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Fitness landscapes and thermodynamic
approaches to development of nucleic acids
enzymes: from classical methods to AI integration

Shuntaro Takahashi, *ab Michiaki Hamada,cd Hisae Tateishi-Karimataab and
Naoki Sugimoto *a

Nucleic acids (NA), namely DNA and RNA, dynamically fold and unfold to perform their functions in

cells. Functional NAs include NA enzymes, such as ribozymes and DNAzymes. Their folding and target

binding are governed by interactions between nucleobases, including base pairings, which follow

thermodynamic principles. To elucidate biological mechanisms and enable diverse technical applications, it

is essential to clarify the relationship between the primary sequence and the catalytic activity of NA

enzymes. Unlike methods for predicting the stability of NA duplexes, which have been widely used for over

half a century, predictive approaches for the catalytic activity of NA enzymes remain limited due to the low

throughput of activity assays. However, recent advances in genome analysis and computational data

science have significantly improved our understanding of the sequence–function relationship in NA

enzymes. This article reviews the contributions of data-driven chemistry to understanding the reaction

mechanisms of NA enzymes at the nucleotide level and predicting novel NA enzymes with catalytic activity

from sequence information. Furthermore, we discuss potential databases for predicting NA enzyme activity

under various solution conditions and their integration with artificial intelligence for future applications.

1. Introduction

Program information is essential for designing reproducible
systems and controlling their functions. In living cells, this
information is held by nucleic acids (NA)—specifically, DNA
and RNA—which are chemicals that store and transfer genetic
information. Their nucleotide sequences are precisely repli-
cated, transcribed, and translated to synthesise proteins that
act as functional molecules. Genetic materials and their pro-
ducts are characterised by the fundamental rule that mono-
meric molecules, such as nucleotides and amino acids, are
synthesised and function as one-dimensional macromolecules
and units of information. From information decoding (via DNA

transcription to RNA and RNA translation to protein) to func-
tional expression (through protein folding), the transfer of
genetic information relies on a series of molecular recognition
events at the monomer level. The input and output of genetic
information during transcription and translation follow the
Watson–Crick base pairing rule, which unambiguously dictates
how RNA and then protein are synthesised from a DNA
sequence.1 However, the functional expression of such infor-
mation depends on the chemical properties of NAs as polymers.
Since the formation and melting of secondary NA structures,
including duplex association and dissociation, play key roles in
regulating replication, transcription, and translation,2–4 under-
standing their thermodynamic stability is crucial for program-
ming and predicting their functions from sequences.

Proteins are the primary functional molecules in living
organisms, but NAs themselves also exhibit functional activity.
Recent advances, such as the Nobel Prize-winning methods for
protein structure prediction, have made the design of func-
tional proteins more feasible.5 However, even with empirical
knowledge of protein synthesis and folding, practical chal-
lenges persist in deploying designed proteins for nanotechnol-
ogy and medical applications.6 On the other hand, NAs are
easier to prepare chemically and biosynthetically than proteins,
owing to their simple chemical composition and high water
solubility. Therefore, research on their functional application
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in technology and medicine is highly active. Functional NAs
were first discovered in self-splicing RNA for introns.7,8 Such
catalytic RNA sequences called ribozymes are widespread across
genomes and participate in biological processes such as tRNA
processing,9 rolling circle viral genome replication,10 and peptide
bond synthesis.11 Various ribozyme families composed of different
sequences and structures, such as hammerhead (HH),12 hepatitis
delta virus (HDV),13 Varkud satellite (VS),14 and hairpin,15 have
been isolated from cells and viruses. Moreover, bioinformatics
approaches have contributed to the identification of other ribo-
zyme families, including twister,16 twister-sister,17 hatchet,17 and
pistol.17 HH, HDV, and twister family members have relatively
small molecular sizes and high catalytic activities. Thus, these
family members have frequently been used for in vitro and in vivo
applications to generate RNAs with precise termini.16,18–20

Each ribozyme has its own primary sequence, which folds
into the secondary and tertiary structures that form its active
site (Fig. 1a). Natural ribozymes mainly catalyse the cleavage of
RNA strands (Fig. 1b). The catalytic activity of RNA led to the RNA
world hypothesis,21 which postulates that in prebiotic life, RNA
not only replicates and transmits genetic information, but also
catalyzes a number of metabolic reactions. In vitro selection
techniques have generated ribozymes exhibiting various catalytic
activities22,23 including phosphorylation, ligation, replication,
aminoacylation, and Diels–Alder reactions.24–27 Besides RNA,
DNA has also been found to exhibit similar catalytic activity in
the form of deoxyribozymes (DNAzymes), which act as catalysts
for Pb2+-dependent cleavage of RNA phophodiester bonds.28

RNA-cleaving DNAzyme offers an attractive modality for targeting
undruggable regions of the human genome,29,30 since the
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solid-phase chemical synthesis of DNA makes it a more inexpen-
sibe and scalable material than RNA. Moreover, a their targeting
sequences can be designed for any mRNA, enabling the identifi-
cation of highly specific, low off-target candidates for safer
nucleic acid therapeutics.31,32 NA enzymes combined with apta-
mers (having molecular recognition ability) and complementary
sequences (for DNA/RNA sequence recognition) have been
actively investigated for applications such as biosensors and gene
switches.33–35 Thus, the development and use of NA enzymes,
including ribozymes and DNAzymes, are of great interest in
biotechnology.

NA enzymes exhibit enzymatic activity through the for-
mation of secondary and tertiary structures from primary
nucleotide sequences via intramolecular base pairing and other
interactions. Therefore, understanding the correlation between
the sequence and function of NA enzymes is of great impor-
tance from both fundamental and applied perspectives.36 NAs,
on the other hand, are subject to greater solution effects than
proteins due to their nature as polyanions.37 For example, the
activity of NA enzymes is determined by their tertiary structure,
accepting target molecules dominated by cations and inter-
action with cofactors such as divalent metal ions.38 Notable
targets of NA enzymes include DNA and RNA in cells, where the
solution conditions are different from in vitro test tube condi-
tions. The intracellular environment is both diverse and den-
sely packed with biomolecules at concentrations ranging 50–
400 g L�1.39 This molecular crowding profoundly affects nucelic
acid conformation and stability.40 As the effect of solution
conditions on the structural stability and enzymatic activity of

NA enzymes is highly complex, the systematic demonstration of
sequences and environment-dependent reactions is required to
determine which parts of the sequence are important for the
function of an NA enzyme. Accumulation of enzymatic data
creates a database of the properties of NA enzymes, which can
provide information as parameters to predict how the sequences
of these enzymes correlate with their catalytic activity. Therefore,
progress in the analysis of large RNA and DNA datasets, together
with computational approaches using machine learning and
artificial intelligence (AI), is expected to advance the science
and technology field considerably. In this review, we introduce
such recent advances in the development of NA enzymes using
data-driven analysis. Additionally, we analyse a novel dataset for
determining the activities of these enzymes and discuss their
utility for future predictions.

2. Development and improvement of
NA enzymes using a large dataset

To determine the relationship between the sequence, reactant
solution conditions, and activity of NA enzymes, a large dataset
of enzyme activity derived from enzyme sequences is required.
However, the analyses of enzymes with multiple sequences
(mutations) usually rely on low-throughput experiments,
including gel electrophoresis assays. To drastically expand the
utility of NA enzymes, high-throughput assays must be devel-
oped to analyse their activity, sequence, and potential targets.
Next-generation sequencing (NGS) is commonly used to analyse

Fig. 1 (a) Folding process from the primary sequence to the secondary and tertiary structures to form an active ribozyme. The structures depict a HH
ribozyme. (b) Chemical mechanism of cleavage and ligation by nucelic acid (NA) enzymes, showing catalysis by a general acid (AH+) and base (:B).
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large numbers of sequences. NGS technology enables the
simultaneous reading of millions of comparatively long NA
sequences.41,42 NGS was originally developed for genome
sequencing and has since been applied to the in vitro selection
of NA aptamers and functional proteins that bind to or inhibit
target proteins.43,44 NGS not only provides sequence data, but
also the number of sequences from the read count, which
enables the rapid analysis of sequence–function relationships
in massive datasets.

