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Control and interplay of scaffold—biomolecule
interactions applied to cartilage tissue engineering
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Cartilage tissue engineering based on the combination of biomaterials, adult or stem cells and bioactive
factors is a challenging approach for regenerative medicine with the aim of achieving the formation of a
functional neotissue stable in the long term. Various 3D scaffolds have been developed to mimic the
extracellular matrix environment and promote cartilage repair. In addition, bioactive factors have been
extensively employed to induce and maintain the cartilage phenotype. However, the spatiotemporal
control of bioactive factor release remains critical for maximizing the regenerative potential of multipotent
cells, such as mesenchymal stromal cells (MSCs), and achieving efficient chondrogenesis and sustained
tissue homeostasis, which are essential for the repair of hyaline cartilage. Despite advances, the effective
delivery of bioactive factors is limited by challenges such as insufficient retention at the site of injury and
the loss of therapeutic efficacy due to uncontrolled drug release. These limitations have prompted
research on biomolecule-scaffold interactions to develop advanced delivery systems that provide sus-
tained release and controlled bioavailability of biological factors, thereby improving therapeutic out-
comes. This review focuses specifically on biomaterials (natural, hybrid and synthetic) and biomolecules
(molecules, proteins, nucleic acids) of interest for cartilage engineering. Herein, we review in detail the
approaches developed to maintain the biomolecules in scaffolds and control their release, based on their
chemical nature and structure, through steric, non-covalent and/or covalent interactions, with a view to
their application in cartilage repair.

association of at least three different elements: cells, a sup-
porting scaffold and biological factors.® The ultimate objective

Articular cartilage lesions can significantly compromise a
patient’s quality of life due to pain and functional disability
and represent a heavy burden for the healthcare economy
worldwide. Joint injuries have many possible origins including
degenerative diseases and traumatic events. Due to its avascu-
lar nature and low chondrocyte to extracellular matrix (ECM)
ratio, damaged cartilage has a limited self-healing
capability."” Surgical techniques such as microfracture,
implantation of autologous chondrocytes or mosaicplasty
attempt to repair damaged cartilage. However, current
methods do not enable optimal biophysical properties to be
achieved; this results in accelerated matrix degradation and
generally poor tissue quality in the long-term.® Tissue engin-
eering (TE) appears to be a promising solution to restore the
structure and function of articular cartilage.”” It relies on the
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of cartilage engineering is to generate a fully functional tissue
produced by chondrocytes, the only mature cellular com-
ponent of cartilage capable of secreting the ECM specific to
hyaline cartilage.”®

Initial TE strategies have used chondrocytes combined with
biofactors and a 3-dimensional construct to avoid chondrocyte
dedifferentiation during the amplification phase in vitro.>°
Besides, mesenchymal stromal cells (MSCs) are of particular
interest owing to their ability to differentiate into chondrocytes
under appropriate conditions.'"'> MSCs can be obtained from
different sources including bone marrow, umbilical cords,
adipose tissue and synovial membrane.">'* However, bone
marrow-derived MSCs represent the most promising source of
MSCs used for cartilage engineering because of their superior
chondrogenic potential.">'® MSC-based therapies for cartilage
engineering require the use of chondro-inductive biofactors
including growth factors (GFs), peptides, or genetic material to
help control or enhance cell differentiation and maintain the
mature chondrocyte state, hence promoting cartilage repair.
These factors differ in their mechanisms of action but also in
their functions during the process of cartilage repair. It is
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therefore important to precisely control the kinetics of action
of these biomolecules to avoid unwanted adverse effects. For
these reasons, controlled levels and spatio-temporal release of
these molecules are essential for promoting the formation of
high-quality cartilage matrix, with the required biomechanical
properties. To avoid repeated injections of biomolecules
during the cartilage regeneration process, much work has
been done to incorporate biomolecules into constructs and
control their delivery to resident or implanted cells.

