immobilized 

substrate strand to select the active ribozymes. After single-round selection, NGS 
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data revealed the enrichment of the sequence containing a small Hamming 

distance, which is a measure of the difference between two strings of the same 

length compared to the original sequence (Fig. 3). Furthermore, the kinetically 

trapped incubation affected the enrichment of sequence reads of active 

ribozymes, which correlated with the observed catalytic rate constant (kobs) 

obtained experimentally.48 The large dataset of mutated ribozyme sequence and 

activity allowed the creation of a fitness landscape with >107 genotypes and 

phenotypes. It demonstrated the importance of sequences in the central bulge of 

the RNA and the distal end of paired region (helix) 3 (P3), along with other key 

residues characterised previously, in achieving maximal activity (Fig. 3).49, 50 

Thus, single or double mutations introduced through error-prone polymerase 

chain reaction or doped solid-phase synthesis enable the examination of fitness 

landscapes to identify the key sequence and structural determinants of NAzyme 

catalytic activity. This approach has been applied to various self-cleaving 

ribozymes owing to their small molecular sizes, which facilitate the efficient 

generation of mutants and direct assessment of mutational effects by reading 

enzyme activity.51-55 For example, analysis of every single and double mutant of 

the Osa-1-4 twister ribozyme from Oryza sativa (Fig. 4a) demonstrated its 

unexpected resilience to mutations, even with its compact and intricate structure. 

Notably, different structural components showed distinct levels of mutational 

sensitivity.53 A recent comprehensive mutational study analysed five self-cleaving 

ribozymes, including CPEB3, HDV, hairpin, and hammerhead (Figs. 4b-e), in 

addition to twister ribozymes, providing strcutural information about the 

ribozymes, including their paired regions, unpaired loops, non-canonical 

structures, and tertiary structural contacts.55 Additionally, NGS technology was 

used to study ribozyme evolution from random sequence and random structure 

space. In the case of Diels–Alderase ribozymes, increasing the selection 

pressure and analyzing the secondary structure through MFold prediction 

provided insights into how mutations can be rationally introduced to improve 

catalytic activity.56 The NGS approach can be adopted not only for ribozymes but 

also for DNAzymes.57 In a high-throughput kinetic analysis, 4,096 DNAzyme 

reactions were assayed simultaneously at multiple time points to determine the 

observed rate constants (kobs) of 533 active mutants. These values were then 
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used to calculate activation energies (Eₐ), offering detailed insights into the 

mutational landscape of the DNAzymes. Deep sequencing enabled this 

quantitative view of the sequence–function relationship, which would not have 

been achievable with traditional assays.

The massive kinetic data on genotype and phenotype are also powerful 

tools for the analysis and development of NA enzymes triggered by ligand binding. 

One approach is to rationally develop an aptazyme, which is a combination of an 

aptamer and a self-cleaving ribozyme, to regulate translation by mRNA 

cleavage.51, 58 In a previous study, all pairwise mutations in the glmS ribozyme 

triggered by glucosamine 6-phosphate (GlcN6P) were analysed using a custom-

built fluorescent RNA array.54 This array was derived using a combined approach 

involving ribozyme transcription on a sequencing tip and direct measurement of 

single-molecule fluorescence (detected using a total internal reflection 

fluorescence microscope). The advantage of this approach is its ability to monitor 

self-cleavage over short and long timescales, which enables the differentiation of 

both slow and fast self-cleaving variants. More recently, a kinetic sequencing (k-

seq) technique was developed to perform a more accurate kinetic analysis of 

ribozymes using NGS.59, 60 This technique provided the rate constants and 

maximum amplitude of the reaction without specialised instrumentation. The k-

seq technique has been used to study the fitness landscape of self-

aminoacylating and glmS ribozymes.60, 61 By leveraging this approach, it is 

possible to systematically explore how biochemical factors, such as catalytic 

efficiency and the Michaelis constant, influence sequence conservation, even 

among partially active or inactive NA variants. As mentioned earlier, massive 

amounts of sequence data can be linked to each kinetic parameter through recent 

technological advances. The activity parameters describe the chemical 

mechanisms of the reactions, depending on the sequence and structure of the 

NA enzymes, with nucleotide-level resolution. Thus, if a sequence of NA 

enzymes responds well, comparing it (without additional experimentation) with 

the response of a mutant can provide insights into the mechanism of the NA 

enzyme and indicate the presence of novel structural rearrangements.

In contrast to the in vitro evolution of NA enzymes, naturally evolved NA 

enzymes, in which the full structural diversity is observed in many classes of 
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ribozymes found in nature, have also been targeted. Using massively parallel 

oligonucleotide synthesis, a diverse RNA pool was generated, enabling the direct 

functional testing of potential twister ribozyme sequences. This included over 

1,600 previously reported putative twisters and approximately 1,000 new 

candidates derived from over a thousand different organisms.62, 63 The Cleavage 

High-Throughput Assay, an NGS-based method for evaluating the activity of 

each potential sequence, revealed a broad structural tolerance to mutations.64 

These data about the relationships between the sequence diversity and activity 

of the twister ribozymes could advance the computational search of the active 

twister ribozymes, which identified the first intrinsically active twister ribozyme in 

mammals.64 Although current studies are primarily focused on NA enzymes 

involved in cleavage, high throughput analysis has enabled the creation of large 

datasets for designing NA enzymes with other activities based on sequence 

information.

3. Prediction tool for NA enzyme sequence and function using a 
computational approach
One of the goals of studying the sequence-structure-function relationship of NA 

enzymes is to develop a prediction tool for determining the catalytic activity of NA 

enzymes from their sequence information. Classical bioinformatics approaches 

have developed ribozyme sequence finders from natural sequences. 

Conventional identification of ribozymes is perfomed using the Basic Local 

Alignment Search Tool, which detects sequence homology.65 However, tertiary 

structures of the enzymes, which play a key role in their catalytic activity, must 

be considered for more accurate identification. Therefore, structure-based search 

programs are better suited for the identification of ribozymes. Computational tools 

such as RNAMotif,66 Infernal,67 and RNArobo68 employ structural models of RNA 

secondary structures to systematically search for various ribozyme classes 

across sequence databases. These search programs have been successfully 

used to identify putative ribozymes in nature.16, 69 

3.1 Prediction approach based on energetic calculation for secondary 
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structures of DNA and RNA
One of the major approaches to secondary (or even tertiary) structure 

prediction depends on the concept that a biomolecule folds into a certain 

structure with a minimum energy level based on its sequence information. Thus, 

the most stable structure can be inferred computationally by comparing the 

energy levels of all potential configurations. The most widely used prediction 

method based on the thermodynamic parameters of DNA and RNA stems 

(duplexes) derived from sequence information is the “nearest-neighbour (NN) 

model.” The NN model operates on the concept that the stability of a base pair is 

determined by its interactions with neighbouring base pairs. This model, 

developed by Tinoco Jr. et al., is extensively used to predict the thermostability 

of Watson–Crick duplexes, assuming that the duplexes exhibit two-state melting 

behavior.70-72 Currently, the thermodynamic parameters for various duplexes—

such as DNA/DNA, RNA/RNA, and RNA/DNA hybrids—have been established 

by Turner et al., along with contributions from other researchers, including our 

team.73-75 In addition to the stems, the energetic penalties associated with 

mismatches, bulges, loops, dangling ends, and other motifs have been 

empirically determined.76-95 With these expanded NN parameters, we can 

computationally identify the minimum energy structure from the possible 

conformations. MFold (UNAfold) remains the pioneering and most commonly 

used method for predicting DNA/ RNA secondary structures.96-98 The algorithm 

evaluates all possible base pair combinations in the single-stranded sequence to 

determine the minimum free energy (MFE), ∆Gmin, for the secondary structure. 

