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The evolution and application of RNA-focused
small molecule libraries

Amirhossein Taghavi,†a Noah A. Springer,†ab Patrick R. A. Zanon, a Yanjun Li, cd

Chenglong Li,c Jessica L. Childs-Disneya and Matthew D. Disney *ab

RNA structure plays a role in nearly every disease. Therefore, approaches that identify tractable small

molecule chemical matter that targets RNA and affects its function would transform drug discovery. Despite

this potential, discovery of RNA-targeted small molecule chemical probes and medicines remains in its

infancy. Advances in RNA-focused libraries are key to enable more successful primary screens and to define

structure–activity relationships amongst hit molecules. In this review, we describe how RNA-focused small

molecule libraries have been used and evolved over time and provide underlying principles for their

application to develop bioactive small molecules. We also describe areas that need further investigation to

advance the field, including generation of larger data sets to inform machine learning approaches.

1. Introduction

The dysfunction and aberrant expression of RNA is associated
with many diseases,1–8 making this biomolecule a promising
therapeutic target.9–11 For example, aberrant splicing events

cause diseases including frontotemporal dementia (FTD) and
Alzheimer’s Disease12 as well as b-thalassemia.13 Aberrant expres-
sion of micro (mi)RNAs plays a key role in cancer development
by dysregulating the expression of oncogenes or tumor
suppressors.14,15 In some cancers, internal ribosome entry sites
(IRES) allow certain genes to be translated in a cap-independent
manner, bypassing the traditional cap-dependent initiation of
translation16,17 and promoting cell survival, angiogenesis, and tumor
growth. RNA repeat expansions acquire a gain-of-function and cause
microsatellite disorders, a class of neuromuscular diseases.18

Different approaches have been adopted to target disease-
causing RNAs. Antisense oligonucleotides (ASOs) were among
the first modalities19 used for RNA-targeting and have been
used in numerous cases.19,20 As ASOs bind to complementary
sequences in the target RNA, the most potent oligonucleotides
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are often those that bind to unstructured regions.21–23 ASOs
function via a variety of mechanisms, including RNase H-
mediated degradation and steric blockage of RNA binding
proteins (RPBs),21 to modulate alternative pre-mRNA splicing,
for example. Fomivirsen was the first US Food and Drug
Administration (FDA)-approved ASO,24 and since then multiple
ASO-based therapeutics have been clinically approved.25–27

Although numerous backbone and base modification have
been introduced that improve their stability and chemical
properties,28,29 challenges associated with ASO delivery,30,31

stability and trafficking,32 and hepatotoxicity33,34 still hinder
their use in the clinic.35

Small molecules provide an alternative for targeting RNA.
Although their development towards RNA targets is not as
advanced as ASOs, small molecules can have favorable drug-
like and physicochemical properties, and these properties can

be fine-tuned through conventional medicinal chemistry
approaches.36 Folded RNAs provide binding pockets for
small molecules including RNA-protein complexes,37–40 and
also RNAs with internal loops, bulges, stems, pseudoknots,
and junctions.41–45 Designing small molecules to target RNA,
however, is fundamentally different and perhaps even more
complex than targeting proteins, partly due to the unique
features of RNA such as its structural flexibility and dynamics,
surface electrostatics, and lower diversity of building blocks
(four nucleotides vs. 20 amino acids). Despite these challenges,
small molecule–RNA interactions hold the potential to affect
biology by various mechanisms, including directing pre-mRNA
splicing events, inhibiting precursor miRNA processing, repres-
sing translation, inhibiting RNA–protein complexes, and target-
ing RNA for degradation (Fig. 1). Additionally, drugging the
mRNAs of disease-relevant proteins may provide an alternative
method to target ‘‘undruggable’’ proteins,46,47 which comprise
a substantial portion of the proteome.

In this review, the evolution of approaches that have been
used to develop RNA-focused libraries will be discussed, includ-
ing substructure-based libraries, chemical similarity searching,
and physicochemical property filtering. Noteworthy develop-
ments in the application of machine learning in hit identifi-
cation and lead optimization are finding their way into the RNA
world with promising results. These new approaches combined
with more traditional methods such as fragment-based screen-
ing can be used to generate more focused libraries.48

2. RNA-focused libraries: past & present
2.1 RNA-targeting drugs: from antibiotics to risdiplam

Although RNA-targeting small molecules have gained attention
in recent years, drugs that target RNA have been used for over
70 years (Fig. 2). The oldest and most successfully targeted RNA
structure is, perhaps unsurprisingly, ribosomal RNA (rRNA), an
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ideal target owing to its highly abundant and structured nature.
Many classes of antibiotics function by binding and inhibiting the
function of the bacterial ribosome, including aminoglycosides
(Fig. 2), tetracyclines, amphenicols, macrolides, and oxazolidi-
nones, amongst others.49,50 These ribosome-binding antibiotic
classes function by binding various sites within rRNAs and inhibit
initiation, elongation, or termination of translation.51 All early
ribosome-targeting antibiotics were either natural products or
semi-synthetic natural product derivatives.

The discovery and subsequent approval of linezolid in 2000
marked the first fully synthetic (i.e., not derived from a natural
product pharmacophore) RNA-targeting antibiotic.54 Linezolid
demonstrated that RNA-targeting small molecules could be
successfully identified and developed from sources other than
natural products. Importantly, the diversity of compound struc-
tures, ranging from large, highly charged aminoglycosides to
the traditionally drug-like linezolid demonstrated that a wide
range of chemical scaffolds can recognize and target RNA with
clinical success. For other RNA targets, the development of
primary screening hits into drugs has proved more challenging,
in some cases due to lower expression levels, the lack of robust
or dynamic structures, or inaccessibility due to protein binding.

The approval of risdiplam as an oral medication for the
treatment of spinal muscular atrophy (SMA) showed for the
first time that small molecule targeting of non-ribosomal RNAs
could be therapeutically successful in humans. The SMN-C
series of compounds were identified from a phenotypic screen
searching for SMN2 pre-mRNA splicing enhancers to compen-
sate for loss-of-function of the highly homologous SMN1.55

This initial hit was optimized via medicinal chemistry to afford
the drug risdiplam,53 which gained full FDA approval in 2020.
Detailed biophysical and structural studies showed that risdi-
plam stabilizes an RNA–protein manifold between the SMN2
splice site and a component of the spliceosome, U1 snRNP
(small nuclear ribonucleoprotein), to direct splicing.56,57 Risdi-
plam makes direct contacts to the SMN2 pre-mRNA, inducing
stabilization of the RNA by pulling the bulged adenosine within
the helical stack and eliminating the clashes with the protein
component (U1-C) of the U1 snRNP. A detailed nuclear

Fig. 2 History of RNA-targeting drugs. RNA has been a small molecule
drug target for nearly 80 years. In 1946, the first class of ribosome-
targeting small molecule antibiotics, aminoglycosides, were introduced
clinically. All early small molecules were natural products or derived from
natural product scaffolds.50 In 2000, the first fully synthetic RNA-targeting
small molecule drug, linezolid,52 was approved, which also targets the
ribosome. In 2020, risdiplam became the first non-ribosomal RNA-
targeting small molecule drug, with the SMN2/spliceosome complex as
the primary target.53 Dates above represent the first clinical use of each
drug class, with a representative structure for each.