The evolution process is propelled by mutations in genetic
information. Consequently, the generated phenotype may fit
more desired (or undesired) characteristics than the original.
Thus, evolution toward the desired functions of NA enzymes
relies on the ‘‘fitness’’ of the sequence and the efficiency of
catalytic activity during each evolutional process.45 NGS tech-
nology facilitates the visualization of these processes, aiding
the understanding of how NA enzyme sequences achieve cata-
lytic function from all possible sequences across the entire
fitness landscape (Fig. 2).46 The concept of a fitness landscape
supports our understanding of evolutionary dynamics, describ-
ing a topography in which state variables such as genotype and
phenotype are used as coordinates, and the height at each
coordinate is the degree of adaptation.47 When applied to NA
enzymes, the fitness landscape contributes significantly to our
understanding of the improvements in catalytic activity, as
knowledge of this adaptive topography makes it possible to
predict what evolutionary processes a sequence population will
undergo.

The first study to create a fitness landscape for NA enzymes
tested the class II ligase ribozyme.48 The mutated ribozyme
pool, containing 41013 sequences via error-prone replication,
was incubated with the immobilized substrate strand to select
the active ribozymes. After single-round selection, NGS data
revealed the enrichment of the sequence containing a small

Hamming distance, which is a measure of the difference
between two strings of the same length compared to the
original sequence (Fig. 3). Furthermore, the kinetically trapped
incubation affected the enrichment of sequence reads of active
ribozymes, which correlated with the observed catalytic rate
constant (kobs) obtained experimentally.48 The large dataset of
mutated ribozyme sequence and activity allowed the creation of
a fitness landscape with 4107 genotypes and phenotypes. It
demonstrated the importance of sequences in the central bulge
of the RNA and the distal end of paired region (helix) 3 (P3),
along with other key residues characterised previously, in
achieving maximal activity (Fig. 3).49,50 Thus, single or double
mutations introduced through error-prone polymerase chain
reaction or doped solid-phase synthesis enable the examination
of fitness landscapes to identify the key sequence and struc-
tural determinants of NAzyme catalytic activity. This approach
has been applied to various self-cleaving ribozymes owing to
their small molecular sizes, which facilitate the efficient gen-
eration of mutants and direct assessment of mutational effects
by reading enzyme activity.51–55 For example, analysis of every
single and double mutant of the Osa-1-4 twister ribozyme from
Oryza sativa (Fig. 4a) demonstrated its unexpected resilience to
mutations, even with its compact and intricate structure.
Notably, different structural components showed distinct levels
of mutational sensitivity.53 A recent comprehensive mutational
study analysed five self-cleaving ribozymes, including CPEB3,
HDV, hairpin, and hammerhead (Fig. 4b–e), in addition to
twister ribozymes, providing strcutural information about the
ribozymes, including their paired regions, unpaired loops, non-
canonical structures, and tertiary structural contacts.55 Addi-
tionally, NGS technology was used to study ribozyme evolution
from random sequence and random structure space. In the
case of Diels–Alderase ribozymes, increasing the selection

Fig. 2 Conceptual illustration of the fitness landscape of a NA enzyme.
Most wild-types (WT) are located on or near the top of isolated fitness
peaks, where only a few mutational steps lead to a significant reduction in
fitness. Red arrows indicate the evolution process driven by genetic
mutations. Blue arrows indicate a different evolutional process discovered
by AI technique, which predicts the structure and function of NA enzyme
efficiently. The sequence space of NAs is represented by a dimension with
four possible nucleobases at each position along the NA chain. To visualize
these vast sequence spaces, the sequence information is usually com-
pressed into two dimensions using principal component analysis.

Fig. 3 Schematic illustration of population structure before and after one
round of in vitro selection of ref. 48. The experimentally constructed
fitness landscape clarified that the distal end of paired region (helix) 3
(P3) is a key residue for the class II ligase ribozyme, which had not been
identified.
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pressure and analyzing the secondary structure through MFold
prediction provided insights into how mutations can be ration-
ally introduced to improve catalytic activity.56 The NGS approach
can be adopted not only for ribozymes but also for DNAzymes.57

In a high-throughput kinetic analysis, 4096 DNAzyme reactions
were assayed simultaneously at multiple time points to deter-
mine the observed rate constants (kobs) of 533 active mutants.
These values were then used to calculate activation energies (Ea),
offering detailed insights into the mutational landscape of the
DNAzymes. Deep sequencing enabled this quantitative view of
the sequence–function relationship, which would not have been
achievable with traditional assays.

The massive kinetic data on genotype and phenotype are
also powerful tools for the analysis and development of NA
enzymes triggered by ligand binding. One approach is to
rationally develop an aptazyme, which is a combination of an
aptamer and a self-cleaving ribozyme, to regulate translation by
mRNA cleavage.51,58 In a previous study, all pairwise mutations

in the glmS ribozyme triggered by glucosamine 6-phosphate
(GlcN6P) were analysed using a custom-built fluorescent RNA
array.54 This array was derived using a combined approach
involving ribozyme transcription on a sequencing tip and direct
measurement of single-molecule fluorescence (detected using a
total internal reflection fluorescence microscope). The advan-
tage of this approach is its ability to monitor self-cleavage over
short and long timescales, which enables the differentiation of
both slow and fast self-cleaving variants. More recently, a
kinetic sequencing (k-seq) technique was developed to perform
a more accurate kinetic analysis of ribozymes using NGS.59,60

This technique provided the rate constants and maximum
amplitude of the reaction without specialised instrumentation.
The k-seq technique has been used to study the fitness land-
scape of self-aminoacylating and glmS ribozymes.60,61 By lever-
aging this approach, it is possible to systematically explore how
biochemical factors, such as catalytic efficiency and the Michae-
lis constant, influence sequence conservation, even among

Fig. 4 Secondary structures of representative ribozymes. (a) Twister (Osa-1-4), (b) CPEB3, (c) HDV, (d) hairpin, and (e) HH ribozymes. The typical
physicochemical and biological characteristics of each ribozyme are shown in the figure.
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partially active or inactive NA variants. As mentioned earlier,
massive amounts of sequence data can be linked to each
kinetic parameter through recent technological advances. The
activity parameters describe the chemical mechanisms of the
reactions, depending on the sequence and structure of the NA
enzymes, with nucleotide-level resolution. Thus, if a sequence
of NA enzymes responds well, comparing it (without additional
experimentation) with the response of a mutant can provide
insights into the mechanism of the NA enzyme and indicate the
presence of novel structural rearrangements.

In contrast to the in vitro evolution of NA enzymes, naturally
evolved NA enzymes, in which the full structural diversity is
observed in many classes of ribozymes found in nature, have
also been targeted. Using massively parallel oligonucleotide
synthesis, a diverse RNA pool was generated, enabling the direct
functional testing of potential twister ribozyme sequences. This
included over 1600 previously reported putative twisters and
approximately 1000 new candidates derived from over a thousand
different organisms.62,63 The cleavage high-throughput Assay, an
NGS-based method for evaluating the activity of each potential
sequence, revealed a broad structural tolerance to mutations.64

These data about the relationships between the sequence
diversity and activity of the twister ribozymes could advance
the computational search of the active twister ribozymes,
which identified the first intrinsically active twister ribozyme in
mammals.64 Although current studies are primarily focused
on NA enzymes involved in cleavage, high throughput analysis
has enabled the creation of large datasets for designing NA
enzymes with other activities based on sequence information.