The sequence is represented as r1, r2, …, ri, …, rj, …, rn, where rᵢ and rⱼ 

correspond to the ith and jth nucleotides (1 ≤ i < j ≤ n). The method then generates 

an "energy dot plot" where base pairs (rᵢ•rⱼ) within ∆∆G of ∆Gmin, are plotted on 

a triangular grid (Fig. 5). The free energy increase, ∆∆G, is determined by P/100 

× |∆G|, where P is the "percent sub-optimality," which permits sub-optimal folding. 

The optimal folding with ∆Gmin or sub-optimal folding with ∆Gmin + ∆∆G is 

generated by selecting optimal or sub-optimal base pairs and computing their 

corresponding folding configurations.

Loops and bulges contribute destabilising or stabilising factors that 

influence overall structural stability. Accounting for these energy contributions 
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enhances the reliability of prediction systems.88 Despite its widespread use, the 

average accuracy of secondary structure prediction is 73% (± 9%) for known 

canonical base pairs, indicating that the MFE approach alone has limited 

effectiveness in revealing true structures under different conditions. This can be 

attributed to the inability of the method to fully account for solution conditions, 

tertiary interactions, and protein binding effects. Therefore, the RNAstructure tool 

was developed for more reliable secondary structure predictions,99, 100 integrating 

prediction constraints derived from experimental data—including Selective 2′-

Hydroxyl Acylation Analysed by Primer Extension (SHAPE), enzymatic cleavage, 

and chemical modification accessibility.101

Although the MFE approach is based on a simple concept, various 

structural combinations can be generated from a single DNA or RNA sequence, 

resulting in the formation of several structural motifs. Thus, predicting the 

secondary structure of relatively long chains is difficult. In particular, NA enzymes 

require the formation of a tertiary structure, which makes prediction complex. 

Machine learning and artificial intelligence (AI) tools have performed well in 

addressing these issues.102 Besides MFE-based methods, non-MFE approaches 

relying on the centroid or maximum expected accuracy have also been 

developed.103-105 With over 100,000 RNA sequences now available in 

databases,106 the SPOT-RNA method, which is one of the representative 

predictions based on an advanced deep-learning technique, has been created to 

predict RNA secondary structures with exceptional accuracy.107 E2Efold is an 

end-to-end deep learning model to directly predict the RNA base-pairing matrix 

for the RNA secondary structure prediction.108 Ufold represents base matching on 

RNA sequences as "pseudo-image information" in a two-dimensional matrix.109 

However, the non-MFE approach often causes overfitting of machine learning by 

rich parameterisation.110 These disadvantages have been minimised using a 

combination of MFE and non-MFE approaches to achieve greater prediction 

accuracy. LinearFold is based on a beam search teachnique to apply this 

algorithm to both machine-learned and Turner’s thermodynamic models, 

resulting in fast and accurate prediction of the secondary structure from a long 

RNA strand.111, 112 MXFold and MXFold2 generate folding scores, which are 
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calculated using a deep neural network incorporating Turner’s NN free energy 

parameters.113, 114 Therefore, these studies strongly suggest that incorporating 

thermodynamic information can enhance the robustness of deep learning-based 

RNA secondary structure predictions. The representative methods for prediction 

of RNA secondary structure are listed in Table 1.

3.2 Tools for the design of NA enzymes
The prediction of secondary structures provides valuable information for 

predicting ribozyme structure and function. Tools for the rational design of NA 

enzyme sequences have become a necessity, owing to the promising therapeutic 

applications of trans-acting ribozymes and DNAzymes for the cleavage of the 

target RNAs. Various computational tools for the design of NA enzymes have 

been developed up to now and surmarised in Table 2. For the catalytically active 

structure of NA enzyme and the substrate target, the energetic contribution of the 

formation of stems between NA enzyme and the substrate target is fundamental 

as well as the dissociation of each structured state (Fig. 6). Thus, the approach 

based on the MFE concept has been applied to identigy accessible target sites of 

NA enzyme using the tools of the secondary structure prediction.115-119 For 

example, Sfold tool120 was used to compute ∆Gtotal through consideration of the 

energy gain due to the complete intermolecular hybridization and the energy 

costs owing to structure alterations for both the target and the ribozyme 

calculated by ∆Gtotal = ∆Ghybrid – ∆Gswitch – ∆Gdisruption (Fig. 6).118 Another classical 

approach is called Aladdin,119 which searches the optimized target sequences 

from the melting temperature of right and left arms of the HH ribozyme evaluated 

by MFold.96 Although these tools are simple and useful, it does not contain off-

target specificity analysis to find out the non-specific binding to the target region. 

RiboSoft is the first automated tool to design the HH ribozyme with consideration 

of the off-target effect, which can output some potential ribozyme sequences 

including the active one for silencing a disease-causing gene.121 This tool is 

currently updated as RiboSoft 2.0 which can design different types of trans-acting 

conventional and allosteric ribozymes.122 

In such applications, a trans-acting DNAzyme also fascinating owing to 

the higher chemical stability and easier chemical synthesis than RNA. DNAzyme 
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binds to the target RNA by forming stems as well as ribozyme, which are 

governed by thermodynamics, depending on the base components. DNAmoreDB 

and DNAzymeBuilder are pioneering web tools that can be used to design 

DNAzymes for any target sequence.123, 124 DNAmoreDB is a comprehensive 

resource for DNAzymes that organises information such as sequences, selection 

conditions, catalysed reactions, kinetic parameters, substrates, cofactors, 

structural data (when available), and literature. The DNAzymeBuilder database 

includes the details of 44 RNA-cleaving and 93 DNA-cleaving DNAzymes, 

including those with RNA-like rA at the cleavage site, all of which function in a 

trans-cleavage manner and cleave intermolecular substrates. This internal 

database compiles extensive data on DNAzymes, including optimal reaction 

conditions, kinetic properties, types of catalysed reactions, sequence recognition, 

cleavage sites, and the necessary design elements to ensure optimal DNAzyme 

performance. Thus, predicted information on the target site, DNAzyme sequence, 

and catalytic activity can be obtained. To further enhance the prediction of 

DNAzyme activity, a machine learning approach was employed. This approach 

was used to identify DNAzymes capable of efficiently triaging thousands of 

potential molecules specific to a target RNA.125 Based on logistic regression, the 