Fig. 1 Therapeutic potential of small molecules targeting RNA. RNA–
small molecule interactions have promise to alter biology via a variety of
mechanisms, including directing alternative pre-mRNA splicing, inhibiting
miRNA processing, disrupting RNA–protein complexes, targeted RNA
degradation, and repressing translation.
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magnetic resonance (NMR) study revealed that the carbonyl
group of risdiplam forms a direct hydrogen bond with the
amino group of the unpaired adenine linking the U1 snRNA
and the 50-splice site of SMN2 exon 7, serving as the minimal
trans-splicing factor.57 Overall, it was suggested that risdiplam
acts through the mechanism of 50-splice site bulge repair. The
extensive work to elucidate risdiplam’s mechanism of action
provides undeniable evidence that targeting RNA structures
with small molecules can transform conventional drug
discovery.58–60

2.2 Challenges in targeting RNA with small molecules

Despite these significant advances, small molecule targeting of
RNA still faces challenges, including the scarcity of available 3D
structures to enable structure-based design (Fig. 3(A)), promis-
cuous binders, and an incomplete understanding of the privi-
leged chemotypes that drive specific binding to RNA, all of
which are key considerations for the creation of RNA-focused
small molecule libraries. In 2024, the total number of RNA-only
structures in the Protein Data Bank (PDB) was 1830, as com-
pared to 190 372 protein-only structures, an approximately 30-
year lag (Fig. 3(A)).61 A recent search for small molecule com-
plexes where the small molecule’s molecular weight was
restrained between 150–500 Da afforded 144 482 protein–small
molecule complexes and only 862 RNA–small molecule
complexes.62 Of these 862 structures, nearly half are of the
ribosome or ribosome sub-structures and another B25% are
aptamers, which were specifically selected to bind the small
molecules of interest (Fig. 3(B)). Although these structures

could be informative, it is unclear how broadly applicable they
are to other types of RNAs.

Small molecules identified from screening efforts are often
non-specific or promiscuous binders, related to both RNA’s
negatively charged backbone and perhaps lack of diversity in its
building blocks (Fig. 3(C)). Kelly et al. discuss that electrostatic
interactions between the anionic RNA backbone phosphate and
cationic functional groups on the small molecule can enhance
binding affinity, however they also contribute to non-specific
binding.64 Thus, incorporation of positively charged functional
groups likely needs to be counter balanced with other target-
specific interactions. Perhaps, the most notable example of
cationic ligands that target RNA is the aminoglycoside class of
antibiotics that bind and inhibit the bacterial ribosome. Its
observed side effects, such as ototoxicity, are tied to its pro-
miscuity, hindering clinical application.65,66 However, charge
can also be used to improve selectivity. For example, flexible
scaffolds with charged centers were specific for an RNA duplex
as compared to a DNA duplex where the small molecule could
not orient itself in the DNA minor groove.67 Addition of positive
charge to diphenylfuran ligands changed an intercalative bind-
ing mode to an ionic one, improving specificity.68

RNA contains planar aromatic nucleotide bases that can
engage in p–p stacking interactions with aromatic rings in
small molecules. While stacking is often specific in defined
binding pockets (e.g. in aptamers or riboswitches), it can also
occur non-specifically along helical regions or loops of RNA, in
DNA, or in proteins. However, various studies have shown that
stacking interactions can be used to drive selectivity for RNA.69

Fig. 3 Challenges for RNA-targeted small molecule drugs. (A) A comparison of RNA-only and protein-only structures in the RCSB PDB reveals a large
(B100-fold) discrepancy in the number of three-dimensional structures. (B) Structures containing RNA–small molecule interactions lack diversity, with
approximately 80% of all structures belonging to either rRNA, riboswitches, or in vitro selected aptamers. RNA–small molecule structures were collected
from the HARIBOSS database.62 (C) A comparison of protein (EGFR Kinase, PDB: 2ITZ) and RNA (HIV TAR, PDB: 1UUI) binding pockets is presented, where
red and blue represent negative and positively charged surfaces, respectively, as calculated by UCSF ChimeraX.63

Review RSC Chemical Biology

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
1/

20
26

 4
:5

2:
03

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4cb00272e


514 |  RSC Chem. Biol., 2025, 6, 510–527 © 2025 The Author(s). Published by the Royal Society of Chemistry

One example is an acridine-based ligand discovered to stabilize
a G-quadruplex structure found in the long noncoding (lnc)RNA
Telomeric Repeat-Containing RNA (TERRA).70 For intercalating
small molecules, selectivity can also be improved by designing
threading intercalators.71

Another way to increase the binding specificity is to use
multivalent compounds to target adjacent binding sites
simultaneously, particularly for RNAs with less complex bind-
ing pockets.72,73 This multivalency strategy has been used to
target expanded repeating RNAs and miRNAs, which are pri-
marily comprised of relatively simple stem-loop structures with
internal loops or bulges. Collectively, the design strategy
employed for small molecules should be based on the geome-
trical properties of the target RNA.

Non-specific binding can have broad implications, as exem-
plified in pentamidine, an FDA-approved antimicrobial
drug.74,75 In addition to its antimicrobial function, this com-
pound can bind to the triplet repeat expansion r(CUG)exp that
causes myotonic dystrophy type 1 (DM1) and inhibit the binding
of the alternative pre-mRNA splicing regulator muscleblind-like
1 (MBNL1), thus improving the splicing defects associated with
MBNL1 sequestration.75 However, further investigations showed
compound is non-specific for r(CUG)exp and also interacts with
DNA and proteins.76

Finally, RNA conformational flexibility is both a challenge
and an opportunity for selective binding.77 In solution, both
RNAs and proteins exist in multiple different conformations
called conformational ensembles.78 While proteins exist in one
or a limited number of well-folded structures, RNA exhibits a
relatively large number of conformations that have similar
stability.79 RNA molecules also have a greater degree of local
structural fluctuations compared to proteins,80 posing sign-
ficant challenges for structural determination.

Transient RNA conformations observed along the conforma-
tional flexibility pathway have important biological functions78

and are also involved in diseases, making them a potential
therapeutic target.81,82 These transient conformations provide
an opportunity to increase the compound specificity as exem-
plified in r(G4C2)exp, the hexanucleotide repeat expansion that
causes genetically defined amyotrophic lateral sclerosis and
frontotemporal dementia, C9orf72 (c9) ALS/FTD.83 The
r(G4C2)exp forms two distinct structures: a G-quadruplex or a
hairpin structure with a periodic array of 1 � 1 nucleotide GG
internal loops.84–87 These two alternative conformations can
be targeted with different small molecules that selectively
bind either conformation. Interestingly, a small molecule that
conformationally selects a hidden, minor conformation, a hair-
pin that forms 2 � 2 nucleotide GG internal loops, was also
discovered.83 This broad conformational flexibility is one of the
unique features that distinguishes RNA from protein targets
and can be exploited for RNA drug discovery.88

Overall, the adopted design strategy to create RNA-focused
libraries, either general or target-specific, with the goal of
minimizing non-specific binding, should be initiated with
careful examination of the geometrical properties of the bind-
ing pocket and then selection of compounds that can form

specific interactions with the binding pockets. Thus, compounds
are selected based on shape complementarity,89–91 electrostatic
complementarity,92 and conformational flexibility.93,94

2.3 Design of early RNA-focused libraries: substructure-based
approaches

Design of early RNA-focused libraries relied upon substructure-
or pharmacophore-based approaches, where compounds
containing previously identified RNA-binding scaffolds were
synthesized and screened against RNA targets. Much of this initial
work was built upon known nucleic acid-binding compounds such
as aminoglycosides (and semi-synthetic derivatives thereof) and
DNA intercalators and groove binders, as reviewed previously.95

One of the first RNA-focused libraries was a 55-compound library
developed to target rRNA.68 Zhou et al. used 3D structural infor-
mation of aminoglycosides bound to 16S rRNA to show that
2-deoxystreptamine (2-DOS), a conserved core scaffold in amino-
glycosides, binds to rRNA in the same way.96 A synthetic mimetic
of 2-DOS (cis-3,5-diamino-piperidine (DAP)) retained RNA-binding
functionality and facilitated parallel synthesis and structure–activ-
ity relationship (SAR) studies. Since DAP exhibited low binding
affinity for rRNA, modeling was used to increase affinity by adding
functionality via attachment to the triazine (Fig. 4). Synthesis and
biological assays of bacterial growth of more than 55 compounds
showed how changes in the headpiece configuration can provide
an SAR set for targeting rRNA.