The physical and biochemical properties of scaffolds are
critical for the success of cartilage repair. A biomaterial has to
be biocompatible, biofunctional to promote cell adhesion and
integration into the host tissue, and biodegradable. Scaffolds
should also have appropriate biomechanical properties to
withstand external forces resulting from joint motion.
Therefore, the architecture of the scaffold plays a key role in
maintaining its stability while allowing cell impregnation,
cell-cell interactions and free circulation of nutrients and cell
waste.” Obviously, the chemical nature of the material forming
the scaffold has a significant impact on the above properties.

In this article, we first provide an overview of the options
for careful selection of the appropriate scaffold for cartilage
TE. In the next part, we present the different biofactors cur-
rently used for cartilage TE and their regulatory role in both
the differentiation of MSCs towards chondrocytes and the
secretion of cartilage ECM by chondrocytes. Finally, we discuss
the strategies used to functionalize scaffolds with biofactors
and evaluate the impact of different approaches for the release
kinetics of biofactors and their effects on chondrogenesis.

ll. Scaffolds for cartilage tissue
engineering: requirements and
elaboration

IL.1. Criteria

In the field of cartilage TE, scaffolds play a pivotal role in
establishing an ideal microenvironment for promoting cell
adhesion, migration, proliferation and/or differentiation. This
essential function relies on several key parameters, such as
appropriate architecture, controlled degradability, mechanical
properties, and biocompatibility. In fact, the structural charac-
teristics of scaffolds, including their porosity, permeability,
and interconnectivity, exert a significant influence over the
complex process of articular cartilage formation and sub-
sequent tissue regeneration.'”'® Overall, the scaffold architec-
ture must enable cell attachment and migration onto the
scaffold while ensuring appropriate interconnectivity.'® Since
scaffolds act as temporary supports for tissue development,
their controlled degradation is critical for the effective for-
mation and integration of newly generated cartilage tissue
within the surrounding endogenous tissue. It is also essential
that the by-products released during the degradation process
are non-toxic and easily eliminated from the body.* Ideally,
scaffolds should exhibit intrinsic mechanical properties
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similar to those of the native cartilage tissue such as tensile
strength, toughness and stiffness. These parameters are
important for promoting integration and supporting contin-
ued tissue development after scaffold implantation into the
knee joint.>!

I1.2. Materials

Materials used for cartilage TE obviously must be biocompati-
ble and meet specific requirements of the target application.
Numerous reviews have thoroughly examined the diverse com-
positions, structures, fabrication techniques, and character-
istics of existing biomaterials.**™>°

Briefly, biomaterials can include either natural or synthetic
polymers as well as hybrid materials combining both
(Table 1). Natural polymers such as collagen,*®*” gelatin,*®*°
hyaluronic acid (HA),***" chitosan (CH),**** chondroitin
sulfate (CS),>*** fibrin®® and alginate®”*® are commonly
employed in fabricating scaffolds for cartilage repair.
Originating from natural sources, these materials exhibit high
biocompatibility, bioactivity and possess properties close to
those of native tissues, making them suitable candidates.
Unfortunately, most natural materials exhibit rapid degra-
dation, which may compromise scaffold integrity. Extracted
and processed biopolymers also exhibit limited mechanical
strength, which may hinder their ability to support cells and
promote tissue repair. Moreover, processing natural polymers
into scaffolds may be challenging due to their susceptibility to
changes during processing, such as chain scission or protein
denaturation.’

On the other hand, synthetic polymers have emerged as
promising alternatives in TE, due to their tunable properties.
Key synthetic polymers include polylactic acid (PLA),**™** poly-
glycolic acid (PGA),** poly-lactic-co-glycolic acid (PLGA),****
polycaprolactone (PCL)***” and polyethylene glycol (PEG).*®*°
The chemical composition and structure of synthetic polymers
make them scaffolds with highly customizable properties. In
fact, they can be tailored to exhibit specific mechanical, physi-
cal and chemical properties such as stiffness, porosity, and
degradation rate in order to meet the requirements of cartilage
tissue repair. However, synthetic materials also exhibit some
drawbacks, notably the lack of inherent bioactivity, which
hinders cell adhesion, proliferation, and differentiation.
Tissue integration and functionality are consequently affected
because the biomaterial does not fully replicate the biochemi-
cal and biomechanical properties and cues of native cartilage
tissue.”® Moreover, harmful acidic degradation products may
compromise biocompatibility and trigger an inflammatory
response.”®