developpers trained the model on published and newly generated 10-23 

DNAzyme activity data incorporating (1) the energetic parameters of the 

enzyme/target stems and (2) the DNAzyme secondary structure derived from NN 

parameters of RNA/DNA hybrids,75 obtained using the secondary structure 

prediction tool.101, 126 The analysis revealed that the binding free energy between 

the DNAzyme and its RNA target is the key factor influencing efficiency. However, 

other elements, such as the internal structure of the DNAzyme, also play a crucial 

role in determining its catalytic activity.125 The machine learning approach is also 

trained the established database from DNAmoreDB, which is called 

SequenceCraft.127 This approach was trained with the kobs data from 178 RNA-

cleaving DNAzymes together with varying experimental conditions, including 

cofactor type and concentration, pH, and temperature. In this platform, a dot-

bracket notation of secondary structures calculated using MFold was used to 

generate a numerical vector, which ensures the good prediction accuracy of the 

kobs values. 
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As shown earlier, machine learning and AI technologies have advanced 

and have been applied to the prediction of RNA secondary structures.102 

Moreover, creating a large dataset of NA enzymes can provide sufficient teaching 

data for AI to output accurate predictions (Fig. 2). One approach is to study the 

NGS data obtained from massive mutational analyses of NA enzymes to 

generate a fitness landscape. The fitness landscape can provide valuable 

information not only for elucidating the evolutionary process of ribozymes, but 

also for the rational design of novel enzymes. For instance, the AI technique 

involving NGS-based high-throughput data enabled the understanding of the 

F1*U ribozyme neutral network.128 In this study, experimental evaluation of over 

120,000 ribozyme sequences provided valuable empirical evidence that neutral 

networks can enhance the accessibility and predictability of the fitness landscape. 

In another study, the effects of higher-order mutations on the CPEB-3 ribozyme 

were also reported.129

Inverse folding has been studied for over a decade in the design of NA 

enzymes. RNAiFold was used as an example to design ten artificial cis-cleaving 

HH ribozymes by identifying RNA sequences whose MFE secondary structure 

corresponded to a user-defined target.130 Each of the ribozymes demonstrated 

functionality in a cleavage assay. However, this method has some challenges in 

terms of accuracy and versatility because of the difficulty in predicting tertiary 

interactions of nucleotides. Therefore, advanced computational approaches are 

required. One of these approaches, a deep generative model, which has already 

been applied to protein design,131 is an attractive pipeline for generating novel 

designs for NA enzymes. Recently, the world's first deep generative model for 

NA enzymes, RfamGen, was developed to support the design of artificial RNAs 

with desired functions and structures.132 RfamGen combines a variational 

autoencoder, a method widely used in deep generative modelling, and a 

covariance model that can classify functional RNAs from information on RNA 

sequences and secondary structures. These features can be learned, and 

artificial sequences can be generated. Computer analysis and biochemical 

experiments confirmed that RfamGen could stably generate RNA sequences with 

a structure and function homologous to the learned RNA population. The 

performance of RfamGen was also attributed to the application of a covariance 
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model to a deep generative model. RfamGen was employed to generate 1,000 

new sequences using the glmS ribozyme that cleaves its own RNA sequence by 

binding to small molecules. A comprehensive analysis of the generated RNA 

sequences was conducted on a large scale.132 Interestingly, RfamGen showed a 

greater tendency to generate high-activity enzyme sequences than native 

sequences.132 Therefore, recent advances in computational approaches using 

both machine learning and AI could demonstrate predictions for the development 

and generation of novel NA enzymes. 

Recent AI-based predictions target not only RNA-RNA interaction but 

also RNA-protein interaction.133 Moreover, a predictive tool for tertiary structures 

of NA enzymes has also been developed recently. Similar to how AlphaFold 

predicts protein structure from sequence information,134 the machine learning and 

deep learning approach such as RhoFold+, RNA-Puzzles and trRosettaRNA can 

be used to develop a prediction tool for NA structures, including NA enzymes.135-

137 However, one issue is that the number of solved tertiary structures of NAs is 

small for machine learning and deep learning approaches, in contrast with the 

extensive datasets available for proteins. However, the simpler chemical 

characteristics of NAs compared to proteins may overcome this issue, allowing 

computational approaches to provide the necessary structural information. 

4. New data base for prediction pipelines of NA zymes structure and activity
As mentioned earlier, the energetic calculation of the secondary structure is a 

fundamental process to predict the structure and activity of NA enzymes. 

Thermodynamically, six factors predominantly affect duplex stability (Fig. 7) 40 by 

governing base pair formation: (i) hydrogen bonds between base pairs—in 

Watson-Crick base pairs, the alignment of hydrogen bonding donors and 

acceptors contributes to their high selectivity and stability. (ii) Stacking 

interactions between adjacent base pairs—the aromatic rings of the bases, being 

electron-rich, engage in π stacking interactions with other aromatic rings. (iii) 

Conformational entropy—the transition from a single-stranded random coil 

structure to a helix results in an energetic penalty. (iv) Cation condensation—in 

addition to the structural factors, environmental factors should play a key role in 

determining the stability and structure of NAs. For instance, the influence of 
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cations on duplex formation is explained by the theory of counterion condensation. 

Polyanionic NA strands experience significant electrostatic repulsion, which 

makes their binding unfavourable. Cations neutralise the anionic charges, 

thereby promoting duplex formation. (v) Hydration—another important factor in 

duplex formation is the water molecules, which specifically hydrate the grooves 

and backbones of the structure. The extent of hydration depends on the structural 

conformation. (vi) Molecular crowding—crowders significantly affect the stability 

of NA structures. Moreover, the behaviour of NA stability and structure can be 

affected by the other physicochemical property of the solution such as the 

dieletric constant, viscosity, and so on. Because the conditions under which NA 

enzymes work differ between environments, such as test tubes and cells, these 

factors should be carefully considered. 

To predict the NA enzyme activity in various conditions, the effect of the 

environment on the energetic contribution to the NA enzyme is also fundamental. 

As shown in Fig. 6, the targeting function via the duplex formation is driven by 

cation concentration, hydration and molecular crowding, whereas the catalysis 

function is affected by molecular crowding for the formation of the tertiary 

structure as well as the binding of the cofactor of the metal ion by the dielectric 

constant changes. In the classical secondary structure prediction of NAs based 

on the MFE approach, cation concentration corrections have been widely applied 

using improved NN parameters.73, 138-140 For example, these corrections enabled 

the MFold database to predict structures at arbitrary NaCl concentrations.96 

However, current tools rely on Turner’s NN parameters with such corrections. 