This knowledge, the importance of substructures, was
applied to design the first RNA-focused library with diverse
chemical features, which was synthesized on a peptoid back-
bone using building blocks that are likely to bind RNA.97 The
library used substructures extracted from molecules known to
bind RNA (linezolid,52 xanthinol,99 and pentamidine,74 for
examples) or building blocks hypothesized to facilitate hydro-
gen bonding or stacking interactions with RNA, such as the
benzene or benzenesulfonaminde (Fig. 4).97 This library com-
prising 109 compounds was synthesized via a solid-phase
approach where each molecule contained an azide handle that
was used for site-specific conjugation to alkyne-functionalized
agarose microarrays. The microarrays were then screened for
binding to the Candida albicans group I intron, a catalytically
active RNA molecule (ribozyme) that folds into a tertiary
structure with well-defined binding pockets.100 The hit mole-
cules from the binding screen were then tested for their ability
to inhibit group I intron self-splicing, resulting in IC50 values
ranging from 150 to 45000 mM. The data obtained from this
first round of screening were used to identify a set of features
that drive binding, incorporating both building block identity
and position within the peptoid. These features aided design of
a second generation of compounds with overall improved IC50

values for in vitro inhibition of splicing (31–110 mM). This
ligand-based approach showed how embedded features in
moieties that confer binding to RNA can be harnessed to design
an RNA-focused library with improved features and empha-
sized the importance of the availability of such information.
The combinatorial approach adopted in this study showed the
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importance of feature extraction in disposing the ligands for
RNA recognition.

Benzimidazoles are another privileged substructure/scaffold
for RNA targets. An early NMR-based approach by Abbott
Laboratories identified that simple 2-aminobenzimidazoles
bind the bacterial A-site rRNA with Kd values of B200 mM.101

Shortly thereafter an ‘‘SAR by MS’’ approach by Ibis Therapeu-
tics identified a 2-aminobenzimidazole with B100 mM affinity
to the Hepatitis C Virus (HCV) IRES RNA. Medicinal chemistry
approaches were able to optimize this compound to afford a
restricted, cyclic benzimidazole derivative with o1 mM affinity
to the target and cellular activity at single digit micromolar
concentrations in an HCV replicon assay.102

Because of the success of 2-aminobenzimidazoles in targeting
several RNA structures, a library of 79 compounds containing
the substructure (Fig. 4) was synthesized and evaluated in a
microarray-based selection named 2-dimensional combinatorial
screening (2DCS).103 In 2DCS, a microarray of small molecules is
incubated with a library of radiolabeled RNAs – in this case, a
library of 4096 RNA hairpin structures containing a randomized
region in a 3 � 3 nucleotide internal loop pattern. After washing,
the bound RNAs are manually excised from the microarray
surface, amplified by RT-PCR, then identified by sequencing.
Screening of this library revealed that functionalization of the
2-aminobenzimidazole scaffold both determined whether the
compound could bind RNA (only 19 of 79 compounds bound
the 4096-member RNA library) and differences in the small
molecule’s preferred RNA structures.103

In a similar approach, a panel of 43 RNA-focused com-
pounds harboring privileged scaffolds known to bind RNA such
as benzimidazoles,104 pentamidine,105 and 40,6-diamidino-2-

phenylindole (DAPI)106 was synthesized and screened for binding
to various RNA libraries (Fig. 4).98 Three different RNA motif
libraries (containing randomized 6-nucleotide hairpin loops,
3 � 2 nucleotide internal loops, and 4 � 4 nucleotide internal
loops) were screened for binding to these RNA-focused small
molecules using a fluorescent dye displacement assay. Of the 43
compounds, eight bound one or more of the RNA libraries, affording
a hit rate of B19%. In contrast, the hit rate for the library of
pharmacologically active compounds (LOPAC; designed for protein
targets) was only B1%.98 Scaffold analysis also showed the impor-
tance of indole, 2-phenyl indole, 2-phenyl benzimidazole and pyr-
idinium groups providing invaluable information for building RNA-
focused libraries.98 Like the previous study described above, the
preferred RNA motifs for hit compounds were determined by 2DCS.

These early attempts to generate RNA-focused libraries
demonstrate the value of prior knowledge of RNA-binding
chemotypes in their design. However, due to their strict reli-
ance on incorporation of specific substructures, often in a
specified arrangement, these early libraries contained minimal
diversity and only a handful of novel chemotypes capable of
binding RNA were identified. As more information on the types
of small molecules that bind RNA is discovered, new and
improved RNA-focused libraries will emerge.

2.4 Developing target-specific RNA-focused libraries via
similarity searching

Target-specific or target-focused libraries are designed based
on either the structural knowledge of a target or target family
(structure-based) or the chemical features of small molecules
(ligand-based).107–109 Such libraries focus on a subarea of
chemical space which confers affinity and specificity toward a

Fig. 4 Substructure-based approaches to developing RNA-focused libraries. Early RNA-focused libraries72,96–98 utilized prior knowledge of individual
RNA binders such as aminoglycosides (left), 40,6-diamidino-2-phenylindole (DAPI, middle), and a 2-aminobenzimidazole-based Hepatitis C viral RNA
binder. Important substructures from these known RNA binders were extracted and incorporated into new scaffolds, generating early RNA-focused
libraries.
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target/targets of interest. These libraries have been used exten-
sively in protein-targeting approaches, leveraging the widely
available structural information for some targets such as
kinases.110–112 Structures of drug targets (especially ligand-
bound structures) can also be used in a variety of in silico
methods for the virtual screening of large libraries (106–109

compounds). Hits from virtual screening can then be used to
prepare a focused library with a significantly smaller size,
reducing time and cost of downstream experimental evalua-
tion. This approach has been used successfully in multiple drug
discovery projects.113,114

In the absence of structural data, as is the case for nearly all
RNA targets, ligand-based approaches can be used to create
focused libraries. In this approach, the physicochemical prop-
erties of known active molecules can be used for a molecular
similarity115–117 search campaign against screening libraries
(commercial/non-commercial). The ligand-based approaches
can leverage either one-dimensional or two-dimensional mole-
cular descriptors,118 which encompass the chemical nature of
the small molecules, or three-dimensional descriptors such as
pharmacophore properties, shape, or volume.119–121

The accumulated knowledge from other studies122 was
carried over to design the first RNA target-specific libraries
generated by computational chemical similarity searching.
Expanded RNA repeats are causative of microsatellite
disorders,123 and expanded r(CUG) repeats [r(CUG)exp] in parti-
cular are the toxic agent in myotonic dystrophy type 1 (DM1).124

Small molecule targeting of this disease-relevant RNA has
therapeutic potential.125 The 3D shapes of previously identified
small molecules targeting this particular RNA105,126–128 were
used for screening the National Cancer Institute’s (NCI; 250 000
compounds) and eMolecules databases (8 000 000).129 This
virtual screening resulted in identifying a bis-benzimidazole
scaffold when a Hoechst derivative was used as the query
molecule, as it binds the RNA and displaces MBNL1
in vitro.129 The most potent derivative identified, H1, rescued
DM1-associated splicing defects and foci formation in a DM1
cell culture model and rescued splicing defects in a DM1 mouse
model, albeit with modest potency. This study was the first
attempt to apply the ligand-based virtual screening in the
creation of a target-specific RNA-focused library, resulting in
the identification of lead molecules with improved potency
compared to the query molecules.