3. Prediction tool for NA enzyme
sequence and function using a
computational approach

One of the goals of studying the sequence–structure–function
relationship of NA enzymes is to develop a prediction tool for
determining the catalytic activity of NA enzymes from their
sequence information. Classical bioinformatics approaches have
developed ribozyme sequence finders from natural sequences.
Conventional identification of ribozymes is perfomed using the
basic local alignment search tool, which detects sequence
homology.65 However, tertiary structures of the enzymes, which
play a key role in their catalytic activity, must be considered for
more accurate identification. Therefore, structure-based search
programs are better suited for the identification of ribozymes.
Computational tools such as RNAMotif,66 Infernal,67 and
RNArobo68 employ structural models of RNA secondary structures
to systematically search for various ribozyme classes across
sequence databases. These search programs have been success-
fully used to identify putative ribozymes in nature.16,69

3.1. Prediction approach based on energetic calculation for
secondary structures of DNA and RNA

One of the major approaches to secondary (or even tertiary)
structure prediction depends on the concept that a biomolecule

folds into a certain structure with a minimum energy level based
on its sequence information. Thus, the most stable structure can
be inferred computationally by comparing the energy levels of all
potential configurations. The most widely used prediction method
based on the thermodynamic parameters of DNA and RNA stems
(duplexes) derived from sequence information is the ‘‘nearest-
neighbour (NN) model.’’ The NN model operates on the concept
that the stability of a base pair is determined by its interactions
with neighbouring base pairs. This model, developed by Tinoco Jr.
et al., is extensively used to predict the thermostability of Watson–
Crick duplexes, assuming that the duplexes exhibit two-state
melting behavior.70–72 Currently, the thermodynamic parameters
for various duplexes—such as DNA/DNA, RNA/RNA, and RNA/DNA
hybrids—have been established by Turner et al., along with
contributions from other researchers, including our team.73–75 In
addition to the stems, the energetic penalties associated with
mismatches, bulges, loops, dangling ends, and other motifs have
been empirically determined.76–95 With these expanded NN para-
meters, we can computationally identify the minimum energy
structure from the possible conformations. MFold (UNAfold)
remains the pioneering and most commonly used method for
predicting DNA/RNA secondary structures.96–98 The algorithm
evaluates all possible base pair combinations in the single-
stranded sequence to determine the minimum free energy
(MFE), DGmin, for the secondary structure. The sequence is repre-
sented as r1, r2, . . ., ri, . . ., rj, . . ., rn, where ri and rj correspond to the
ith and jth nucleotides (1 r i o j r n). The method then generates
an ‘‘energy dot plot’’ where base pairs (ri�rj) within DDG of DGmin,
are plotted on a triangular grid (Fig. 5). The free energy increase,
DDG, is determined by P/100 � |DG|, where P is the ‘‘percent

Fig. 5 Schematic illustration of MFold prediction.40 The energy dot plot
displays the predicted optimal structure and one sub-optimal structure for
the example sequence shown in the figure. Reproduced from ref. 40 with
permission from the Royal Society of Chemistry.
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sub-optimality’’, which permits sub-optimal folding. The optimal
folding with DGmin or sub-optimal folding with DGmin + DDG is
generated by selecting optimal or sub-optimal base pairs and
computing their corresponding folding configurations.

Loops and bulges contribute destabilising or stabilising fac-
tors that influence overall structural stability. Accounting for
these energy contributions enhances the reliability of prediction
systems.88 Despite its widespread use, the average accuracy of
secondary structure prediction is 73% (�9%) for known canoni-
cal base pairs, indicating that the MFE approach alone has
limited effectiveness in revealing true structures under different
conditions. This can be attributed to the inability of the method
to fully account for solution conditions, tertiary interactions, and
protein binding effects. Therefore, the RNAstructure tool was
developed for more reliable secondary structure predictions,99,100

integrating prediction constraints derived from experimental
data—including selective 20-hydroxyl acylation analysed by pri-
mer extension (SHAPE), enzymatic cleavage, and chemical mod-
ification accessibility.101

Although the MFE approach is based on a simple concept,
various structural combinations can be generated from a single
DNA or RNA sequence, resulting in the formation of several
structural motifs. Thus, predicting the secondary structure of
relatively long chains is difficult. In particular, NA enzymes require
the formation of a tertiary structure, which makes prediction
complex. Machine learning and artificial intelligence (AI) tools
have performed well in addressing these issues.102 Besides MFE-
based methods, non-MFE approaches relying on the centroid or
maximum expected accuracy have also been developed.103–105

With over 100 000 RNA sequences now available in databases,106

the SPOT-RNA method, which is one of the representative predic-
tions based on an advanced deep-learning technique, has been
created to predict RNA secondary structures with exceptional
accuracy.107 E2Efold is an end-to-end deep learning model to
directly predict the RNA base-pairing matrix for the RNA secondary
structure prediction.108 Ufold represents base matching on RNA
sequences as ‘‘pseudo-image information’’ in a two-dimensional
matrix.109 However, the non-MFE approach often causes overfit-
ting of machine learning by rich parameterisation.110 These dis-
advantages have been minimised using a combination of MFE and
non-MFE approaches to achieve greater prediction accuracy. Lin-
earFold is based on a beam search teachnique to apply this
algorithm to both machine-learned and Turner’s thermodynamic
models, resulting in fast and accurate prediction of the secondary
structure from a long RNA strand.111,112 MXFold and MXFold2
generate folding scores, which are calculated using a deep neural
network incorporating Turner’s NN free energy parameters.113,114

Therefore, these studies strongly suggest that incorporating ther-
modynamic information can enhance the robustness of deep
learning-based RNA secondary structure predictions. The repre-
sentative methods for prediction of RNA secondary structure are
listed in Table 1.

3.2. Tools for the design of NA enzymes

The prediction of secondary structures provides valuable infor-
mation for predicting ribozyme structure and function. Tools

for the rational design of NA enzyme sequences have become a
necessity, owing to the promising therapeutic applications of
trans-acting ribozymes and DNAzymes for the cleavage of the
target RNAs. Various computational tools for the design of NA
enzymes have been developed up to now and surmarised in
Table 2. For the catalytically active structure of NA enzyme and
the substrate target, the energetic contribution of the formation
of stems between NA enzyme and the substrate target is funda-
mental as well as the dissociation of each structured state
(Fig. 6). Thus, the approach based on the MFE concept has
been applied to identigy accessible target sites of NA enzyme
using the tools of the secondary structure prediction.115–119 For
example, Sfold tool120 was used to compute DGtotal through
consideration of the energy gain due to the complete intermo-
lecular hybridization and the energy costs owing to structure
alterations for both the target and the ribozyme calculated by
DGtotal = DGhybrid � DGswitch � DGdisruption (Fig. 6).118 Another
classical approach is called Aladdin,119 which searches the
optimized target sequences from the melting temperature of
right and left arms of the HH ribozyme evaluated by MFold.96

Although these tools are simple and useful, it does not contain
off-target specificity analysis to find out the non-specific bind-
ing to the target region. RiboSoft is the first automated tool to
design the HH ribozyme with consideration of the off-target
effect, which can output some potential ribozyme sequences
including the active one for silencing a disease-causing gene.121