Therefore, the effects of hydration and crowding on NA stability have not yet been 

considered. Solutions under cellular conditions are densely packed with 

biomacromolecules such as proteins and NAs. Large numbers of small molecules, 

such as metabolites and metal ions, are also present. Hence, incorporating the 

new NN parameter datasets can expand the feasability of the MFE approach for 

predicting NA stability and structure, especially under cellular conditions. The 

total concentration of macromolecules has been estimated to reach 400 mg mL-

1, occupying approximately 40% of the intracellular space.141 These in vivo 

crowded conditions are extremely different from the diluted conditions of standard 

in vitro systems. Therefore, it is important to understand the physicochemical 
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properties of NAs under molecular crowding. NA foldings and unfoldings occur in 

equilibrium, and are accompanied by structural changes and water interactions 

(Fig. 8a). The biophysical effects of molecular crowding are mostly based on the 

physicochemical properties of the crowders, which affect the volume and 

hydration effects of NA folding processes (Figs. 8b and 8c). The formation of a 

duplex makes the strand volume compact; a large cosolute tends to stabilise the 

duplex, whereas a small cosolute destroys it by effectively decreasing the water 

activity of the solution (as duplex formation accompanies hydration).142 For NA 

enzyme reactions, the effect of crowders on the dielectric constant and viscosity 

plays an important role in the reaction kinetics.143 Moreover, crowders can 

interact directly with NAs to stabilise the structure via CH-π interactions.144 

Therefore, the behaviour of NA structures is influenced by these biophysical 

factors under molecular crowding conditions.145, 146

To consider the effect of molecular crowding on dupex stability, the NN 

parameters for DNA duplexes (including self- and non-self- complementary 

strands) have been determined for buffers containing 100 mM NaCl with 40 wt% 

polyethylene glycol 200 (PEG200) (Table 3).147 Compared to NN parameters 

under non-crowding condition, molecular crowding exhibited different effects on 

each NN parameter. Moreover, the relative destabilisation of NN with only GC 

pairs—d(CG/GC), d(GC/CG), and d(GG/CC)—was considerably larger than that 

of other NN pairs. This may be attributed to the low water activity caused by 

PEG200, as GC pairs require more water molecules for stabilisation compared 

to AT pairs.148 The most remarkable difference was found among the initiation 

factors. The ∆H° and ∆S° corresponding to duplex initiation differed drastically 

under crowding conditions compared to that in the solution without cosolutes. 

This was because of the preferential hydration of terminal oligonucleotide pairs 

induced by the cosolute in the crowded environment.147 Although this is the first 

report of NN parameters under crowding conditions, their application should not 

be limited to specific environments. For example, NN parameters under crowding 

have been only determined under 40% PEG condition with 100 mM NaCl for the 

DNA/DNA duplex149 and under 20% PEG200 condition with 1 M NaCl for the 

RNA/RNA duplex.150 Parameters for RNA/RNA duplexes in the Eco80 artificial 

cytoplasm, which contains 80% of Escherichia coli metabolites and biological 
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concentrations of metal ions, have also reported.151 To generalise the available 

NN parameters for various cation and crowding conditions, each value of ∆G°37,NN 

for a duplex was considered as the sum of contributions from the bulk structure, 

cations, and crowders (∆G°37 NN = ∆G°37 NN [bulk] + ∆G°37 NN [cation] + ∆G°37 NN [crowder]). 

The ∆G°37 NN [cation] parameters at arbitrary concentrations of NaCl can be 

calculated from those measured at 1 M NaCl by applying the known dependence 

of [Na+] for each NN base pair and regarding ∆G°37 NN [bulk] as the value at 0 M 

[Na+].152 Figure 9 illustrates the scheme for obtaining NN parameters under the 

desired solution conditions. The ∆G°37 NN[crowder] parameters can be determined 

from the linear function of changes in water activity ∆aw, as duplex 

(de)stabilisation (∆∆G°37) in the presence of crowders correlated linearly with 

changes in the excluded volume of cosolutes and water activity.153 Based on this 

strategy, the improved NN parameters for any molecular environment can be 

obtained,147 This approach of adjusting NN parameters according to cation and 

crowder conditions has been successfully applied to RNA/RNA and RNA/DNA 

duplexes.154, 155 Table 3 shows the NN parameters of DNA/DNA, RNA/RNA, and 

RNA/DNA duplexes under 100 mM NaCl and 40 wt% PEG200 conditions. The 

parameters generally applied to different solutions for RNA/RNA duplexes are 

listed in Table 4. Thus, the latest NN parameters can be regarded as universal 

for predicting duplexes under arbitrary solution conditions. Examples of some 

predictions under different salt and crowding conditions are listed in Table 5.

Considering that the nucleolar environment is similar to that of 

PEG200,156 the stability of the DNA duplex in Ddx4 liquid-liquid phase separation 

(LLPS)157 was successfully predicted using the universal parameters derived 

from 50% PEG200 with 0.1 M NaCl conditions.147 This approach clarifies that the 

nucleolar condition can be mimicked by the crowding conditions, allowing the 

investigation of various NA behaviours in the nucleolus using controlled solution 

conditions. These parameters could also accurately predict the stability of the 

RNA hairpin in the nucleus and cytosol,154 and the efficiency of gene editing by 

CRISPR/Cas9.155 Moreover, improvements in predicting the stability of GC- and 

AT-biased DNA duplexes enabled the prediction of the efficiency of G-quadruplex 

formations from GC-rich sequences, as well as the identification of the replication 

initiation region in genomic DNAs.158 These approaches, which mimick local 
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cellular environments, can be a novel platform to assess the behaviour of NAs in 

such localised areas. For example, the mitochondrial environment in human cells 

induces G4 formation owing to the highly crowded conditions compared to the 

nucleus,159 which can be regarded as a 60 wt% 1,3-propanediol (1,3 PDO) 

solution.160 These findings indicate that the classical NN parameters obtained 

using 1 M NaCl solutions are not suitable for the prediction of either duplex 

stability or NA function based on duplex formations. Therefore, the newly 

obtained NN parameters can be key components for predicting and developing 

functional NA enzymes in specific environments, particularly under intracellular 

conditions.

In addition to the solution environment, compartmentalization also 

affects the solution conditions and NA behaviour. Since cellular environments are 

composed of lipid compartments, their effect on the structural stability of NAs and 

activity of NA enzymes should be critical from an evolutionary viewpoint, 

especially as a protocell model. The effects of the compartments on NA behaviour 

have been studied using reverse micelles and liposomes. Reverse micelles can 

create a nano-confinement space of variable size by changing the ratio of 

surfactants such as sodium bis(2-ethylhexyl)sulfosuccinate. These conditions in 

reverse micelles efficiently decrease DNA duplex stability.161 Interestingly, non-

duplex structures such as G-quadruplex and i-motif formations are promoted in 

the nano-confinement space by the reverse micelles.162, 163 These findings 

indicate that solution compartments within the nanometre size range alter the 

solution environment, similar to molecular crowding, and cause the 

destabilisation of duplexes and stabilisation of non-duplexes. For NA enzyme 

activity, the excluded volume effect caused by compartmentalisation significantly 

promotes reaction activity. In one case, the reaction kinetics and conformational 

folding of hairpin ribozymes within a liposome were investigated.164 The 

conditions inside the liposome (100 nm in diameter), prepared from a 1:1 mixture 

of oleic acid and 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine, enhanced both 

intermolecular and intramolecular RNA interactions. Simultaneously, it promoted 

the proper folding of tertiary structures, including the docked conformation of the 

active hairpin ribozyme and its characteristic triplex arrangement. Moreover, the 

misfolding rate of the active structure was reduced, contributing to the promotion 
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of ribozyme activity. A similar phenomenon was observed in the case of a self-

aminoacylating ribozyme.165 

Membrane-less compartments formed by LLPS also provide a 

confinement environment for NA enzymes. The Ddx4 LLPS decreases the DNA 

and RNA duplexes similar to PEG200-based in vitro crowding conditions.157 

Cationic polymers or peptides are used to form LLPS with HH, hairpin, R3C ligase, 

and 10–23 DNAzyme ribozymes, all of which are activated, unlike in bulk 

solutions.166, 167 The unique LLPS conditions can simulate the unique ionic 

conditions required for ribozyme activity by concentrating ions such as Mg2+s.168 