The identification of bis-benzimidazole as a privileged scaf-
fold for RNA129 initiated the creation of the second target-
specific library using the concept of chemical similarity
searching.130 A library of structurally diverse yet chemically
similar compounds (n = 320) was generated by performing a
chemical similarity search of The Scripps Research Institute’s
(TSRI) drug discovery collection, using H1 (above) as the query
molecule. The library was screended for binding to r(CUG)
repeats using a time-resolved fluorescence resonance energy
transfer (TR-FRET) assay,131 yielding a hit rate of B9%. A
subsequent substructure analysis showed the abundance of
pyridyl, benzimidazole, or imidazole ring systems. Downstream
analysis of the bioactive compounds (compounds that

improved DM1-associated pre-mRNA alternative splicing
defects) and extraction of the physicochemical properties
showed the differences between these compounds and the
starting library. Bioactive compounds had a larger topological
polar surface area (TPSA) compared to the starting library
(101 � 33 Å2 vs. 75 � 25), as well as more hydrogen bond
donors (3 � 1 vs. 2 � 1,) and acceptors (4 � 1 vs. 3 � 1). The
majority of these compounds were benzimidazoles with a para-
substituted phenyl ring at the 2-position.

2.5 Deriving features of RNA-binding small molecules from
HTS of large, diverse libraries against multiple targets

While these early attempts demonstrated the success of phar-
macophore-based and target-focused similarity approaches to
generate RNA-focused libraries, the libraries oftentimes lacked
structural diversity. RNA molecules can adopt a variety of
secondary and tertiary structures, which can affect their func-
tion and interaction with other molecules. Therefore structural
diversity in RNA-focused libraries ensures that a wide range of
RNA structures may be targeted by the compounds, increasing
the likelihood of identifying RNA-binding molecules. There was
a significant need in the field to generate larger datasets to
derive general features of RNA-binding small molecules. The
primary way this was accomplished was by high throughput
screening (HTS). HTS has served as the gold standard for the
identification of chemical matter that can modulate a target’s
activity for the past two decades.132–136 The combination of hit
identification through HTS and lead optimization with medic-
inal chemistry has provided several FDA-approved drugs. Mar-
aviroc, an antiviral drug that inhibits HIV-1 entry into cells,137

resulted from an HTS campaign by Pfizer (a library of B500 000
compounds) against the CC-chemokine receptor 5. Although the
initial hit lacked antiviral activity, it provided the chemical
matter for the structure–activity relationship and medicinal
chemistry follow-ups, resulting in maraviroc.138 There are multi-
ple examples of FDA-approved drugs confirming the usefulness
of HTS.139–141

With the advent of combinatorial chemistry, the size of the
screening libraries started to grow, and concepts such as drug-
likeness or lead-like properties were later applied to improve
the quality of such screening libraries.142 Aided by the devel-
opment of more accurate and sophisticated cheminformatic
tools, higher quality libraries were created by incorporating
physicochemical property information such as TPSA and the
octanol/water partition coefficient (log P).143 TPSA is a property
that affects the ligand’s ability to interact with the hydrophilic
regions of RNA, for example its backbone or phosphate groups.
RNA is often highly hydrated and polar, so ligands with a high
enough TPSA may exhibit better water solubility, making them
more bioavailable and effective in aqueous environments like
the cytoplasm or nuclei. However, too much polar surface area
could limit their ability to cross biological membranes, thus it
is essential to balance TPSA with log P. While proteins often
benefit from high hydrophobicity for membrane binding or
intracellular trafficking, RNA-targeting molecules often require
a balance of lipophilicity. RNA’s negatively charged backbone
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makes it more hydrophilic, therefore RNA-binding ligands with
moderate log P values are more likely to be both water-soluble
and able to interact effectively with the RNA target (Table 1).
Also, while proteins are highly structured, dynamic molecules
with complex three-dimensional shapes, RNA is also structu-
rally diverse but exhibits secondary and tertiary structures that
are more flexible and can undergo dynamic conformational
changes. This flexibility significantly impacts the chemical
motifs used for binding.

Despite the improvements in the quality and size of screen-
ing libraries, the currently available libraries cover a very small
part of the drug-like chemical space, comprising an estimated
1030 compounds.144 Because no library can cover this immense
druggable space, design of specialized libraries that incorpo-
rate both chemical diversity as well as drug-like physicochem-
ical properties can improve the success of screening campaigns
without the need for exceedingly large library sizes.

While there have been many HTS campaigns against RNA
targets over the past B30 years, they primarily focused on
single targets and drew few conclusions about general princi-
ples of RNA-targeting molecules. In recent years, there has been
a more concerted effort to develop principles of RNA-targeting
small molecules by screening diverse libraries against multiple
RNA targets.

To address this need, Haniff et al. created an RNA-focused
library by exploiting the chemical features found in a repository
of RNA-binding small molecules found in the literature named
Inforna.145 The physicochemical properties of these RNA bin-
ders were compared with those of commercially available
compounds, affording an RNA-focused library with 3271 com-
pounds. At least 20% of library members were chemically
dissimilar from known RNA-binding small molecules. This
resulting library was enriched with nitrogen-containing hetero-
cyclic molecules such as phenyl-substituted thiazoles, benzimi-
dazoles, indoles, and quinazolines. Despite the enrichment in
these RNA-binding chemotypes, the physicochemical proper-
ties of the library more closely resembled those of drugs
in DrugBank146 than compounds in the Inforna database.
The library was screened against four different RNA targets

composed of A–U or G–C base pairs in different arrangements
using a fluorescent dye displacement assay. Six structurally
distinct classes of small molecules were identified as base pair
binders, ranging in affinity from high nanomolar to low micro-
molar. This study demonstrated that a diverse, drug-like library
could successfully identify RNA-binding small molecules.

In a similar but expanded approach, another B2000 com-
pound RNA-focused library was created by comparing features
of the Inforna library to AstraZeneca’s corporate collection
(Fig. 5(A)).147 This library was screened against three RNA
libraries comprising a total of 21 504 unique RNA structures using
2DCS. In all, 27 compounds (1.4% hit rate) bound RNA and
contained five key scaffolds: phenyl-bis-benzimidazoles, phenyl-
benzimidazoles, 2-aminoquinazolines, 4,6-diaminopyrimidines,
and 2-guanidino-3-methylthiazoles. By comparing the physico-
chemical properties of binders to non-binders, computational
analysis revealed that the RNA binders were more lipophilic,
had fewer rotatable bonds, more hydrogen bond donors, greater
polar surface area, and fewer sp3 carbons. Though structurally
distinct from them, the hit molecules had similar physicochem-
ical properties as compounds in two other repositories of known
small molecules that bind RNA.148,149

In an alternative approach, an RNA-focused library was
created by first screening two diverse, protein-targeting libraries
(B55 000 compounds) against 42 different disease-relevant RNA
targets with the affinity mass spectrometry method dubbed
Automated Ligand Identification System (ALIS).151,152 ALIS
employs sequential size exclusion and reverse-phase chromato-
graphy followed by mass spectrometry to identify RNA binders.
Perhaps unsurprisingly, this initial screen had low hit rates for
the RNA targets, 0.04% and 0.01% for the two libraries, much
lower than the 1.5% and 0.05% hit rates observed for proteins
screened against the same libraries (Fig. 5(B)).