This tool is currently updated as RiboSoft 2.0 which can design
different types of trans-acting conventional and allosteric
ribozymes.122

In such applications, a trans-acting DNAzyme also fascinat-
ing owing to the higher chemical stability and easier chemical
synthesis than RNA. DNAzyme binds to the target RNA by
forming stems as well as ribozyme, which are governed by
thermodynamics, depending on the base components. DNAmor-
eDB and DNAzymeBuilder are pioneering web tools that can be
used to design DNAzymes for any target sequence.123,124 DNA-
moreDB is a comprehensive resource for DNAzymes that orga-
nises information such as sequences, selection conditions,
catalysed reactions, kinetic parameters, substrates, cofactors,
structural data (when available), and literature. The DNAzyme-
Builder database includes the details of 44 RNA-cleaving and 93
DNA-cleaving DNAzymes, including those with RNA-like rA at the
cleavage site, all of which function in a trans-cleavage manner
and cleave intermolecular substrates. This internal database
compiles extensive data on DNAzymes, including optimal reac-
tion conditions, kinetic properties, types of catalysed reactions,
sequence recognition, cleavage sites, and the necessary design
elements to ensure optimal DNAzyme performance. Thus, pre-
dicted information on the target site, DNAzyme sequence, and
catalytic activity can be obtained. To further enhance the predic-
tion of DNAzyme activity, a machine learning approach was
employed. This approach was used to identify DNAzymes capable
of efficiently triaging thousands of potential molecules specific to
a target RNA.125 Based on logistic regression, the developpers
trained the model on published and newly generated 10–23
DNAzyme activity data incorporating (1) the energetic parameters
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of the enzyme/target stems and (2) the DNAzyme secondary
structure derived from NN parameters of RNA/DNA hybrids,75

obtained using the secondary structure prediction tool.101,126

The analysis revealed that the binding free energy between the
DNAzyme and its RNA target is the key factor influencing
efficiency. However, other elements, such as the internal

Table 1 Prediction of RNA and DNA secondary structure based on nearest-neighbour (NN) and non-NN models

Method Concept Feature Ref.

NN model based prediction
MFold/UNAFold MFE-based thermodynamics The most commonly used prediction tool and has now been

replaced by UNAFold.
96–98

RNAfold MFE-based thermodynamics Availability to compute the equilibrium partition functions
and base-pairing probabilities.

174 and
175

Sfold MFE-based thermodynamics Sampling all possible structures in the Boltzmann ensemble
of secondary structures.

120

RNAstructure MFE-based thermodynamics Database using alternative set of thermodynamic parameters
compared to MFold and SHAPE data.

99 and
100

LinearX tool MFE-based thermodynamics Fast prediction of the secondary structure from a long RNA
strand using the beam search technique.

111 and
112

NUPACK MFE-based thermodynamics Applicable to the prediction of pseudoknot structure. 176

PKNOTS MFE-based thermodynamics Applicable to the prediction of pseudoknot structure. 177

CONTRAfold Machine learning with conditional
log-linear models

Trained by the nearest neighbor models (without NN
parameters) for solved RNA secondary structures with
parameters corresponding to free energy.

104

ContextFold Machine learning with max-margin
framework

Trained by the nearest neighbor models (without NN
parameters) using fine-grained RNA structures.

178

CentroidFold Non MFE-based thermodynamics The maximum expected accuracy approach 105

SimFold MFE-based thermodynamics & machine
learning with constraint generation and
Boltzmann likelihood

Trained by large sets of structural as well as NN parameters
for predicting the secondary structure of RNA with
thermodynamic parameters.

179

MXfold MFE-based thermodynamics & machine
learning with max-margin framework

Combination of NN parameters with the structural data of
RNAs trained by a method called structured support vector
machine for precise prediction of substrutures.

113

MXfold2 MFE-based thermodynamics & machine
learning with max-margin framework
and deep learning

Application of deep learning to learn RNA folding (helix
stacking, helix opening, helix closing, and unpaired region)
scores based on NN parameters

114

HotKnots MFE-based thermodynamics & machine
learning with constraint generation

Applicable to the prediction of pseudoknot structure. 180

EternaFold Multi task machine learning methods Trained by NN model based on different data types, SHAPE
structures, and riboswitch-ligand binding affinity data for the
accurate prediction of RNA structures.

181

Non-NN based model
Pfold Probabilistic generative model using

stochastic context-free grammars
Utilizing simple context-free grammars. 182

CONUS Probabilistic generative model using
stochastic context-free grammars

Comparing nine lightweight grammars for RNA secondary
structure prediction.

183

TORNADO Probabilistic generative model using
stochastic context-free grammars

Describing various RNA grammars including NN models 110

SPOT-RNA Deep learning based model Using an ensemble of ultra-deep hybrid networks and
pre-trained with a large set of non-redundant RNAs.

107

E2Efold Deep learning based model Predicting the probability of each nucleotide match by
machine learning without any NN parameters

108

Ufold Deep learning based model Representing base matching on RNA sequences as
‘‘pseudo-image information’’ in a two-dimensional matrix.

109

Knotfold Deep learning based model Applicable to the prediction of pseudoknot structure. 184

RiNALMo Deep learning based model Utilizing the 650 million parameters RNA language model 185
RNAformer Deep learning based model Facilitating the application of axial attention like AlphaFold

protein prediction.
186
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structure of the DNAzyme, also play a crucial role in determin-
ing its catalytic activity.125 The machine learning approach is
also trained the established database from DNAmoreDB, which
is called SequenceCraft.127 This approach was trained with the
kobs data from 178 RNA-cleaving DNAzymes together with vary-
ing experimental conditions, including cofactor type and
concentration, pH, and temperature. In this platform, a dot-
bracket notation of secondary structures calculated using MFold
was used to generate a numerical vector, which ensures the
good prediction accuracy of the kobs values.

As shown earlier, machine learning and AI technologies
have advanced and have been applied to the prediction of
RNA secondary structures.102 Moreover, creating a large dataset
of NA enzymes can provide sufficient teaching data for AI to output
accurate predictions (Fig. 2). One approach is to study the NGS

data obtained from massive mutational analyses of NA enzymes
to generate a fitness landscape. The fitness landscape can
provide valuable information not only for elucidating the evolu-
tionary process of ribozymes, but also for the rational design of
novel enzymes. For instance, the AI technique involving NGS-
based high-throughput data enabled the understanding of the
F1*U ribozyme neutral network.128 In this study, experimental
evaluation of over 120 000 ribozyme sequences provided valu-
able empirical evidence that neutral networks can enhance the
accessibility and predictability of the fitness landscape. In
another study, the effects of higher-order mutations on the
CPEB-3 ribozyme were also reported.129

Inverse folding has been studied for over a decade in the
design of NA enzymes. RNAiFold was used as an example to
design ten artificial cis-cleaving HH ribozymes by identifying

Fig. 6 Schematic illustration of energetic contributions of NA enzyme reaction. The energetic contribution of NA structure formation affects the target
disruption (DGdisruption), the conformational switch of NA enzyme strand (DGswitch), the binding to (dissociation from) a target (DGhybrid related to DGT1 and
DGT2) and folding of the core of NA enzyme (DGC1 and DGC2). The cofactor binding of Mg2+ is essential for the tertiary structure of the active center (DGac)
for the catalysis.

Table 2 Representative tools for the design of NA enzymes

Method Design Feature Ref.

Sfold RNA-cleaving ribozymes Scoring of the complex formation of ribozyme and target RNA based on DG values
obtained from the MFE-based secondary structure prediction.