Obviously, the chemical nature of the material forming the
supporting scaffold has a significant impact on its properties,
and notably its ability to incorporate bioactive compounds. For
instance, hydrophobic aliphatic polyesters (PLA, PGA, PLGA,
PCL...) can be processed into porous scaffolds but with poorly
hydrated solid walls, while hydrophilic polymers (collagen,
gelatin, hyaluronic acid, PEG...) can form highly swollen hydro-
gels. Of note, the biophysical characteristics of the scaffolds

This journal is © The Royal Society of Chemistry 2025
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Table 1 Main materials used for cartilage tissue engineering
Materials Advantages Disadvantages Ref.
Natural Collagen Biocompatibility Low mechanical strength 26 and 27
Biodegradability Low solubility
Low immunogenicity Rapid biodegradation
Cell adhesion proliferation and differentiation Difficult to handle
Gelatin Biocompatibility Low mechanical strength 28 and 29
Biodegradability Stability
Accessibility Poor mechanism properties
Low solubility
Hyaluronic acid (HA) Biocompatibility Cost 30 and 31
Biodegradability Low mechanical strength
Easy chemical modification Fast degradation
Bioactivity
Chitosan (CH) Biocompatibility Low mechanical strength 32 and 33
Biodegradability Low solubility
Cell adhesion, proliferation and differentiation
Anti-microbial activity
Fibrin Biocompatibility Cost 36
Inexpensive Low mechanical strength
Accessibility Fast degradation
Cell adhesion and proliferation
Alginate Biocompatibility Low mechanical strength 37 and 38
Biodegradability Limited strength
Accessibility Difficult to handle
Bioactivity
Synthetic PLA Biocompatibility Poor cell adhesion 39-42
Thermostability
Thermoplasticity
Degradability
PGA Availability Acid release upon degradation 43
Easy processing Poor cell adhesion
Biocompatibility Fast degradation
Mechanical properties
PLGA Mechanical properties Acid release upon degradation 44 and 45
Controlled degradability
PCL Mechanical properties Poor cell adhesion 46 and 47
Biocompatibility Poor hydrophobicity
Thermoplasticity
Biodegradability
PEG Biocompatibility Poor cell adhesion 48 and 49
Biodegradability

resulting from their chemical composition can also be engin-
eered to enhance or direct MSC differentiation. The roles of
substrate features such as mechanical properties, porosity or
topology have been reviewed elsewhere®>> and are addressed
in the present article only when directly related to biomolecule
interactions with the scaffold and their release profiles.

11.3. Techniques

The desired scaffold architecture, mechanical properties and
shapes can be achieved by selecting the appropriate scaffold
fabrication method. A variety of fabrication methods enable
the production of scaffolds in the form of three-dimensional
membranes, hydrogels, microspheres, sponges, or their combi-
nations, thereby providing versatility to meet the diverse
requirements of cartilage TE.>® Hydrogels, in particular, have
attracted considerable attention as scaffolds for cartilage TE
due to their structural and functional resemblance to the
ECM.>* Hydrogel formation involves the development of hydro-
philic polymer networks through chemical cross-linking,
physical gelation, or self-assembly processes. These networks

This journal is © The Royal Society of Chemistry 2025

are capable of absorbing water and swelling in aqueous solu-
tions; this promotes the attachment, migration, differen-
tiation, and proliferation of cells while effectively delivering
growth factors and creating an appropriate microenvironment
for nutrients.>>° Scaffold fabrication techniques for cartilage
TE include conventional and rapid prototyping (RP) methods,
which have been described in many reviews (Table 2).>7®
Conventional methods for scaffold fabrication are often
constrained by limitations in compatibility and repeatability,
and frequently rely on manual intervention, making them
unsuitable for large-scale application. Among these methods,
phase inversion is commonly employed for membrane prepa-
ration, and usually divided into thermally induced phase sep-
aration (TIPS) and non-solvent induced phase separation
(NIPS). TIPS utilizes temperature manipulation in liquid-
liquid or liquid-solid systems to achieve membranes with
varied porosities, whereas NIPS involves immersing a polymer
solution in a non-solvent solution, resulting in membranes
with different porosities and pore sizes.>® The TIPS technique
has been specifically applied to fabricate PLLA scaffolds with
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Table 2 Main scaffold preparation techniques for cartilage tissue engineering

Techniques Advantages Disadvantage Ref.