By generating a machine learning (ML) model based upon
calculated molecular fingerprints, chemical features that dis-
criminated between RNA binders and non-binders were identi-
fied. The model was then used to select molecules from Merck’s
compound collection to create an RNA-focused library with
3700 compounds.150 This new RNA-focused library was

Table 1 Physicochemical properties affecting RNA binding

Physicochemical property Description Effect on RNA binding

Topological polar surface
area (TPSA)

The surface area of polar atoms Higher TPSA typically suggests improved aqueous solubility and interaction with
the polar RNA backbone. A balance is needed, as a large TPSA may reduce
membrane permeability.

Octanol–water partition
coefficient (logP)

A measure of lipophilicity A moderate logP is desirable for RNA-targeting ligands. Highly lipophilic com-
pounds may struggle to interact with the negatively charged, hydrophilic RNA
backbone, while very hydrophilic compounds may not penetrate cells effectively.

Molecular weight The sum of the atomic weights of
all the atoms in the molecule

Larger molecules might have better binding potential due to multiple inter-
action sites, but they might also face difficulty in membrane penetration.

Hydrogen bond donors
(HBD) and acceptors (HBA)

Functional groups capable of
forming hydrogen bonds

Hydrogen bond donors and acceptors are crucial for achieving selectivity and
stability in RNA–ligand complexes, and they are essential for optimizing the
efficacy of RNA-targeting small molecules.

Conformational flexibility The ability of a ligand to adopt
different conformations

RNA-binding ligands that are flexible may be able to adapt their structure to fit
into different RNA target sites. However, flexibility needs to be balanced, as too
much flexibility can reduce binding affinity.

Planarity Aromatic rings present in the
ligand

Aromatic rings can participate in p–p stacking interactions with RNA bases, a key
interaction for small molecules targeting RNA.
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re-screened against 32 of the 42 RNA targets and showed a
markedly increased hit rate of 0.32%. Additionally, this
increased hit rate was seen across most RNA targets (24 out
of the 32 tested RNAs had a higher hit rate in the RNA-focused
screen than the initial screen), suggesting that the new library
contains features generally associated with RNA binding.
Importantly, the screening hits identified were largely specific,

with 66% of identified hits only binding one of the 42 RNA
targets. Further, of the compounds that specifically recognized
one RNA structure, nearly 58% did not bind proteins from
Merck’s prior in-house ALIS screens, suggesting these com-
pounds preferentially bind specific RNA targets. PCA (principal
component analysis) of physicochemical properties of RNA
binders vs. protein binders revealed that although the chemical

Fig. 5 Examples of the applicability of HTS to identify RNA-binding chemotypes against diverse RNA targets. (A) Haniff et al.145 utilized molecular
descriptors of Inforna RNA binders to generate a B2000 compound library which was screened against 420 000 RNA targets (1.4% hit rate). The hits
were then used to generate a second-generation, 980 compound RNA-focused library via chemical similarity techniques. (B) Rizvi et al.150 first screened
two non-RNA focused libraries (hit rates of 0.01% and 0.04%). Three models were utilized to generate a new RNA-focused library, which showed a
markedly increased hit rate.
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space of RNA-binding and protein-binding small molecules
overlap largely within the drug-like space, the chemical motifs
that contribute to RNA and protein binding are distinct.
Examples of these discriminatory characteristics include aro-
matic amine-containing heterocycles and amidine-like motifs.

In another campaign against diverse RNA targets, a small
molecule microarray library containing nearly 25 000 com-
pounds was screened for binding 27 RNAs (including G-
quadruplexes, hairpins, pseudoknots, three-way junctions,
and triple helices) and nine DNA targets, with several individual
screens published previously.41,153 The RNA targets had hit
rates between 0.48% (hairpins) and 0.85% (pseudoknots); when
only considering selective small molecules, the hit rate ranged
from 0.16% to 0.33%.154 Perhaps it is not surprising that
pseudoknots, the most structurally complex of the targets,
had the highest hit rate. The 2188 small molecules that bound
at least one of these nucleic acid targets, of which 2003 bound
one of the RNAs, were compiled in the Repository Of BInders to
Nucleic acids (ROBIN) library.154 As will be discussed in more
detail later, several machine learning models were developed
and assessed to identify discriminatory features between RNA
binders and non-binders, revealing that nitrogen content and
aromaticity were important features.

Overall, primary screening of general-purpose screening
libraries against RNA targets or target classes can be adopted
as a strategy to identify the properties that discriminate RNA
binders from non-binders or protein binders. These features
can then be applied to create RNA-focused libraries that are
enriched in properties that facilitate binding to RNA. In the
following sections, alternative methods to identify RNA-binding
small molecules, such as fragment screening, DNA-encoded
libraries (DELs), and virtual screening, are discussed.

2.6 Design of RNA-focused fragment libraries

Fragment screening prioritizes up-front screening of small
(o300 Da) fragment molecules to identify substructures that
recognize the target of interest. Fragments capable of binding
are then optimized by ‘‘growing’’ into larger molecules or
‘‘merging’’ with other identified fragments to generate higher
affinity ligands.155 This approach has been successfully applied
in the protein-targeting space, exemplified by the FDA-
approved drugs vemurafenib156 and venetoclax.157

While prior studies had utilized fragment screening
methods against RNA, the first attempt to generate a library
of RNA-focused fragments was in 2009. Bodoor et al. chose
fragments by first collecting known RNA binders from litera-
ture, prioritizing compounds with Kd values less than 50 mM.158

In total, 120 molecules were identified, and analysis of the
physicochemical properties showed the similarities between
these molecules and kinase and protease binders. The overlap
of the chemical space between known RNA binders and pro-
teins such as kinases provides guidelines to discriminate RNA
from protein binders.159 These 120 molecules were fragmented
in silico to generate 250 fragments. These fragments were then
clustered using their molecular fingerprints and chemical
descriptors, and 102 commercially available fragments were

chosen to represent each cluster. This library was then screened
against the ribosomal decoding site (‘‘A-Site’’) RNA using
different NMR experiments, which resulted in five hits, including
two hit fragments chemically dissimilar from known A-site RNA
binders. This study also showed that a detailed analysis of already
known RNA binders is a logical starting point to generate a library
of RNA-focused fragments.

The exploitation of the chemical features of known drugs to
find similar molecules, named analogues, has been a success-
ful approach.160–162 The chemical features of known RNA
binders collected in Inforna were used to identify enriched
scaffolds that afford RNA binding.163 Scaffold extraction
showed high enrichment of triazole, thiazole, furan, and quino-
line, along with other scaffolds. These scaffolds were then
virtually screened against a library of 11 788 small molecules,
building an RNA-focused fragment library with 2500 com-
pounds. The Rule of Three was generally followed in building
the library, wherein fragments had a molecular weight (MW)
below 300 Da and three or fewer hydrogen bond donors and
acceptors.164 The library was also drug-like, with an average
quantitative estimate of drug-likeness (QED)165 score of 0.75 �
0.10. The RNA binding propensity of this library was assessed
using 2DCS, where one fragment was identified to prefer an
A-bulge found in the Dicer processing side of pre-miR-372 (KD =
300 � 140 nM). Although this approach did not identify new
scaffolds for RNA binding, it represents a successful workflow
in design of RNA-focused fragment libraries.

Fragment-based hit discovery or lead optimization has sev-
eral advantages regarding the ease of synthesis, characteriza-
tion, and high success rate.162–167 This study showed that
despite the differences between targeting proteins and RNA,
many established approaches can be adapted for RNA targets.