118

Aladdin HH ribozyme Optimization of the stem stability of the ribozyme-target complex obtained from
the MFE-based secondary structure prediction.

119

RiboSoft RNA-cleaving ribozymes Output of potential sequences with automatically minimizing the off-target effect. 121 and 122

DNAzymeBuilder RNA-cleaving DNAzyme The sequence design of DNAzymes based on NN parameters and 123
NAR Genom
Bioinform 2023

10–23 DNAzyme The sequence design of DNAzymes using NN parameters with machine learning
based on the stem stability and the internal structure of the DNAzyme.

125

SequenceCraft RNA-cleaving DNAzyme Machine learning algorithms capable of predicting DNAzyme sequence and the
potential rate constants based on various sequence-, cofactor-, and buffer-related factors.

127

Nat. Commun. 2024 Ligase ribozyme Providing the fitness landscape to rationally design the novel ribozymes. 128

RNAiFold Various types of NA
enzymes (HH ribozyme
was demonstrated.)

Generation of ribozyme sequence under the concept to of inverse folding based on
the MFE-based secondary structure prediction.

130

RfamGen Various types of NA
enzymes (glmS ribozyme
was demonstrated.)

Generation of novel ribozyme sequences by deep learning of characteristics of a
group of RNAs with specific functional and structural features.

132
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RNA sequences whose MFE secondary structure corresponded
to a user-defined target.130 Each of the ribozymes demonstrated
functionality in a cleavage assay. However, this method has
some challenges in terms of accuracy and versatility because of
the difficulty in predicting tertiary interactions of nucleotides.
Therefore, advanced computational approaches are required.
One of these approaches, a deep generative model, which has
already been applied to protein design,131 is an attractive pipe-
line for generating novel designs for NA enzymes. Recently, the
world’s first deep generative model for NA enzymes, RfamGen,
was developed to support the design of artificial RNAs with
desired functions and structures.132 RfamGen combines a varia-
tional autoencoder, a method widely used in deep generative
modelling, and a covariance model that can classify functional
RNAs from information on RNA sequences and secondary struc-
tures. These features can be learned, and artificial sequences can
be generated. Computer analysis and biochemical experiments
confirmed that RfamGen could stably generate RNA sequences
with a structure and function homologous to the learned RNA
population. The performance of RfamGen was also attributed to
the application of a covariance model to a deep generative model.
RfamGen was employed to generate 1000 new sequences using
the glmS ribozyme that cleaves its own RNA sequence by binding
to small molecules. A comprehensive analysis of the generated
RNA sequences was conducted on a large scale.132 Interestingly,
RfamGen showed a greater tendency to generate high-activity
enzyme sequences than native sequences.132 Therefore, recent

advances in computational approaches using both machine
learning and AI could demonstrate predictions for the develop-
ment and generation of novel NA enzymes.

Recent AI-based predictions target not only RNA-RNA inter-
action but also RNA-protein interaction.133 Moreover, a predic-
tive tool for tertiary structures of NA enzymes has also been
developed recently. Similar to how AlphaFold predicts protein
structure from sequence information,134 the machine learning
and deep learning approach such as RhoFold+, RNA-Puzzles
and trRosettaRNA can be used to develop a prediction tool for
NA structures, including NA enzymes.135–137 However, one issue
is that the number of solved tertiary structures of NAs is small
for machine learning and deep learning approaches, in con-
trast with the extensive datasets available for proteins. How-
ever, the simpler chemical characteristics of NAs compared to
proteins may overcome this issue, allowing computational
approaches to provide the necessary structural information.

4. New data base for prediction
pipelines of NA zymes structure and
activity

As mentioned earlier, the energetic calculation of the secondary
structure is a fundamental process to predict the structure and
activity of NA enzymes. Thermodynamically, six factors predo-
minantly affect duplex stability (Fig. 7)40 by governing base pair

Fig. 7 Factors determining the thermodynamic stability of a canonical NA duplex. The duplex stability is determined by the bulk factors (hydrogen
bondings, stacking interactions, and conformational entropy) and environmental factors (cation, water, and crowder interactions).
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formation: (i) hydrogen bonds between base pairs—in Watson–
Crick base pairs, the alignment of hydrogen bonding donors
and acceptors contributes to their high selectivity and stability.
(ii) Stacking interactions between adjacent base pairs—the
aromatic rings of the bases, being electron-rich, engage in p
stacking interactions with other aromatic rings. (iii) Conforma-
tional entropy—the transition from a single-stranded random
coil structure to a helix results in an energetic penalty. (iv)
Cation condensation—in addition to the structural factors,
environmental factors should play a key role in determining
the stability and structure of NAs. For instance, the influence of
cations on duplex formation is explained by the theory of
counterion condensation. Polyanionic NA strands experience
significant electrostatic repulsion, which makes their binding
unfavourable. Cations neutralise the anionic charges, thereby
promoting duplex formation. (v) Hydration—another impor-
tant factor in duplex formation is the water molecules, which
specifically hydrate the grooves and backbones of the structure.
The extent of hydration depends on the structural conforma-
tion. (vi) Molecular crowding—crowders significantly affect the
stability of NA structures. Moreover, the behaviour of NA
stability and structure can be affected by the other physico-
chemical property of the solution such as the dieletric constant,
viscosity, and so on. Because the conditions under which NA
enzymes work differ between environments, such as test tubes
and cells, these factors should be carefully considered.

To predict the NA enzyme activity in various conditions, the
effect of the environment on the energetic contribution to the
NA enzyme is also fundamental. As shown in Fig. 6, the
targeting function via the duplex formation is driven by cation
concentration, hydration and molecular crowding, whereas the
catalysis function is affected by molecular crowding for the
formation of the tertiary structure as well as the binding of the
cofactor of the metal ion by the dielectric constant changes. In
the classical secondary structure prediction of NAs based on the
MFE approach, cation concentration corrections have been

Fig. 8 Schematic illustrations of the effect of crowders on the stability of
NA structures. (a) Formation of NA structure, which occurs with volumetric
(DV) and hydration (Dnw) changes. Physical contributions of (b) large and
(c) small cosolutes in an aqueous solution. Adiditonal factors such as
changes in dielectric constant, viscosity, and direct interactions with
crowders influence NA stability.

Table 3 NN parameters for DNA duplexes in 40 wt% PEG200 and
100 mM NaCl at 37 1Ca

Sequence
DH�NN

(kcal mol�1)
DS�NN

(cal mol�1 K�1)
DG�37NN

(kcal mol�1)