Phase inversion Versatility Lack of pore interconnectivity control ~ 60 and 278
Compatibility Processing conditions
Repeatability Applicability

Solvent casting and particle leaching  Easy processing Cytotoxic solvent 279 and 280
Adjustable porosity Low mechanical strength

Gas foaming Inexpensive Pore size distribution 281
Porosity control Lack of pore interconnectivity control

Electrospinning Large-scale production possibilities Limited range of polymers 282-284
Repeatability
Easy process

Freeze-drying Adjustable porosity and structure Energy intensive and time consuming 285
Greater interconnectivity of the porous structure  Cytotoxic solvents

3D bioprinting High resolution Inkjet viscosity 286-288

High throughput capability
Reproducibility
Easy to use

finely tuned pore dimensions, mimicking natural conditions
conducive to efficient chondrogenesis.®® Additional tech-
niques, such as freeze-drying, can also improve scaffold poro-
sity and pore size. Freeze-drying, or lyophilization, involves
freezing polymer solutions followed by solvent sublimation
under vacuum, producing scaffolds with interconnected
porous structures.®’ Electrospinning is another widely used
method due to its simplicity, rapidity, cost-effectiveness, and
ability to generate nonwoven scaffolds with high porosity and
interconnectivity.®®> Electrospun nanofiber-based scaffolds are
expected to be good candidates for osteochondral and cartilage
repair but their outcome is mostly limited by spinnability
issues of the biomolecule-containing aqueous solutions.
Coaxial electrospinning offers a promising alternative, as only
the shell solution, producing the outer part of the fibre, must
exhibit good spinnability. In this technique, drugs, proteins,
or other bioactive substances are incorporated into the fibre
core through coaxial flow, resulting in a core-sheath structure.
These biphasic nanofibers, capable of controlled biomolecule
release, have been extensively studied for biomedical appli-
cations, including osteochondral regeneration.®> ®> However,
despite its effectiveness, it often lacks the ability to precisely
control scaffold architecture and mechanical properties.
Nevertheless, developments in biomaterial design have shown
the potential to overcome these limitations. For instance, elec-
trospun scaffolds combining gelatin-chondroitin sulphate
nanofibers with mechanically robust polycaprolactone (PCL)
have been shown to successfully promote chondrogenesis
without the need for differentiation media.®®

In contrast, advanced RP techniques, such as 3D printing,
including 3D bioprinting and selective laser sintering, allow
for intricate scaffold design with precise spatial control,
enabling the formation of complex structures layer by layer
(LBL).®” 3D bioprinting appears to be a promising approach
for inserting biomolecules at desired 3D locations to build a
scaffold with spatiotemporally controlled biomolecule release
properties.®®*7® The modification of scaffold characteristics
depends on various factors such as the ink type, and other

1874 | Biomater. Sci., 2025, 13, 1871-1900

parameters such as the printing temperature, needle size, layer
density, and extrusion rate.®””"7?

Additionally, the fabrication process must meet several
critical criteria beyond its functionality, such as cost-effective-
ness and scalability. Developing scalable manufacturing pro-
cesses up to good manufacturing practice (GMP) standards is
also crucial for ensuring the successful translation of TE strat-
egies into clinical practice.

[ll.  Biomolecules for cartilage tissue
engineering

Several biomolecules, including but not restricted to, growth
factors, peptides, genetic material and small molecules, are
described to mediate cellular proliferation, migration, and
differentiation. These factors can interact with target cells and
trigger a series of specific cellular activities. Here, we focus on
the main biomolecules involved in the development of carti-
lage and describe their role in regulating the processes of
chondrogenesis and cartilage homeostasis (Table 3).