2.7 DNA-encoded libraries (DELs)

DELs are a powerful tool in drug discovery, allowing screening
of vast chemical libraries with high efficiency.168 DEL screening
involves synthesizing large libraries of small molecules, where
each building block is encoded by a unique DNA barcode,
added orthogonally during library synthesis. This DNA barcod-
ing allows for the rapid identification of hits using next-
generation sequencing (NGS) techniques. Although DELs were
not initially applied towards RNA targets for fear of its inter-
action with the DNA tags, advances in the field, including
ensuring that the loading of the DNA tag comprises o1% of
bead loading169 and ‘‘patches’’,170 have enabled DEL screening
for RNA.

Two different approaches have been developed recently to
address the concerns of the RNA target of interest interacting
with DNA tags in DEL screens. In the first example, Benhamou
et al.169 utilized a one-bead one-compound (OBOC) solid-phase
DEL library, rather than the more traditional solution-phase
DEL. This enabled sub-stoichiometric loading of DNA onto the
bead, where the compound was in B250-fold excess relative to
the DNA barcode, reducing the potential effect of RNA–DNA
hybridization. The authors integrated 2DCS with this solid-
phase DEL in a massively parallel screening pipeline to probe
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affinity landscapes between RNA folds and small molecules.
Fluorescence-activated cell sorting (FACS) was used to identify
the DEL beads which preferentially bind to a library of RNAs
containing 3� 3 nucleotide internal loops relative to a fully base-
paired control RNA. Hit molecules from the DEL screen were
then resynthesized and screened using 2DCS to identify which of
the 4096 3 � 3 internal loops preferentially bind the small
molecules. Though the library was synthesized using a racemic
mixture of proline derivatives, resynthesis of hits as pure dia-
stereomers revealed that some, but not all, hits preferred differ-
ent RNA structures dependent upon stereochemical identity.
These results suggested that future design of RNA-targeting
DELs may benefit from the incorporation of compounds with
defined stereochemistry to improve or alter specificity.

The Inforna platform was then utilized to identify disease-
relevant pre-miRNAs that overlapped with the DEL selection,
affording a nanomolar binder for the primary transcript of
oncogenic miR-27a (pri-miR-27a). This study demonstrated the
power of DEL screening in combination with selection-based
methods to target RNA.

Shortly thereafter, Chen et al. utilized an alternative,
solution-phase DEL approach that incorporated patches to
reduce interactions between the RNA targets and the DNA
tags.170 The authors noted significant extents of false positives
when screening their B10 billion member DEL library against
HIV TAR RNA using standard techniques. In their optimized
method, non-specific RNA–DNA hybridization was essentially
ablated upon utilization of a combination of pre-incubation
with RNA ‘‘patches’’ containing the same sequences as the RNA
target and competitive elution using known ligands that bind
HIV TAR. The authors then used their approach to identify two
new binders of the FMN riboswitch with affinity of o20 nM
towards the target.170

While these initial RNA-targeting DELs demonstrated the
utility of the approach towards RNAs, the libraries were not
enriched in known RNA-binding substructures. Such a library
was developed by enriching the DEL building blocks with
RNA-focused motifs, including benzimidazoles, azaindoles,
pyrazoles, and others.171 The 12 672-member DEL library was
then screened for binding specifically to r(CUG) repeats by co-
incubation with a fully base-paired RNA. As expected, hit
compounds shared commonalities with previously known
RNA binders, for example the number of hydrogen bond
acceptors and the number of tertiary amines, but also showed
discriminatory properties such as a lack of positive charge.
Subsequent studies for target engagement and bioactivity
showed that one DEL compound improved aberrant alternative
splicing associated with DM1. This study demonstrated that
utilization of prior knowledge in the design of an RNA-focused
DEL can identify bioactive RNA-targeting ligands from relatively
small, focused libraries.

Overall, the examples discussed above delineate a general
strategy in building an RNA-focused library: (i) screening of
general-purpose libraries against a variety of RNA structures
(or a specific class of RNAs) and then leveraging the obtained
knowledge of RNA binders to create an RNA-focused library; or

(ii) exploiting the chemical features of known RNA binders to
create RNA-biased libraries to narrow down the very specific
features that can discriminate an RNA binder from protein
binders.

3. The future of RNA-focused libraries:
methods to enable the identification
and prediction of RNA-binding small
molecules
3.1 Docking-based virtual screening to identify RNA-targeting
small molecules

Molecular docking is one of the most widely used tools for
structure-based drug design, and its success rate depends on
the availability of high-resolution 3D structures.172,173 However,
the higher conformational dynamics of RNAs compared
to proteins has been a major hurdle in elucidating the 3D
structure of RNA targets alone and in complex with small
molecules.174 Although single-particle cryogenic electron
microscopy (cryo-EM) has emerged as a powerful technique to
provide 3D structures of RNAs,175 the field is significantly
lagging behind its implementation for proteins.

To overcome the lack of available 3D structures for RNA
targets, methods for molecular docking for hit identification
through virtual screening have been developed.176 For example,
Shi et al. identified a potent inhibitor of miR-21 through virtual
screening of 1990 compounds from the National Cancer
Institute’s (NCI) diversity dataset against a computationally
predicted structure of miR-21’s Dicer processing site (using
MC-Fold/MC-Sym177).178 In another study, selective molecules
targeting RNA tetraloops (arginine–RNA aptamer complex, a
biotin–RNA pseudoknot complex, and a theophylline–RNA
complex) were identified.179 After establishing that docking
can recapitulate the experimentally determined pose of an
aminoacridine derivative (AD1) bound to a hairpin, virtual
screening identified AD2 with a binding specificity for tetra-
loops (Kd = B1 mM), as compared to double stranded RNA (Kd =
B25 mM).

The same group applied this approach to identify small
molecules targeting the GGAG tetraloop, a highly conserved
stem-loop (SL-3) in the HIV-1 genome.180 Molecular docking of
1367 compounds identified two compounds (compounds 5 and 9)
as selective binders of SL-3 RNA. The compounds showed
noticeable specificity for tetraloops over double-stranded RNAs
(B3.5- and B6-fold, respectively) and single-stranded RNA
(B50- and B25-fold, respectively).180 It should be noted that
docking was combined with a short (5 ns) molecular dynamics
simulation to account for the flexibility of RNA, and the final
hits were identified among the compounds that formed a stable
complex with SL-3. Such an approach has also been successfully
implemented for other viral targets including HIV-1 TAR,181 a
pseudoknot present in the SARS-CoV genome,43 the HCV IRES
subdomain IIa,182 and a cis-acting regulatory stem-loop RNA of
hepatitis B virus (HBV).183 Nine of the molecules identified in
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this study bound RNA with micromolar affinity, most of
which had not been shown previously to bind RNA, demon-
strating that the docking methods can identify new RNA-
binding ligands.

In a particularly interesting example, B100 000 compounds
were screened for binding HIV-1 TAR RNA using a Tat peptide
displacement assay, affording seven hit molecules and, impor-
tantly, over 100 000 non-hit molecules or ‘‘decoys’’, both of
which were employed in a subsequent virtual screening
campaign.184 The training set for the virtual screen comprised
these seven hits plus an additional 78 experimentally validated
small molecules and B100 000 decoys. Prior to virtual screen-
ing, this library of 100 085 compounds was filtered to provide
two distinct libraries: (i) in one library, the molecules with
outlier physicochemical properties were removed; and (ii) in
the other, the DUD-E protocol was used to select a subset of
both the hits and property-matched non-hits. Virtual screening
of these libraries against an ensemble of 20 molecular
dynamics-generated HIV-1 TAR RNA structures demonstrated
enrichment of the true, experimentally validated hits among
the virtual screening hits. Importantly, screening against the
full ensemble of 20 RNA structures was key, as screening
against fewer structures resulted in the identification of fewer
hits. This study showed that including experimental data to
refine virtual screening efforts can significantly improve the
identification of RNA-binding chemical matter.