DNA/DNA
d(AA/TT) �6.5 � 0.3 �19.2 � 0.8 �0.55 � 0.07
d(AT/TA) �9.4 � 0.3 �29.4 � 0.8 �0.28 � 0.05
d(TA/AT) �4.3 � 0.5 �13.3 � 1.3 �0.16 � 0.14
d(CA/GT) �13.1 � 0.1 �38.8 � 0.1 �1.00 � 0.05
d(GT/CA) �9.2 � 0.1 �26.8 � 0.1 �0.89 � 0.01
d(CT/GA) �3.4 � 0.6 �7.9 � 1.6 �0.91 � 0.11
d(GA/CT) �4.9 � 0.7 �13.0 � 2.1 �0.87 � 0.06
d(CG/GC) �6.4 � 0.7 �16.1 � 2.0 �1.38 � 0.12
d(GC/CG) �4.2 � 0.7 �9.3 � 2.0 �1.31 � 0.06
d(GG/CC) �4.0 � 0.6 �8.9 � 2.0 �1.25 � 0.03
Initiation per GC �10.1 � 0.2 �35.1 � 0.5 0.76 � 0.06
Initiation per AT �2.9 � 0.3 �12.7 � 0.9 1.00 � 0.07
Self-complementary 0 �1.4 0.40
Non-self-complementary 0 0 0
RNA/RNA
r(AA/UU) �10.0 � 0.1 �30.4 � 0.2 �0.57 � 0.05
r(AU/UA) �10.1 � 0.1 �30.8 � 0.1 �0.55 � 0.03
r(UA/AU) �11.1 � 0.4 �31.5 � 0.8 �1.33 � 0.09
r(CA/GU) �12.1 � 0.3 �32.1 � 0.6 �2.14 � 0.08
r(GU/CA) �10.7 � 0.2 �28.7 � 0.1 �1.80 � 0.16
r(CU/GA) �11.2 � 0.3 �30.4 � 0.3 �1.77 � 0.17
r(GA/CU) �11.7 � 0.2 �30.5 � 0.3 �2.24 � 0.07
r(CG/GC) �11.1 � 0.5 �28.8 � 1.1 �2.16 � 0.16
r(GC/CG) �13.8 � 0.1 �34.6 � 0.1 �3.07 � 0.01
r(GG/CC) �14.8 � 0.1 �38.4 � 0.1 �2.89 � 0.06
Initiation 4.6 � 2.0 �2.9 � 6.1 5.50 � 0.11
Per terminal AU 6.5 � 0.1 18.2 � 0.1 0.85 � 0.92
Self-complementary 0 �1.4 0.43
Non-self-complementary 0 0 0
RNA/DNA
rAA/dTT �6.6 � 0.4 �19.8 � 0.2 �0.46 � 0.05
rAC/dGT �8.3 � 0.3 �23.0 � 0.2 �1.17 � 0.06
rAG/dCT �7.7 � 0.0 �20.7 � 0.1 �1.28 � 0.01
rAU/dAT �7.6 � 0.5 �24.0 � 0.1 �0.16 � 0.03
rCA/dTG �9.0 � 0.3 �27.2 � 0.3 �0.56 � 0.09
rCC/dGG �8.1 � 0.1 �20.5 � 0.0 �1.74 � 0.01
rCG/dCG �7.8 � 0.2 �21.5 � 0.1 �1.13 � 0.02
rCU/dAG �5.3 � 0.1 �16.5 � 0.1 �0.18 � 0.02
rGA/dTC �6.8 � 0.2 �19.2 � 0.1 �0.85 � 0.02
rGC/dGC ��8.6 � 0.0 �21.7 � 0.1 �1.87 � 0.03
rGG/dCC �11.5 � 0.3 �30.9 � 1.4 �1.92 � 0.00
rGU/dAC �7.1 � 0.4 �20.2 � 0.6 �0.83 � 0.03
rUA/dTA �7.3 � 0.5 �22.9 � 0.1 �0.20 � 0.03
rUC/dGA �5.7 � 0.6 �13.9 � 0.2 �1.39 � 0.05
rUG/dCA �8.0 � 0.5 �21.5 � 0.1 �1.33 � 0.04
rUU/dAA �7.2 � 0.1 �22.7 � 0.1 �0.16 � 0.04
init. per rG-dC or rC-dG �5.0 � 0.3 �19.7 � 0.3 1.11 � 0.16
init. per rA-dT or rU-dA �3.0 � 0.1 �13.9 � 0.4 1.31 � 0.12

a Experiments were conducted in 10 mM Na2HPO4, 1 mM Na2EDTA,
100 mM NaCl, and 40 wt% PEG200 at pH 7.0.
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widely applied using improved NN parameters.73,138–140 For
example, these corrections enabled the MFold database to
predict structures at arbitrary NaCl concentrations.96 However,
current tools rely on Turner’s NN parameters with such correc-
tions. Therefore, the effects of hydration and crowding on NA
stability have not yet been considered. Solutions under cellular
conditions are densely packed with biomacromolecules such as
proteins and NAs. Large numbers of small molecules, such as
metabolites and metal ions, are also present. Hence, incorpor-
ating the new NN parameter datasets can expand the feasability
of the MFE approach for predicting NA stability and structure,
especially under cellular conditions. The total concentration of
macromolecules has been estimated to reach 400 mg mL�1,
occupying approximately 40% of the intracellular space.141

These in vivo crowded conditions are extremely different from
the diluted conditions of standard in vitro systems. Therefore, it
is important to understand the physicochemical properties of
NAs under molecular crowding. NA foldings and unfoldings
occur in equilibrium, and are accompanied by structural
changes and water interactions (Fig. 8a). The biophysical effects
of molecular crowding are mostly based on the physicochemical
properties of the crowders, which affect the volume and hydra-
tion effects of NA folding processes (Fig. 8b and c). The
formation of a duplex makes the strand volume compact; a
large cosolute tends to stabilise the duplex, whereas a small
cosolute destroys it by effectively decreasing the water activity of
the solution (as duplex formation accompanies hydration).142

For NA enzyme reactions, the effect of crowders on the dielectric
constant and viscosity plays an important role in the reaction
kinetics.143 Moreover, crowders can interact directly with NAs to

stabilise the structure via CH–p interactions.144 Therefore, the
behaviour of NA structures is influenced by these biophysical
factors under molecular crowding conditions.145,146

To consider the effect of molecular crowding on dupex
stability, the NN parameters for DNA duplexes (including self-
and non-self- complementary strands) have been determined
for buffers containing 100 mM NaCl with 40 wt% polyethylene
glycol 200 (PEG200) (Table 3).147 Compared to NN parameters
under non-crowding condition, molecular crowding exhibited
different effects on each NN parameter. Moreover, the relative
destabilisation of NN with only GC pairs—d(CG/GC), d(GC/CG),
and d(GG/CC)—was considerably larger than that of other NN
pairs. This may be attributed to the low water activity caused by
PEG200, as GC pairs require more water molecules for stabili-
sation compared to AT pairs.148 The most remarkable differ-
ence was found among the initiation factors. The DH1 and DS1
corresponding to duplex initiation differed drastically under
crowding conditions compared to that in the solution without
cosolutes. This was because of the preferential hydration of
terminal oligonucleotide pairs induced by the cosolute in the
crowded environment.147 Although this is the first report of NN
parameters under crowding conditions, their application
should not be limited to specific environments. For example,
NN parameters under crowding have been only determined
under 40% PEG condition with 100 mM NaCl for the DNA/DNA
duplex149 and under 20% PEG200 condition with 1 M NaCl for
the RNA/RNA duplex.150 Parameters for RNA/RNA duplexes in
the Eco80 artificial cytoplasm, which contains 80% of Escher-
ichia coli metabolites and biological concentrations of metal
ions, have also reported.151 To generalise the available NN

Fig. 9 Schematic representation of the contributions of bulk structure, cations, and crowders to NN parameters. (Left) Variation of DG�37;NN against the
Na+ concentration, based on data from Weber’s report.188 (Mid) Plot showing the excluded volume effect for RNA-PEG interactions against base pair
length. (Right) Plot of the contribution of water activity on the stability of r(GAUUACGCCUG) against Daw.
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parameters for various cation and crowding conditions, each
value of DG�37;NN for a duplex was considered as the sum of

contributions from the bulk structure, cations, and crowders

DG�37NN ¼ DG�37NN½bulk� þ DG�37NN½cation� þ DG�37NN½crowder�

� �
. The

DG�37NN½cation� parameters at arbitrary concentrations of NaCl

can be calculated from those measured at 1 M NaCl by applying
the known dependence of [Na+] for each NN base pair and
regarding DG�37NN½bulk� as the value at 0 M [Na+].152 Fig. 9

illustrates the scheme for obtaining NN parameters under the
desired solution conditions. The DG�37NN½crowder� parameters can

be determined from the linear function of changes in water
activity Daw, as duplex (de)stabilisation DDG�37

� �
in the presence

of crowders correlated linearly with changes in the excluded
volume of cosolutes and water activity.153 Based on this strategy,
the improved NN parameters for any molecular environment
can be obtained,147 This approach of adjusting NN parameters
according to cation and crowder conditions has been success-
fully applied to RNA/RNA and RNA/DNA duplexes.154,155 Table 3
shows the NN parameters of DNA/DNA, RNA/RNA, and RNA/
DNA duplexes under 100 mM NaCl and 40 wt% PEG200 condi-
tions. The parameters generally applied to different solutions
for RNA/RNA duplexes are listed in Table 4. Thus, the latest NN

parameters can be regarded as universal for predicting duplexes
under arbitrary solution conditions. Examples of some predic-
tions under different salt and crowding conditions are listed in
Table 5.