II1.1 Small molecules

III.1.1. Kartogenin (KGN). Kartogenin (KGN) is a non-toxic
and stable small molecule reported to promote collagen syn-
thesis and enhance the chondrogenic differentiation of MSCs.
During MSC chondrogenesis, KGN frees CBFp, which then
binds to the transcription factor RUNX1. This complex plays a
crucial role in initiating the transcription of genes associated
with cartilage ECM production.”® Together with other advan-
tages, such as low immunogenicity,”* KGN shows significant
promise for promoting cartilage regeneration.”” Furthermore,
the absence of the induction of genes related to hypertrophy
and calcification was observed when KGN was applied to
MSCs or chondrocytes.”>”* Although dosage and duration
time still need to be optimized, several studies have reported
the beneficial effect of a continuous supply of KGN being
released from a scaffold on cartilage repair.”®”’° For example,

This journal is © The Royal Society of Chemistry 2025
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Table 3 Main biomolecules used for cartilage engineering and their effect on chondrogenic differentiation
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Type of Adverse effects on
Biomolecules biomolecule Desired effect on MSC chondrogenic differentiation differentiation Ref.
Kartogenin Small molecule Induces chondrogenesis/enhances matrix production — 74, 76 and 289-293
Curcumin Small molecule Induces chondrogenesis — 85 and 86
Glucosamine Small molecule Induces chondrogenesis — 87 and 88
Icariin Small molecule Induces chondrogenesis/inhibits hypertrophic — 89-91

differentiation

Melatonin Small molecule Induces chondrogenesis — 96 and 98
Ascorbic acid Small molecule Chondrocyte growth/enhances cartilage matrix — 101 and 102

production

TGF-f1 and 3 Growth factor Enhances proliferation/inhibits migration/induces
differentiation/maintains articular chondrocytes

BMP-2 Growth factor Enhances matrix production

BMP-4 Growth factor Induces chondrogenesis/maintains chrondrocyte
phenotype/enhances matrix production/inhibits
hypertrophic differentiation

BMP-6 Growth factor Induces chondrogenesis/enhances matrix production/
inhibits hypertrophic differentiation

BMP-7 Growth factor Induces chondrogenesis/enhances matrix production/
inhibits hypertrophic differentiation

IGF-1 Growth factor Induces chondrogenesis

IGF-2 Growth factor Primes chondrogenic differentiation

FGF-2 (bFGF)

Growth factor

Maintains chondrogenic potential/enhances matrix
production

PDGF Growth factor Exerts chemotactic effects/induces proliferation/induces
chondrogenesis

PTHrP Protein Inhibits hypertrophic differentiation

Peptides Amino acid Recruit endogenous stromal cells
sequence

Nucleic acid miRNA Potential interest for all cartilage engineering steps
siRNA

Hypoxia- Small Induces chondrogenesis/inhibits hypertrophic

mimicking agents molecules differentiation

Promotes hypertrophic
differentiation

Promotes hypertrophic
differentiation

Induces osteogenic
differentiation

Promotes hypertrophic
differentiation

Promotes
fibrocartilage
formation

104, 105, 253, 262,
275,289 and
294-298

299 and 300

115

301 and 302
299, 303 and 304
120

122

126-131

298, 305 and 306

139-141 and 307
147 and 150

153, 158, 159, 308
and 309
169, 170 and 310

KGN-encapsulated PLGA microspheres enable the sustained
release of KGN, improving retention and enhancing thera-
peutic efficacy.”*°

II1.1.2 Curcumin. Curcumin is a yellow polyphenol pigment
isolated from Curcuma longa (turmeric). It has been studied
for its antioxidant and anti-inflammatory effects.?'"** Recently,
high viability and phenotype maintenance of chondrocytes cul-
tured in curcumin-containing silk scaffolds suggested great
potential for cartilage engineering.®* Although the role of cur-
cumin in chondrogenic differentiation is not yet fully under-
stood, it might indirectly induce the chondrogenic differen-
tiation of MSCs thanks to its anti-apoptotic capacity via
caspase-3 inhibition and its anti-inflammatory function on
prostaglandins such as PGE2.%>%¢