Overall, these attempts showcased the applicability and
usefulness of virtual screening in hit identification targeting
different RNAs. Of particular promise are the ensemble-based
approaches, which may better account for the inherent flex-
ibility of RNA targets which is otherwise difficult to account for
in high-throughput virtual screening campaigns. Although no
follow-up analyses were performed to extract the chemical
features of virtual screening hits compared to non-hits, the
lead small molecules could be used to design target-specific
libraries in future studies. Molecular docking, therefore, may
provide a means to generate libraries enriched in RNA-binding
compounds, although subsequent experimental validation is
always required.

3.2 Machine learning (ML) to optimize RNA-binding small
molecules

ML methods depend on large amounts of data for an efficient
learning process. The accumulated data for either RNA struc-
tures alone or RNA–small molecule complexes during the past
decades have provided the training resources for ML-based
methods development. These methods have been applied for
RNA structure prediction (secondary or tertiary), prediction of
RNA–small molecule interactions, or identification of the bind-
ing pocket. One of the first applications of ML methods in the
RNA field was the prediction of secondary structures.185 Later on,
deep learning methods were introduced and their use in sec-
ondary structure predictions showed better performance.186,187

These methods have also been used in tertiary structure predic-
tions, a significant challenge due to conformational flexibility of

RNA.188,189 In particular, geometric deep learning methods have
been successful in blind prediction of tertiary structures.190,191

One of the challenges in using molecular docking is the
inaccuracy of docking poses.192,193 ML-based methods can be
trained even on the limited available data that describes RNA–
small molecule complexes and can help to separate accurate vs.
non-accurate poses. In one of the first examples, it was shown
that using the random forest classifier in RNAPosers could
separate the accurate RNA–small molecules poses from
decoys.194 AnnapuRNA is another example that uses supervised
ML models, K Nearest Neighbors (a simple, yet powerful,
supervised machine learning algorithm used for both classifi-
cation and regression tasks), and multi-layer feedforward arti-
ficial neural network, achieving high accuracy in prediction of
bound poses of small molecules.195 These augmentation
approaches can be combined with conventional molecular
docking to increase the efficiency of hit identification.

As one of the only attempts to use primitive machine
learning models in the evaluation of RNA-focused libraries,
Yazdani et al. determined features that differentiate RNA
binders from non-binders incorporated in the ROBIN library
by using a class-weighted logistic least absolute shrinkage and
selection operator (LASSO) regression model.154 To generate a
model that can separate RNA binders from non-binders, 1664
molecular descriptors were calculated using Mordred196 (an
open-source software tool designed to calculate molecular
descriptors), and these features were used to train the LASSO
regression model. The analysis found that features related to
nitrogen content and aromaticity favor RNA binding. The
performance of the LASSO model was not ideal (AUPRC score
of 0.37, where AUPRC stands for Area Under the Precision–
Recall Curve, a performance metric often used in evaluating
binary classification models, especially for imbalanced datasets
where the focus is on the minority class), as expected due to its
several disadvantages, particularly when dealing with large
datasets, high-dimensional data, or outliers. The computational
cost, sensitivity to feature scaling, and difficulty with imbalanced
data also make it less suitable for complex or large-scale pro-
blems without careful tuning and pre-processing. However, the
authors showed that application of more advanced techniques
like feedforward neural networks can significantly improve the
model performance (AUPRC score of 0.78).154

The main power of ML methods is their predictive capabilities,
and they can be trained on almost any class of data, not solely
structural data, particularly important due to the scarcity of
available RNA–small molecule complexes. RNA 3D structure
information, however, has also been employed in building pre-
dictive models to identify new small molecules.197,198 ML-based
methods have also been used for the de novo generation of small
molecules by exploiting the chemical features that drive specificity
toward RNA. Such approaches can significantly decrease the
search of the chemical space to identify target-specific hit
molecules.199 Several ML-based models have been developed
around miRNAs to identify novel small molecules.200–202

Overall, ML approaches can make important contributions
in the RNA therapeutics field, from predicting 3D structures of
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RNA molecules to small molecule design and lead optimization.
Although none of these methods has been used to create an
RNA-focused library with experimental validation, we anticipate
such a library will be forthcoming. As each method depends on
large amounts of data for training purposes, the quality of
predictions will improve as more data becomes available.

4. Other considerations & conclusions

The accumulated knowledge gathered for targeting RNA with
small molecules has helped to understand some of the driving
factors in binding specificity and target selection. RNA-focused
libraries are now available from commercial sources for HTS
efforts. Notably, these libraries remain limited in the chemical
space they cover and hence are of insufficient diversity at present.

Despite the tremendous progress made in the RNA-targeted
small molecule field, several factors have hampered its
advancement. Assay development for small molecule screening
has been mainly focused on proteins and extensively optimized
over the years. For example, SPR (surface plasmon resonance),
which is now a standard technique for screening small mole-
cules and extracting kinetic data for proteins, still faces several
challenges when applied to RNA. The different kinetic behavior
of RNA and in some cases significant conformational changes
after binding to the small molecule and lower affinity poses
several challenges ranging from immobilization and mass
transport203 to data analysis.203,204

Thermodynamic data has been essential for lead optimiza-
tion during the drug discovery process.205 It has been shown
that like proteins, enthalpically driven binding is more favor-
able for RNA-targeting small molecules than entropically driven
ones.206–210 Moreover, idiosyncrasies have been observed
within an RNA-binding chemotype. For example, electrostatic
interactions play an important role in the binding of aminogly-
cosides to RNA, contributing 450% of the total free energy of
binding.211 The same analysis for deoxystreptamine dimers
binding to RNA hairpin loops revealed only B20% of the total
free energy of binding is due to electrostatic interactions, and
in contrast to aminoglycosides (enthalpic), binding of dimers is
an entropically driven interaction.212 There is a dearth of these
types of thermodynamic measurements, which are especially
challenging when characterizing RNA–small molecule interac-
tions. These difficulties arise due to weak interactions of initial
hits which necessitates using of high concentrations of small
molecules to detect binding, where aggregation may also occur;
likewise achieving such concentrations may require higher
amounts of DMSO that affects RNA stability/structure.213 None-
theless, elucidation of these forces can help in the design of
RNA-focused libraries and to discriminate RNA-binding small
molecules from protein binders.

Despite these challenges, significant progress has been made to
identify small molecules that target different classes of RNA, as
manifested in publicly available databases such SM2miR214 (a
database of the experimentally validated small molecules that
affect microRNA expression), R-SIM215 (a database for binding

affinities for RNA–small molecule interactions), R-BIND216 (Data-
base of Bioactive RNA-Targeting Small Molecules and Associated
RNA Secondary Structures), Inforna217 (a database of experimen-
tally determined RNA–small molecule interactions that enables
sequence-based design), NoncoRNA218 (a database of experimen-
tally supported non-coding RNAs and drug targets in cancer),
ROBIN,154 and RNAmigos219 (a combination of machine learning
and molecular docking to identify RNA targeting small molecules).