Considering that the nucleolar environment is similar to
that of PEG200,156 the stability of the DNA duplex in Ddx4
liquid–liquid phase separation (LLPS)157 was successfully pre-
dicted using the universal parameters derived from 50%
PEG200 with 0.1 M NaCl conditions.147 This approach clarifies
that the nucleolar condition can be mimicked by the crowding
conditions, allowing the investigation of various NA behaviours
in the nucleolus using controlled solution conditions. These
parameters could also accurately predict the stability of the RNA
hairpin in the nucleus and cytosol,154 and the efficiency of gene
editing by CRISPR/Cas9.155 Moreover, improvements in predict-
ing the stability of GC- and AT-biased DNA duplexes enabled the
prediction of the efficiency of G-quadruplex formations from
GC-rich sequences, as well as the identification of the replica-
tion initiation region in genomic DNAs.158 These approaches,
which mimick local cellular environments, can be a novel
platform to assess the behaviour of NAs in such localised areas.
For example, the mitochondrial environment in human cells
induces G4 formation owing to the highly crowded conditions

Table 4 DNA/DNA and RNA/RNA NN parameters for DG�37NN½cation� and DG�37NN½crowder� in 100 mM NaCl, with prefactors (mcs) for different cosolutesa

Sequence
DG�37NN½cation�

b

(kcal mol�1)
DG�37NN½crowder�

c

(kcal mol�1) mcs
d (kcal mol�1)

DNA/DNA
PEG/1,2
DME EG/GLY

1,3PDO/
2-ME

d(AA/TT) �0.65 0.10 2.0 0.7 1.3
d(AT/TA) �0.60 0.32 6.4 2.2 4.2
d(TA/AT) �0.36 0.20 4.0 1.4 2.6
d(CA/GT) �1.23 0.23 4.6 1.6 3.0
d(GT/CA) �1.20 0.31 6.2 2.2 4.1
d(CT/GA) �1.11 0.20 4.0 1.4 2.6
d(GA/CT) �0.93 0.06 1.2 0.4 0.8
d(CG/GC) �1.85 0.47 9.4 3.3 6.2
d(GC/CG) �2.05 0.72 14.4 5.0 9.5
d(GG/CC) �1.69 0.44 8.8 3.0 5.8
Initiation per GC 0.98 �0.22 �4.4 �1.5 �2.9
Initiation per AT 1.03 �0.03 �0.6 �0.2 �0.4

RNA/RNA
DG�37NNev½crowder�

e

(kcal mol�1)
DG�37NNwa½crowder�

e

(kcal mol�1)
PEG/2-ME/
1,2 DME

EG/GLY/
1,3 PDO

r(AA/UU) �0.77 �0.22 0.35 7.1 2.9
r(AU/UA) �0.52 �0.22 0.19 3.9 1.6
r(UA/AU) �1.25 �0.22 0.19 3.9 1.6
r(CA/GU) �1.77 �0.22 �0.14 �2.9 �1.2
r(GU/CA) �2.08 �0.22 0.56 11.4 4.7
r(CU/GA) �1.76 �0.22 0.25 5.1 2.1
r(GA/CU) �2.20 �0.22 0.20 4.1 1.7
r(CG/GC) �2.16 �0.22 0.24 4.9 2.0
r(GC/CG) �3.24 �0.22 0.45 9.2 3.8
r(GG/CC) �3.08 �0.22 0.43 8.8 3.6
initiation �0.77 �0.22 1.63 33.3 13.7
per terminal AU �0.52 NAf 0.40 8.2 3.4

a Correction factor for self-complementary sequences is 0.4 kcal mol�1 for all cosolutes, as it is independent of crowding environments. b Cation
concentration is 100 mM Na+. c Crowder condition is 40 wt% PEG200. d Different cofactors were used for each crowder: polyethylene glycol (PEG),
2-methoxy ethanol (2-ME), 1,2-dimethoxyethane (1,2 DME), ethylene glycol (EG), glycerol (GLY), and 1,3-propanediol (1,3 PDO). e In the case of
RNA/RNA, the excluded volume effect and water activity contribution should be considered separately for accurate prediction. f Excluded volume
effect for terminal AU pairs was not considered to avoid overestimation, as it had already been considered for initiation.
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compared to the nucleus,159 which can be regarded as a 60 wt%
1,3-propanediol (1,3 PDO) solution.160 These findings indicate
that the classical NN parameters obtained using 1 M NaCl
solutions are not suitable for the prediction of either duplex
stability or NA function based on duplex formations. Therefore,
the newly obtained NN parameters can be key components for
predicting and developing functional NA enzymes in specific
environments, particularly under intracellular conditions.

In addition to the solution environment, compartmentaliza-
tion also affects the solution conditions and NA behaviour.
Since cellular environments are composed of lipid compartments,
their effect on the structural stability of NAs and activity of NA
enzymes should be critical from an evolutionary viewpoint, espe-
cially as a protocell model. The effects of the compartments on NA
behaviour have been studied using reverse micelles and liposomes.
Reverse micelles can create a nano-confinement space of variable
size by changing the ratio of surfactants such as sodium bis(2-
ethylhexyl)sulfosuccinate. These conditions in reverse micelles
efficiently decrease DNA duplex stability.161 Interestingly, non-
duplex structures such as G-quadruplex and i-motif formations
are promoted in the nano-confinement space by the reverse
micelles.162,163 These findings indicate that solution compartments
within the nanometre size range alter the solution environment,
similar to molecular crowding, and cause the destabilisation of
duplexes and stabilisation of non-duplexes. For NA enzyme activity,
the excluded volume effect caused by compartmentalisation signifi-
cantly promotes reaction activity. In one case, the reaction kinetics
and conformational folding of hairpin ribozymes within a lipo-
some were investigated.164 The conditions inside the liposome
(100 nm in diameter), prepared from a 1 : 1 mixture of oleic acid

and 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine, enhanced
both intermolecular and intramolecular RNA interactions.
Simultaneously, it promoted the proper folding of tertiary
structures, including the docked conformation of the active
hairpin ribozyme and its characteristic triplex arrangement.
Moreover, the misfolding rate of the active structure was
reduced, contributing to the promotion of ribozyme activity. A
similar phenomenon was observed in the case of a self-
aminoacylating ribozyme.165

Membrane-less compartments formed by LLPS also provide
a confinement environment for NA enzymes. The Ddx4 LLPS
decreases the DNA and RNA duplexes similar to PEG200-based
in vitro crowding conditions.157 Cationic polymers or peptides are
used to form LLPS with HH, hairpin, R3C ligase, and 10–23
DNAzyme ribozymes, all of which are activated, unlike in bulk
solutions.166,167 The unique LLPS conditions can simulate the
unique ionic conditions required for ribozyme activity by concen-
trating ions such as Mg2+s.168 Although the physicochemical
properties of LLPS are not clearly defined, ribozyme activation
have been recreated in molecular crowding conditions.169–171 Thus,
future parameterization of solution properties mimicked by in vitro
crowding conditions can provide a useful index to predict the
stability and function of NA enzymes in the intracellular membrane
or membrane-less organelles, including nucleus, mitochondria,
nucleolus, and stress granules. For the application of NA enzymes
in cells, their chemical modification is necessary to avoid degrada-
tion. As chemical modifications can affect both the stability and
tertiary structure of NAs,172,173 a comprehensive analysis of the
effects of chemical modifications on will also impact the develop-
ment and functional prediction of NA enzymes.