III.1.3 Glucosamine. Glucosamine is a naturally occurring
amino monosaccharide found in connective and cartilage
tissues as a component of glycosaminoglycans (GAGs). It helps
maintain the strength, flexibility, and elasticity of these tissues
and has been widely studied as a stimulator of chondrocyte
metabolism for osteoarthritis treatment.”” The mechanism
underlying its chondroprotective action remains incompletely
understood, but it is known to modulate GAG production, par-

This journal is © The Royal Society of Chemistry 2025

ticularly hyaluronic acid (HA) and keratan sulfate (KS), in syno-
vial cells and chondrocytes.®®

I11.1.4 Icariin. Icariin, a prevalent flavonoid glycoside, is the
principal pharmacological constituent of Herba Epimedium
(HEP). HEP is commonly utilized as a traditional Chinese
herbal remedy, with a history of extensive use in China, Japan,
and Korea where it is valued for its anti-rheumatoid, tonic,
and aphrodisiac properties.®® Different studies suggested the
relevance of using icariin as an effective growth factor for carti-
lage TE by promoting chondrogenic differentiation and redu-
cing hypertrophic markers.’®> It has been shown that icariin
upregulates parathyroid hormone-related protein (PTHrP) and
downregulates the expression of Indian hedgehog homolog
(IHH),”® thereby reducing cartilage degradation and
destruction.’®

I11.1.5 Melatonin (MLT). Melatonin (MLT) is a ubiquitous
molecule in nature. MLT has been shown to play several bio-
logical roles, including the promotion of hMSC chondrogenic
differentiation®>°® and chondrocyte function.’”® This process
is mediated through MLT membrane receptors 1 and 2,
leading to BMP-2 expression and subsequent Smad1/5/8 phos-
phorylation, which are crucial steps in stem cell differen-

Biomater. Sci,, 2025, 13,1871-1900 | 1875
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tiation.”® MLT has also been shown to upregulate miR-526b-3p
and miR-590-5p, which target Smad7, enhancing Smad1 phos-
phorylation and promoting the differentiation of hMSCs.”
MLT not only promotes cartilage formation but also prevents
apoptosis and calcification of chondrocytes. MLT induces
autophagy in chondrocytes by increasing Sirt1 expression and
activity, which in turn inhibits the expression of pro-apoptotic
proteins (Bax and cleaved caspase-3) and promotes anti-apop-
totic proteins (Bcl-2), resulting in reduced chondrocyte
apoptosis.'®°

II1.1.6 Ascorbic acid. Ascorbic acid, also known as vitamin C,
plays a pivotal role in promoting chondrocyte proliferation and
inducing chondrogenesis."®" Ascorbic acid acts as a cofactor in
the formation of hydroxyproline and hydroxylysine within the
collagen molecule thereby enhancing it stability, and promoting
its synthesis.'®® Many studies have demonstrated the effect of
ascorbic acid on chondrocyte growth and ECM secretion, as
exemplified by a significant increase of type II collagen secretion
concomitant with matrix metalloproteinase-13 decrease.'®?

II1.2. Growth factors and other proteins

II1.2.1. Transforming growth factor-f (TGF-f). Transforming
growth factor-p (TGF-B) plays critical roles in regulating MSC
differentiation from early to terminal stages, including con-
densation, proliferation, commitment, maturation and term-
inal differentiation.'®*°® The TGF-p family includes TGF-p1,
2, and 3, activins (A and B), inhibins (A and B), bone morpho-
genetic proteins (BMP-1 to 20), and growth differentiation
factors (GDFs) including nodal, myostatin (GDF-8), and muller-
ian-inhibiting substance (MIS). TGF-f members bind serine/
threonine kinase type II receptors, which activate type I recep-
tors anchored in the cell membrane through phosphorylation.
The resulting signal transduction to the nucleus via R-Smads 2
or 3 modulates the responsive genes (Fig. 1)."°7'% TGF-p1, 2,
and 3 are potent stimulators of proliferation and the metab-
olism of chondrocytes through the secretion of cartilage ECM
components including proteoglycans and type II collagen.'®
Currently, TGF-3 serves as a common and potent inductive
molecule incorporated into various scaffolds to stimulate the
chondrogenic differentiation of MSCs as it is considered to
have a greater chondrogenic effect than TGF-g1.*4 1111