Although the physicochemical properties of LLPS are not clearly defined, 

ribozyme activation have been recreated in molecular crowding conditions.169-171 

Thus, future parameterization of solution properties mimicked by in vitro crowding 

conditions can provide a useful index to predict the stability and function of NA 

enzymes in the intracellular membrane or membrane-less organelles, including 

nucleus, mitochondria, nucleolus, and stress granules. For the application of NA 

enzymes in cells, their chemical modification is necessary to avoid degradation. 

As chemical modifications can affect both the stability and tertiary structure of 

NAs,172, 173 a comprehensive analysis of the effects of chemical modifications on 

will also impact the development and functional prediction of NA enzymes. 

Conclusion and perspective
In this article, we summarise the importance of thermodynamic parameters and 

future perspectives on NA enzyme prediction and development. The activity of 

an NA enzyme involves the folding of its structure, interaction with target NAs, 

and catalytic chemistry. A major milestone in NA enzyme technology is the 

development of tools for predicting enzymatic activity and structure from 

sequence information. In the case of proteins, an AI-based structural prediction 

program named AlphaFold has been developed and widely used, providing 

significant progress in the scientific and application fields. Recent advances in 

both AI-based and energy model-based approaches have extended beyond 

single RNA structure prediction to include interactions between RNA and other 

molecules, such as proteins and other RNAs. These interaction predictions are 
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particularly promising for the in vivo design of nucleic acid enzymes. Furthermore, 

the integration of AI with genomic functional data—such as sequence variants, 

regulatory elements, and epigenomic features—holds great potential to further 

enhance RNA design by enabling context-aware predictions tailored to cellular 

environments.

As computational structural predictions advance in the field of NAs, an accurate 

prediction model for NAs, similar to AlphaFold, may be established in the near 

future. However, two key issues, which the alphaFold algorithm does not account 

for, remain: (1) prediction of the de novo structure from primary sequence 

information and, more importantly, (2) effect of the molecular environment on 

structure formation. Since, NAs fold dynamically to form tertiary structures from 

single strands and are more sensitive to the environment than proteins, basic 

energetic information on how the environment affects their base pairing is 

required for accurately predicting the structure and activity of NA enzymes. While 

computational approaches, including AI and machine learning techniques, have 

progressed rapidly, the necessary experimentally obtained fundamental 

databases have not been adequately collected. However, as reviewed in this 

article, the key factors determining the folding and activity of NA enzymes at the 

sequence level have now been identified, based on the accumulation of chemical 

properties of NAs affecting their thermodynamics (Fig. 10). The elucidation of the 

underlying chemistry, driven by a large dataset collected under various critical 

situations, would be useful for designing AI and machine learning techniques to 

solve the structure and activity of NA enzymes within specific environments. 

Moreover, the de novo generation of NA enzymes that function actively in 

targeted environments could be realized without requiring a massive database of 

experimentally solved tertiary nucleic acid structures. 

Data availability

No primary research results, software or code have been included and no new 

data were generated or analysed as part of this review.
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Table 1. Prediction of RNA and DNA secondary structure based on nearest-

neighbour (NN) and non-NN models 
Method Concept Feature Ref
NN model based 
prediction

MFold/UNAFold MFE-based thermodynamics The most commonly used prediction tool 
and has now been replaced by UNAFold. 

96-98

RNAfold MFE-based thermodynamics Availability to compute the equilibrium 
partition functions and base-pairing 
probabilities.

174, 175

Sfold MFE-based thermodynamics Sampling all possible structures in the 
Boltzmann ensemble of secondary 
structures.

120

RNAstructure MFE-based thermodynamics Database using alternative set of 
thermodynamic parameters compared to 
MFold and SHAPE data.

99, 
100

LinearX tool MFE-based thermodynamics Fast prediction of the secondary structure 
from a long RNA strand using the beam 
search technique.

111, 112

NUPACK MFE-based thermodynamics Applicable to the prediction of pseudoknot 
structure.

176

PKNOTS MFE-based thermodynamics Applicable to the prediction of pseudoknot 
structure.

177

CONTRAfold Machine learning with 
conditional log-linear models

Trained by the nearest neighbor models 
(without NN parameters) for solved RNA 
secondary structures with parameters 
corresponding to free energy. 

104

ContextFold Machine learning with max-
margin framework

Trained by the nearest neighbor models 
(without NN parameters) using fine-
grained RNA structures. 

178

CentroidFold Non MFE-based 
thermodynamics

The maximum expected accuracy 
approach

105

SimFold MFE-based thermodynamics & 
machine learning with 
constraint generation and 
Boltzmann likelihood

Trained by large sets of structural as well 
as NN parameters for predicting the 
secondary structure of RNA with 
thermodynamic parameters.

179

MXfold MFE-based thermodynamics & 
machine learning with max-
margin framework

Combination of NN parameters with the 
structural data of RNAs trained by a 
method called structured support vector 
machine for precise prediction of 
substrutures.

113

MXfold2 MFE-based thermodynamics & 
machine learning with max-
margin framework and deep 
learning

Application of deep learning to learn RNA 
folding (helix stacking, helix opening, helix 
closing, and unpaired region) scores 
based on NN parameters

114

HotKnots MFE-based thermodynamics & 
machine learning with 
constraint generation

Applicable to the prediction of pseudoknot 
structure.

180

EternaFold Multi task machine learning 
methods

Trained by NN model based on different 
data types, SHAPE structures, and 
riboswitch-ligand binding affinity data for 
the accurate prediction of RNA structures. 

181

Non-NN based 
model
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Pfold Probabilistic generative model 
using stochastic context-free 
grammars

Utilizing simple context-free grammars. 182

CONUS Probabilistic generative model 
using stochastic context-free 
grammars

Comparing nine lightweight grammars for 
RNA secondary structure prediction.

183

TORNADO Probabilistic generative model 
using stochastic context-free 
grammars

Describing various RNA grammars 
including NN models 

110

SPOT-RNA Deep learning based model Using an ensemble of ultra-deep hybrid 
networks and pre-trained with a large set 
of non-redundant RNAs.