Table 5 Experimental and predicted thermodynamic parameters for DNA and RNA sequences under different cosolute and salt conditions

Sequence Solutiona
Measured DG�37
(kcal mol�1) Ref.

Predicted DG�37
(kcal mol�1)

d(GAGGTCGT) 10 wt% PEG200 at 1 M NaCl �8.4 � 0.1 153 �8.3
20 wt% PEG200 at 1 M NaCl �7.7 � 0.1 �7.9
30 wt% PEG200 at 1 M NaCl �7.0 � 0.3 �7.0

d(ATGCGCAT) 20 wt% PEG1000 at 1 M NaCl �8.2 � 0.3 187 �8.1
20 wt% PEG6000 at 1 M NaCl �8.6 � 0.6 �8.4

d(CCGTACGG) 20 wt% EG at 100 mM NaCl �7.2 � 0.8 147 �6.7
20 wt% 1,3 PDO at 100 mM NaCl �6.6 � 0.3 �6.2

d(CCGTAACGTTGG) 20 wt% EG at 100 mM NaCl �10.9 � 0.8 147 �10.5
20 wt% 1,3 PDO at 100 mM NaCl �10.8 � 0.9 �9.9

r(GGCUCAAUUGAC) 10 wt% PEG200 at 100 mM NaCl �15.1 � 0.8 154 �15.4
20 wt% PEG200 at 100 mM NaCl �14.8 � 0.6 �14.7
30 wt% PEG200 at 100 mM NaCl �14.0 � 0.7 �14.0
40 wt% PEG200 at 100 mM NaCl �13.8 � 0.6 �13.7
20 wt% EG at 100 mM NaCl �14.7 � 0.6 �14.7
20 wt% PEG2000 at 100 mM NaCl �16.9 � 0.8 �16.3
20 wt% PEG8000 at 100 mM NaCl �16.7 � 0.4 �16.5
10 wt% PEG200 at 1 M NaCl �18.9 � 0.8 �17.9
20 wt% PEG200 at 1 M NaCl �18.3 � 0.6 �17.2

r(GGAUCGAUCC) 20 wt% EG at 100 mM NaCl �12.7 � 0.7 154 �13.1
r(AUCAGCUGAU) 20 wt% EG at 100 mM NaCl �9.9 � 0.6 154 �9.9
r(GGCUCAAUUGAC) 20 wt% EG at 100 mM NaCl �14.4 � 0.6 154 �15.0
r(GAUCCGGAUC) 20 wt% 1,3 PDO at 100 mM NaCl �14.5 � 0.7 154 �12.9
r(GGCUCAAUUGAC) 20 wt% 1,3 PDO at 100 mM NaCl �14.7 � 0.6 154 �14.7
r(GCUAUG) 20 vol% PEG200 at 1 M NaCl �5.2 � 0.2 150 �5.2
r(AGAUAUCU) 20 vol% PEG200 at 1 M NaCl �5.7 � 0.1 150 �5.6
r(UUAUCGAUAA) 20 vol% PEG200 at 1 M NaCl �6.9 � 0.0 150 �6.8

a Experiments were performed in a buffer containing 10 mM Na2HPO4 (pH 7.0), 1 mM Na2EDTA, and NaCl.
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Conclusion and perspective

In this article, we summarise the importance of thermodynamic
parameters and future perspectives on NA enzyme prediction and
development. The activity of an NA enzyme involves the folding of
its structure, interaction with target NAs, and catalytic chemistry.
A major milestone in NA enzyme technology is the development
of tools for predicting enzymatic activity and structure from
sequence information. In the case of proteins, an AI-based
structural prediction program named AlphaFold has been devel-
oped and widely used, providing significant progress in the
scientific and application fields. Recent advances in both AI-
based and energy model-based approaches have extended beyond
single RNA structure prediction to include interactions between
RNA and other molecules, such as proteins and other RNAs.
These interaction predictions are particularly promising for the
in vivo design of nucleic acid enzymes. Furthermore, the integra-
tion of AI with genomic functional data—such as sequence
variants, regulatory elements, and epigenomic features—holds
great potential to further enhance RNA design by enabling
context-aware predictions tailored to cellular environments.

As computational structural predictions advance in the field
of NAs, an accurate prediction model for NAs, similar to Alpha-
Fold, may be established in the near future. However, two key
issues, which the alphaFold algorithm does not account for,
remain: (1) prediction of the de novo structure from primary
sequence information and, more importantly, (2) effect of the
molecular environment on structure formation. Since, NAs fold
dynamically to form tertiary structures from single strands and
are more sensitive to the environment than proteins, basic
energetic information on how the environment affects their
base pairing is required for accurately predicting the structure
and activity of NA enzymes. While computational approaches,
including AI and machine learning techniques, have progressed

rapidly, the necessary experimentally obtained fundamental
databases have not been adequately collected. However, as
reviewed in this article, the key factors determining the folding
and activity of NA enzymes at the sequence level have now been
identified, based on the accumulation of chemical properties of
NAs affecting their thermodynamics (Fig. 10). The elucidation of
the underlying chemistry, driven by a large dataset collected
under various critical situations, would be useful for designing
AI and machine learning techniques to solve the structure and
activity of NA enzymes within specific environments. Moreover,
the de novo generation of NA enzymes that function actively in
targeted environments could be realized without requiring a
massive database of experimentally solved tertiary nucleic acid
structures.
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H. Tafer, C. Flamm, P. F. Stadler and I. L. Hofacker,
Algorithms Mol. Biol., 2011, 6, 26.

127 M. Eremeyeva, Y. Din, N. Shirokii and N. Serov, BMC
Bioinf., 2025, 26, 2.

128 R. Rotrattanadumrong and Y. Yokobayashi, Nat. Commun.,
2022, 13, 4847.

129 J. D. Beck, J. M. Roberts, J. M. Kitzhaber, A. Trapp, E. Serra,
F. Spezzano and E. J. Hayden, Front. Mol. Biosci., 2022,
9, 893864.

130 I. Dotu, J. A. Garcia-Martin, B. L. Slinger, V. Mechery,
M. M. Meyer and P. Clote, Nucleic Acids Res., 2014, 42,
11752–11762.

131 A. Strokach and P. M. Kim, Curr. Opin. Struct. Biol., 2022,
72, 226–236.

132 S. Sumi, M. Hamada and H. Saito, Nat. Methods, 2024, 21,
435–443.

133 G. Pepe, R. Appierdo, C. Carrino, F. Ballesio, M. Helmer-Citterich
and P. F. Gherardini, Front. Mol. Biosci., 2022, 9, 1000205.

134 J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov,
O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žı́dek,
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185 R. J. Penić, T. Vlašić, R. G. Huber, Y. Wan and M. Šikić,
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