II1.2.2. Bone morphogenetic proteins (BMPs). Bone morpho-
genetic proteins (BMPs) are members of the TGF-f superfamily.
They can induce the differentiation of MSCs into chondrocytes
and promote the synthesis of cartilage ECM.'"* At least 30
different BMPs have been described, of which BMP-2, BMP-4,
BMP-6 and BMP-7 have been the most widely studied in the
field of cartilage TE.""® The different BMP isoforms act together
or sequentially at all stages of differentiation.’**''* For example,
BMP-2 and BMP-4 induce the differentiation of MSCs into chon-
drocytes, but only BMP-4 may inhibit hypertrophic terminal
differentiation.’”® Indeed, over-expression of BMP-4 suppresses
the formation of hypertrophic chondrocytes during the in vitro
differentiation of murine C3H10T1/2 mesenchymal progenitor
cells."™® In addition, a BMP-4 loaded alginate gel has shown
promising results in cartilage repair.*'”
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II1.2.3. Insulin-like growth factor (IGF). Insulin-like growth
factor (IGF) exists in two isoforms, IGF-1 and IGF-2, which
have been shown to promote the proliferation of chondrocytes,
and the secretion of cartilage ECM.""®?° More specifically,
IGF-1 was shown to induce the proliferation of chondrocytes
and the chondrogenic differentiation of MSCs through the
IGF-1/PI3K/Akt and IGF-1/MAPK/ERK signalling pathways,
whereas IGF-2 was described to enhance differentiation by
priming MSCs through SOX9 regulation."****> These results
suggest that both isoforms are required during the early
phases of chondrogenic differentiation but IGF-1 can also act
at a later stage to enhance the secretion of the ECM.'**"?*

II1.2.4. Fibroblastic growth factors (FGFs). Fibroblastic
growth factors (FGFs) belong to a family of 22 highly homolo-
gous polypeptides involved in chondrocyte proliferation, joint
development, and homeostasis of cartilage. Among them,
FGF-2 or basic FGF (bFGF), which is recognized by its cognate
receptor FGFR-1, is the most studied for its effect on chondro-
cytes and MSCs through multiple downstream signalling cas-
cades, including PKC3, NFkB, Ras-Raf-MAPK and PI3K/Akt
pathways (Fig. 1)."*® This growth factor is described for its
capacity to enhance the proliferation of MSCs, to delay the loss
of chondrogenic potential of MSCs, and to maintain the chon-
drogenic potential of chondrocytes during expansion and the
differentiation of MSCs by up-regulating SOX9.'*°"'*® However,
other studies have demonstrated that bFGF can promote chon-
drocyte catabolism via the FGFR1/Ras/Raf/MEK1-2/ERK1-2 axis
and inhibit the anabolic activity of IGF-1 and BMP-7."*° bFGF
could also induce the formation of fibrocartilage, which is a
poor alternative to hyaline cartilage.'****! Therefore, based on
these studies, the use of bFGF in cartilage TE is questionable.
Nevertheless, improved healing of osteochondral lesions has
been demonstrated in rabbits using a highly porous scaffold
soaked with bFGF."*> However, an inverse dose response was
observed, which might partly explain the controversial results
reported so far. These results suggest that bFGF concentration
might be an essential criterion for efficient cartilage repair and
highlight the need for its tightly controlled release by an opti-
mized scaffold in order to maintain its beneficial properties.