107

E2Efold Deep learning based model Predicting the probability of each 
nucleotide match by machine learning 
without any NN parameters

108

Ufold Deep learning based model Representing base matching on RNA 
sequences as "pseudo-image information" 
in a two-dimensional matrix.

109

Knotfold Deep learning based model Applicable to the prediction of pseudoknot 
structure.

184

RiNALMo Deep learning based model Utilizing the 650 million parameters RNA 
language model

185

RNAformer Deep learning based model Facilitating the application of axial 
attention like AlphaFold protein prediction.

186

Table 2. Representative tools for the design of NA enzymes 
Method Design Feature Ref
Sfold RNA-cleaving ribozymes Scoring of the complex formation of 

ribozyme and target RNA based on ∆G 
values obtained from the MFE-based 
secondary structure prediction.

118

Aladdin HH ribozyme Optimization of the stem stability of the 
ribozyme-target complex obtained from 
the MFE-based secondary structure 
prediction.

119

RiboSoft RNA-cleaving ribozymes Output of potential sequences with 
automatically minimizing the off-target 
effect. 

121, 122

DNAzymeBuilder RNA-cleaving DNAzyme The sequence design of DNAzymes 
based on NN parameters and  

123

NAR Genom 
Bioinform 2023

10–23 DNAzyme The sequence design of DNAzymes using 
NN parameters with machine learning 
based on the stem stability and the 
internal structure of the DNAzyme. 

125

SequenceCraft RNA-cleaving DNAzyme Machine learning algorithms capable of 
predicting DNAzyme sequence and the 
potential rate constants based on various 
sequence-, cofactor-, and buffer-related 
factors.

127

Nat. Commun. 
2024

Ligase ribozyme Providing the fitness landscape to 
rationally design the novel ribozymes. 

128

RNAiFold Various types of NA enzymes
(HH ribozyme was 
demonstrated.)

Generation of ribozyme sequence under 
the concept to of inverse folding based on 
the MFE-based secondary structure 
prediction. 

130

RfamGen Various types of NA enzymes
(glmS ribozyme was 
demonstrated.)

Generation of novel ribozyme sequences 
by deep learning of characteristics of a 
group of RNAs with specific functional and 
structural features.

132
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Table 3. NN parameters for DNA duplexes in 40 wt% PEG200 and 100 mM 

NaCl at 37ºCa

Sequence ΔH°NN

(kcal mol-1)
ΔS°NN

(cal mol-1 K-1)
ΔG°37 NN

(kcal mol-1)
DNA/DNA
d(AA/TT) –6.5 ± 0.3 –19.2 ± 0.8 –0.55 ± 0.07
d(AT/TA) –9.4 ± 0.3 –29.4 ± 0.8 –0.28 ± 0.05
d(TA/AT) –4.3 ± 0.5 –13.3 ± 1.3 –0.16 ± 0.14
d(CA/GT) –13.1 ± 0.1 –38.8 ± 0.1 –1.00 ± 0.05
d(GT/CA) –9.2 ± 0.1 –26.8 ± 0.1 –0.89 ± 0.01
d(CT/GA) –3.4 ± 0.6 –7.9 ± 1.6 –0.91 ± 0.11
d(GA/CT) –4.9 ± 0.7 –13.0 ± 2.1 –0.87 ± 0.06
d(CG/GC) –6.4 ± 0.7 –16.1 ± 2.0 –1.38 ± 0.12
d(GC/CG) –4.2 ± 0.7 –9.3 ± 2.0 –1.31 ± 0.06
d(GG/CC) –4.0 ± 0.6 –8.9 ± 2.0 –1.25 ± 0.03

Initiation per GC –10.1 ± 0.2 –35.1 ± 0.5 0.76 ± 0.06
Initiation per AT –2.9 ± 0.3 –12.7 ± 0.9 1.00 ± 0.07

Self-complementary 0 –1.4 0.40
Non-self-complementary 0 0 0

RNA/RNA
r(AA/UU) -10.0 ± 0.1 -30.4 ± 0.2 -0.57 ± 0.05
r(AU/UA) -10.1 ± 0.1 -30.8 ± 0.1 -0.55 ± 0.03
r(UA/AU) -11.1 ± 0.4 -31.5 ± 0.8 -1.33 ± 0.09
r(CA/GU) -12.1 ± 0.3 -32.1 ± 0.6 -2.14 ± 0.08
r(GU/CA) -10.7 ± 0.2 -28.7 ± 0.1 -1.80 ± 0.16
r(CU/GA) -11.2 ± 0.3 -30.4 ± 0.3 -1.77 ± 0.17
r(GA/CU) -11.7 ± 0.2 -30.5 ± 0.3 -2.24 ± 0.07
r(CG/GC) -11.1 ± 0.5 -28.8 ± 1.1 -2.16 ± 0.16
r(GC/CG) -13.8 ± 0.1 -34.6 ± 0.1 -3.07 ± 0.01
r(GG/CC) -14.8 ± 0.1 -38.4 ± 0.1 -2.89 ± 0.06
initiation 4.6 ± 2.0 -2.9 ± 6.1 5.50 ± 0.11

per terminal AU 6.5 ± 0.1 18.2 ± 0.1 0.85 ± 0.92
self-complementary 0 –1.4 0.43

non-self-complementary 0 0 0
RNA/DNA
rAA/dTT –6.6 ± 0.4 –19.8 ± 0.2 –0.46 ± 0.05
rAC/dGT –8.3 ± 0.3 –23.0 ± 0.2 –1.17 ± 0.06
rAG/dCT –7.7 ± 0.0 –20.7 ± 0.1 –1.28 ± 0.01
rAU/dAT –7.6 ± 0.5 –24.0 ± 0.1 –0.16 ± 0.03
rCA/dTG –9.0 ± 0.3 –27.2 ± 0.3 –0.56 ± 0.09
rCC/dGG –8.1 ± 0.1 –20.5 ± 0.0 –1.74 ± 0.01
rCG/dCG –7.8 ± 0.2 –21.5 ± 0.1 –1.13 ± 0.02
rCU/dAG –5.3 ± 0.1 –16.5 ± 0.1 –0.18 ± 0.02
rGA/dTC –6.8 ± 0.2 –19.2 ± 0.1 –0.85 ± 0.02

Page 34 of 47RSC Chemical Biology

R
S

C
C

he
m

ic
al

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 9
/6

/2
02

5 
5:

03
:0

1 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5CB00105F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cb00105f


35

rGC/dGC –8.6 ± 0.0 –21.7 ± 0.1 –1.87 ± 0.03
rGG/dCC –11.5 ± 0.3 –30.9 ± 1.4 –1.92 ± 0.00
rGU/dAC –7.1 ± 0.4 –20.2 ± 0.6 –0.83 ± 0.03
rUA/dTA –7.3 ± 0.5 –22.9 ± 0.1 –0.20 ± 0.03
rUC/dGA –5.7 ± 0.6 –13.9 ± 0.2 –1.39 ± 0.05
rUG/dCA –8.0 ± 0.5 –21.5 ± 0.1 –1.33 ± 0.04
rUU/dAA –7.2 ± 0.1 –22.7 ± 0.1 –0.16 ± 0.04

init. per rG-dC or rC-dG –5.0 ± 0.3 –19.7 ± 0.3 1.11 ± 0.16
init. per rA-dT or rU-dA –3.0 ± 0.1 –13.9 ± 0.4 1.31 ± 0.12

aExperiments were conducted in 10 mM Na2HPO4, 1 mM Na2EDTA, 100 mM 
NaCl, and 40 wt% PEG200 at pH 7.0.