The future of RNA-targeted small molecule libraries is
rapidly evolving, fueled by advances in drug discovery, high-
throughput screening, AI-driven design, and structural biology.
The current developments in RNA 3D structure determination
at high resolutions has become increasingly promising which
may help overcome hurdles in structure-based drug design
toward RNA targets.220

As researchers continue to recognize the therapeutic
potential of RNA molecules in treating diseases, including
cancer, viral infections, and neurodegenerative disorders,
RNA-targeted small molecule libraries are becoming crucial
resources for identifying effective modulators. Developing
libraries with RNA-biased scaffolds and functional groups that
specifically favor interactions with RNA structures could
improve hit rates in RNA-targeted screening, and AI can opti-
mize RNA-targeted libraries by predicting binding affinity,
selectivity, and even RNA-binding motifs, enabling the design
of novel small molecules with high RNA specificity. For example,
by using generative models like Variational Autoencoders
(VAEs)221 and Generative Adversarial Networks (GANs),222 new
small molecules tailored to bind specific RNA motifs or struc-
tures can be designed. This approach allows the exploration of
novel chemistries outside conventional chemical spaces.

Considering RNA structure and dynamics for therapeutic
applications, conformation adopted by an RNA in vivo may be
very different than the folds adopted in vitro. RNA molecules in
the cell are typically involved in dynamic processes such as
transcription, splicing, translation, and interaction with RNA-
binding proteins (RBPs). These interactions cause the RNA to
adopt a variety of conformational states throughout its life
cycle. In vitro experiments, however, often employ isolated
RNAs or fragments of a transcript that are possibly in a more
static, simplified state. The conformations and dynamics
in vivo may be far more complex, with RNA undergoing multi-
state folding, binding events, or undergoing conformational
transitions triggered by specific cellular factors. Therefore,
for therapeutic applications, it is crucial that small molecules
designed to interact with RNA can bind and modulate
RNA conformations that are relevant to its function in the
natural cellular environment, not just in its static in vitro
state.223,224

The future of RNA-targeted small molecule libraries will be
defined by greater specificity, structural diversity, and an
enhanced ability to interact with complex RNA structures and
RNA–protein complexes. Leveraging AI-driven molecular
design, 3D structural data, and high-throughput RNA-specific
screening technologies will be key to accelerating discovery.
These advancements could open doors to novel RNA-targeted
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therapeutics for a wide array of diseases, including cancers,
viral infections, and rare genetic disorders.
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132 P. Szymański, M. Markowicz and E. Mikiciuk-Olasik, Int.
J. Mol. Sci., 2011, 13, 427–452.

133 E. Martis, R. Radhakrishnan and R. Badve, J. Appl. Pharm.
Sci., 2011, 02–10.

134 D. C. Fara, T. I. Oprea, E. R. Prossnitz, C. G. Bologa,
B. S. Edwards and L. A. Sklar, Drug Discov. Today Technol.,
2006, 3, 377–385.

135 L. M. Mayr and P. Fuerst, SLAS Discov., 2008, 13, 443–448.
136 R. Macarron, M. N. Banks, D. Bojanic, D. J. Burns,

D. A. Cirovic, T. Garyantes, D. V. Green, R. P. Hertzberg,
W. P. Janzen and J. W. Paslay, Nat. Rev. Drug Discovery,
2011, 10, 188–195.

137 S. M. Woollard and G. D. Kanmogne, Drug Des., Dev. Ther.,
2015, 5447–5468.

138 P. Dorr, M. Westby, S. Dobbs, P. Griffin, B. Irvine,
M. Macartney, J. Mori, G. Rickett, C. Smith-Burchnell
and C. Napier, Antimicrob. Agents Chemother., 2005, 49,
4721–4732.

139 K. J. Duffy, A. N. Shaw, E. Delorme, S. B. Dillon,
C. Erickson-Miller, L. Giampa, Y. Huang, R. M. Keenan,
P. Lamb and N. Liu, J. Med. Chem., 2002, 45, 3573–3575.

140 K. J. Duffy, A. T. Price, E. Delorme, S. B. Dillon,
C. Duquenne, C. Erickson-Miller, L. Giampa, Y. Huang,
R. M. Keenan and P. Lamb, J. Med. Chem., 2002, 45,
3576–3578.

141 J. A. Lemm, D. O’Boyle, M. Liu, P. T. Nower, R. Colonno,
M. S. Deshpande, L. B. Snyder, S. W. Martin, D. R. St.
Laurent and M. H. Serrano-Wu, J. Virol., 2010, 84, 482–491.

142 S. J. Lane, D. S. Eggleston, K. A. Brinded, J. C. Hollerton,
N. L. Taylor and S. A. Readshaw, Drug Discovery Today,
2006, 11, 267–272.

143 D. M. Volochnyuk, S. V. Ryabukhin, Y. S. Moroz, O. Savych,
A. Chuprina, D. Horvath, Y. Zabolotna, A. Varnek and
D. B. Judd, Drug Discov. Today, 2019, 24, 390–402.

144 J.-L. Reymond, Acc. Chem. Res., 2015, 48, 722–730.
145 H. S. Haniff, A. Graves and M. D. Disney, ACS Comb. Sci.,

2018, 20, 482–491.
146 D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava,

M. Hassanali, P. Stothard, Z. Chang and J. Woolsey, Nucleic
Acids Res., 2006, 34, D668–672.

147 H. S. Haniff, L. Knerr, X. Liu, G. Crynen, J. Boström, D. Abegg,
A. Adibekian, E. Lekah, K. W. Wang, M. D. Cameron,
I. Yildirim, M. Lemurell and M. D. Disney, Nat. Chem., 2020,
12, 952–961.

148 B. S. Morgan, B. G. Sanaba, A. Donlic, D. B. Karloff,
J. E. Forte, Y. Zhang and A. E. Hargrove, ACS Chem. Biol.,
2019, 14, 2691–2700.

149 A. Mehta, S. Sonam, I. Gouri, S. Loharch, D. K. Sharma and
R. Parkesh, Nucleic Acids Res., 2014, 42, D132–141.

150 N. F. Rizvi, J. P. Santa Maria Jr, A. Nahvi, J. Klappenbach,
D. J. Klein, P. J. Curran, M. P. Richards, C. Chamberlin,
P. Saradjian and J. Burchard, SLAS Discov., 2020, 25,
384–396.

151 N. F. Rizvi, J. A. Howe, A. Nahvi, D. J. Klein, T. O. Fischmann,
H. Y. Kim, M. A. McCoy, S. S. Walker, A. Hruza, M. P. Richards,
C. Chamberlin, P. Saradjian, M. T. Butko, G. Mercado,
J. Burchard, C. Strickland, P. J. Dandliker, G. F. Smith and
E. B. Nickbarg, ACS Chem. Biol., 2018, 13, 820–831.

152 N. F. Rizvi and E. B. Nickbarg, Methods, 2019, 167, 28–38.
153 D. R. Calabrese, K. Zlotkowski, S. Alden, W. M. Hewitt,

C. M. Connelly, R. M. Wilson, S. Gaikwad, L. Chen,
R. Guha and C. J. Thomas, Nucleic Acids Res., 2018, 46,
2722–2732.

154 K. Yazdani, D. Jordan, M. Yang, C. R. Fullenkamp,
D. R. Calabrese, R. Boer, T. Hilimire, T. E. Allen,
R. T. Khan and J. S. Schneekloth Jr, Angew. Chem., Int.
Ed., 2023, 135, e202211358.

155 A. Bancet, C. Raingeval, T. Lomberget, M. Le Borgne,
J.-F. Guichou and I. Krimm, J. Med. Chem., 2020, 63,
11420–11435.

156 K. T. Flaherty, U. Yasothan and P. Kirkpatrick, Nat. Rev.
Drug Discovery, 2011, 10, 811–813.
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