Table 4. DNA/DNA and RNA/RNA NN parameters for ∆G°37 NN [cation] and ∆G°37 NN 

[crowder] in 100 mM NaCl, with prefactors (mcs) for different cosolutesa

Sequence ∆G°37 NN [cation]
b

(kcal mol-1)
∆G°37 NN [crowder]

c

(kcal mol-1)
mcs

d

(kcal mol-1)
DNA/DNA PEG/1,2 

DME

EG/GLY 1,3PDO/

2-ME

d(AA/TT) -0.65 0.10 2.0 0.7 1.3

d(AT/TA) -0.60 0.32 6.4 2.2 4.2

d(TA/AT) -0.36 0.20 4.0 1.4 2.6

d(CA/GT) -1.23 0.23 4.6 1.6 3.0

d(GT/CA) -1.20 0.31 6.2 2.2 4.1

d(CT/GA) -1.11 0.20 4.0 1.4 2.6

d(GA/CT) -0.93 0.06 1.2 0.4 0.8

d(CG/GC) -1.85 0.47 9.4 3.3 6.2

d(GC/CG) -2.05 0.72 14.4 5.0 9.5

d(GG/CC) -1.69 0.44 8.8 3.0 5.8

Initiation per GC 0.98 -0.22 -4.4 -1.5 -2.9

Initiation per AT 1.03 -0.03 -0.6 -0.2 -0.4

RNA/RNA ∆G°37 NN ev 

[crowder]
e

(kcal mol-1)

∆G°37 NN wa 

[crowder]
e

(kcal mol-1)

PEG/2-ME/1,2 

DME

EG/GLY/1,3 

PDO

r(AA/UU) -0.77 -0.22 0.35 7.1 2.9

r(AU/UA) -0.52 -0.22 0.19 3.9 1.6

r(UA/AU) -1.25 -0.22 0.19 3.9 1.6

r(CA/GU) -1.77 -0.22 -0.14 -2.9 -1.2

r(GU/CA) -2.08 -0.22 0.56 11.4 4.7

r(CU/GA) -1.76 -0.22 0.25 5.1 2.1

r(GA/CU) -2.20 -0.22 0.20 4.1 1.7

r(CG/GC) -2.16 -0.22 0.24 4.9 2.0

r(GC/CG) -3.24 -0.22 0.45 9.2 3.8
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r(GG/CC) -3.08 -0.22 0.43 8.8 3.6

initiation -0.77 -0.22 1.63 33.3 13.7

per terminal AU -0.52 NAf 0.40 8.2 3.4

aCorrection factor for self-complementary sequences is 0.4 kcal mol-1 for all 
cosolutes, as it is independent of crowding environments.
bCation concentration is 100 mM Na+.
cCrowder condition is 40 wt% PEG200.
dDifferent cofactors were used for each crowder: polyethylene glycol (PEG), 2-
methoxy ethanol (2-ME), 1,2-dimethoxyethane (1,2 DME), ethylene glycol (EG), 
glycerol (GLY), and 1,3-propanediol (1,3 PDO) 
eIn the case of RNA/RNA, the excluded volume effect and water activity 
contribution should be considered separately for accurate prediction.
fExcluded volume effect for terminal AU pairs was not considered to avoid 
overestimation, as it had already been considered for initiation.

Table 5. Experimental and predicted thermodynamic parameters for DNA and RNA sequences 
under different cosolute and salt conditions

Sequence Solutiona Measured 
ΔG°37

(kcal mol-1)

Ref Predicted 
ΔG°37

(kcal mol-1)

d(GAGGTCGT) 10 wt% PEG200 at 1 M NaCl –8.4 ± 0.1 153 –8.3
20 wt% PEG200 at 1 M NaCl –7.7 ± 0.1 –7.9
30 wt% PEG200 at 1 M NaCl –7.0 ± 0.3 –7.0

d(ATGCGCAT) 20 wt% PEG1000 at 1 M NaCl –8.2 ± 0.3 187 –8.1
20 wt% PEG6000 at 1 M NaCl –8.6 ± 0.6 –8.4

d(CCGTACGG) 20 wt% EG at 100 mM NaCl –7.2 ± 0.8 147 –6.7
20 wt% 1,3 PDO at 100 mM NaCl –6.6 ± 0.3 –6.2

d(CCGTAACGTTGG) 20 wt% EG at 100 mM NaCl –10.9 ± 0.8 147 –10.5
20 wt% 1,3 PDO at 100 mM NaCl –10.8 ± 0.9 –9.9

r(GGCUCAAUUGAC) 10 wt% PEG200 at 100 mM NaCl -15.1 ± 0.8 154 -15.4
20 wt% PEG200 at 100 mM NaCl -14.8 ± 0.6 -14.7
30 wt% PEG200 at 100 mM NaCl -14.0 ± 0.7 -14.0
40 wt% PEG200 at 100 mM NaCl -13.8 ± 0.6 -13.7
20 wt% EG at 100 mM NaCl -14.7 ± 0.6 -14.7
20 wt% PEG2000 at 100 mM NaCl -16.9 ± 0.8 -16.3
20 wt% PEG8000 at 100 mM NaCl -16.7 ± 0.4 -16.5
10 wt% PEG200 at 1 M NaCl -18.9 ± 0.8 -17.9
20 wt% PEG200 at 1 M NaCl -18.3 ± 0.6 -17.2

r(GGAUCGAUCC) 20 wt% EG at 100 mM NaCl -12.7 ± 0.7 154 -13.1
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r(AUCAGCUGAU) 20 wt% EG at 100 mM NaCl -9.9 ± 0.6 154 -9.9
r(GGCUCAAUUGAC) 20 wt% EG at 100 mM NaCl -14.4 ± 0.6 154 -15.0
r(GAUCCGGAUC) 20 wt% 1,3 PDO at 100 mM NaCl -14.5 ± 0.7 154 -12.9
r(GGCUCAAUUGAC) 20 wt% 1,3 PDO at 100 mM NaCl -14.7 ± 0.6 154 -14.7
r(GCUAUG) 20 vol% PEG200 at 1 M NaCl -5.2 ± 0.2 150 -5.2
r(AGAUAUCU) 20 vol% PEG200 at 1 M NaCl -5.7 ± 0.1 150 -5.6
r(UUAUCGAUAA) 20 vol% PEG200 at 1 M NaCl -6.9 ± 0.0 150 -6.8

aExperiments were performed in a buffer containing 10 mM Na2HPO4 (pH 7.0), 1 mM 

Na2EDTA, and NaCl. 

 

Fig. 1 (a) Folding process from the primary sequence to the secondary and 

tertiary structures to form an active ribozyme. The structures depict a HH 

ribozyme. (b) Chemical mechanism of cleavage and ligation by nucelic acid (NA) 

enzymes, showing catalysis by a general acid (AH+) and base (:B). 

(a)

(b)

GCCGUUACCU•••

Folding Folding

Cleavage

Cleavage

Ligation

Primary sequence Secondary structure Tertiary structure
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Fig. 2 Conceptual illustration of the fitness landscape of a NA enzyme. Most wild-

types (WT) are located on or near the top of isolated fitness peaks, where only a 

few mutational steps lead to a significant reduction in fitness. Red arrows indicate 

the evolution process driven by genetic mutations. Blue arrows indicate a 

different evolutional process discovered by AI technique, which predicts the 

structure and function of NA enzyme efficiently. The sequence space of NAs is 

represented by a dimension with four possible nucleobases at each position 

along the NA chain. To visualize these vast sequence spaces, the sequence 

information is usually compressed into two dimensions using principal component 

analysis. 
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Fig. 3 Schematic illustration of population structure before and after one round 

of in vitro selection of Ref 48. The experimentally constructed fitness landscape 

clarified that the distal end of paired region (helix) 3 (P3) is a key residue for the 

class II ligase ribozyme, which had not been identified. 

ATCGTGGCT•••TAC

ATTGTGACT•••TTC
1 2 n n = Hamming distance

Master sequence

Analysed sequence

Fitness

Hamming
distance

Hamming

distance

L2

L3

P3
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Fig. 4 Secondary structures of representative ribozymes. (a) Twister (Osa-1-4), 

(b) CPEB3, (c) HDV, (d) hairpin, and (e) HH ribozymes. The typical 

physicochemical and biological characteristics of each ribozyme are shown in 

the figure. 

(b)(a)

(c) (d)

(e)

The active site centered
in a double-pseudoknot
with two two long-range
tertiary interactions

Found in nature with 2,700
examples observed across
bacteria, fungi, plants, and
animals.

Located in the second
intron of the CPEB3
gene which
belongs to a family of
genes regulating mRNA
polyadenylation.

Highly conserved and
found only in mammals.

Five helical segments
connected by a double
pseudoknot.

Necessary for viral
replication of Hepatitis
delta virus in human
cells.

Two domains, each
consisting of two short
base paired helices
separated by an
internal loop.

No requirement of metal
ions for the catalysis.

Composed of three base
paired helices,
separated by short
linkers of conserved
sequence

No requirement of metal
ions for the catalysis.
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Fig. 5 Schematic illustration of MFold prediction.40 The energy dot plot 

displays the predicted optimal structure and one sub-optimal structure for the 

example sequence shown in the figure.
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Fig. 6 Schematic illustration of energetic contributions of NA enzyme reaction. 

The energetic contribution of NA structure formation affects the target disruption 

(∆Gdisruption), the conformational switch of NA enzyme strand (∆Gswitch), the binding 

to (dissociation from) a target (∆Ghybrid related to ∆GT1 and ∆GT2) and folding of 

the core of NA enzyme (∆GC1 and ∆GC2). The cofactor binding of Mg2+ is essential 

for the tertiary structure of the active center (∆Gac) for the catalysis.

Target

NA enzyme

Binding

Hydrolysis

Dissociation

Binding & Dissociation

∆GT1 ∆GT2

Hydrolysis

Mg2+

∆GC1

∆GC2

∆Gac

driven by duplex
formation via Watson-
Crick base pairing

Target ing

affected by tert iary 
structure formation and
metal ion binding

Catalysis

∆Gdisruption

∆Gswitch

∆Ghybrid

Target

DNAzyme

Binding

Hydrolysis

Dissociation

∆Gtotal = ∆Ghybrid - ∆Gswitch - ∆Gdisruption
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Fig. 7 Factors determining the thermodynamic stability of a canonical NA 

duplex. The duplex stability is determined by the bulk factors (hydrogen bondings, 

stacking interactions, and conformational entropy) and environmental factors 

(cation, water, and crowder interactions).

G C

TA

(i) Hydrogen bond

(ii) Stacking interaction










(iii) 

Conformational
entropy

Cation
(iv) Counterion
condensation

Water
(v) Hydration

Crowder

(vi) Molecular
crowding

∆G˚bulk

∆G˚ environment

∆G˚duplex = ∆G˚bulk + ∆G˚environment
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Fig. 8 Schematic illustrations of the effect of crowders on the stability of NA 

structures. (a) Formation of NA structure, which occurs with volumetric (∆V) and 

hydration (∆nw) changes. Physical contributions of (b) large and (c) small 

cosolutes in an aqueous solution. Adiditonal factors such as changes in dielectric 

constant, viscosity, and direct interactions with crowders influence NA stability.
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Fig. 9 Schematic representation of the contributions of bulk structure, cations, 

and crowders to NN parameters. (Left) Variation of ∆G˚37, NN against the Na+ 

concentration, based on data from Weber’s report188. (Mid) Plot showing the 

excluded volume effect for RNA-PEG interactions against base pair length. 

(Right) Plot of the contribution of water activity on the stability of 

r(GAUUACGCCUG) against ∆aw.

∆G˚NN = ∆G˚NN [bulk] + ∆G˚NN [environment]

= ∆G˚NN [bulk] + ∆G˚NN [cation] + ∆G˚NN [crowder]

Bulk and cation effect

∆G˚NN, bulk & ∆G˚NN, cation
can be calculated from relation between
∆G˚NN and Na+ in absence of cosolute.

∆G˚37 = 0.55 exp(-[Na+]/0.14) - 2.02

∆G˚37 = -1.47 kcal mol-1 at [Na+] = 0 mM

= -1.52 kcal mol-1 at [Na+] = 10 mM

∆G˚NN, no cosolute = ∆G˚NN, bulk when
∆G˚NN, cation is zero.

∆G˚NN, no cosolute = ∆G˚NN, bulk + ∆G˚NN, cation

Water activityExcluded volume effect
∆G˚ev, dup = RT • ρ • ∆V • C

(ρ: density of water, ∆V: change in the
excluded volume between cosolute and
nucleic acid upon duplex formation, C:
concentration of cosolute)

∆G˚ 37, NN, wa = mcs • ∆aw
(mcs is a prefactor.)

∆G˚dup, wa lineally increased against
∆aw depending on cosolute structure.

EG, Gly,
1,3 PDO

PEGs, 2-ME,
1,2 DME

∆G˚37, ev, NN = ∆G˚37, ev, dup / n
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Fig. 10 Required elements for the rational design of active NA enzymes in cells 

from NA sequence and environment information. 
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No primary research results, software or code have been included and no new data 

were generated or analysed as part of this review.
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