I1.2.5. Platelet-derived growth factor (PDGF). Platelet-
derived growth factor (PDGF) is a dimer with a molecular
weight of approximately 25 kDa. This cytokine released by
platelets at injury sites promotes mesenchymal cell prolifer-
ation."*® Prolonged exposure to PDGF enhances cartilage ECM
production, while suppressing the progression of cells along
the endochondral maturation pathway.'** These observations
suggest the possibility of using PDGF at the late stage of MSC
differentiation to avoid hypertrophic differentiation. In
addition, some isoforms, such as PDGF-BB, have an interest-
ing chemoattractant property that could be used to retain
MSCs and chondrocytes in a scaffold after in vivo implan-
tation, allowing secretion of the ECM at the injury site.'**7'%¢

I1.2.6. Parathyroid hormone-related protein (PTHrP).
Parathyroid hormone-related protein (PTHrP) is a member of
the parathyroid hormone family secreted by MSCs, smooth
muscle cells and some cancer cells. It is a 141 amino acid poly-

This journal is © The Royal Society of Chemistry 2025
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peptide, which acts as an endocrine, autocrine, paracrine, and
intracrine hormone. Most of its biological functions are
mediated by its amino terminus, including its effect on
cartilage.”?”"*® PTHrP is largely described to promote chon-
drogenesis by repressing hypertrophy through the transcrip-
tional control of Runx2 activity by the Gsa/cAMP/PKA-depen-
dent signalling pathway (Fig. 1)."?°"'*> However, PTHrP is also
described to induce osteogenic differentiation of bone
marrow-derived MSCs through upregulation of local factors,
notably BMPs."*>'** In the context of MSC-based cartilage TE,
PTHrP has to be precisely controlled in order to take advantage
of its anti-hypertrophic function without affecting the early
steps of chondrogenesis.

II1.3. Peptides

More recently, the use of peptides that can induce cellular
responses such as cell recruitment, tissue integration and

This journal is © The Royal Society of Chemistry 2025

differentiation has been investigated in cartilage TE.'*>™*”

Technological advances have reduced synthesis costs, making
research and potential applications more accessible. For
instance, the peptide “HAVDI” from the N-cadherin sequence
mimics the cell-cell interaction signal, which is key to facilitat-
ing MSC condensation, the initial step of chondrogenesis."*®
This interaction enhances the chondrogenic potential of MSCs
encapsulated in HA hydrogels."*® Another approach relies on
the use of chemoattractive peptides to recruit endogenous
MSCs. Although this strategy aims to increase neotissue inte-
gration rather than cartilage engineering, it shows great poten-
tial for cartilage repair. Indeed, scaffolds prepared from
porcine acellular cartilage matrix functionalized with BMHP
(bone marrow homing peptide) enhanced cartilage formation
in full-thickness cartilage defects of rabbits."” After a six-
month period, defects were filled with neocartilage tissue that
exhibited a smooth surface similar to native tissue. A similar
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approach used an injectable hydrogel functionalized with
KLPP peptide to facilitate the simultaneous recruitment of
endogenous MSCs promoting interface integration and
improving cartilage repair."*”

I11.4. Nucleic acids

Nucleic acid-based strategies rely on the modulation of tran-
scription factors or regulatory molecules in transfected cells
in vitro or in endogenous -cartilage tissue in ex vivo
strategies.'**'>1132 A better understanding of MSC biology
has led to the discovery of numerous nucleic acid molecules
capable of influencing the chondrogenic differentiation of
MSCs, as a complementary and powerful strategy for carti-
lage TE."**” Due to their diversity, nucleic acid-based
therapies can target the entire differentiation process, from
its induction to the maintenance of the quiescent stage of
chondrocytes and the inhibition of hypertrophy.’**%° As an
example, using RNA interference (RNAi) tools, the specific
suppression of anti-chondrogenic factors could represent a
promising approach for MSC-based cartilage
repair. Recently, the potential of siRNAs targeting the
RUNX2 gene to inhibit the expression of hypertrophic
markers after the chondrogenic differentiation of MSCs was
demonstrated.’*>'®" A siRNA targeting sonic hedgehog
(SHH) can significantly attenuate cartilage degeneration and
decrease the OA score in rat models.'®® Other studies have
reported the potential of microRNAs (miRNAs) for regulating
the expression of genes involved in cartilage synthesis and
homeostasis.’®*'®® MiRNAs are short, single-stranded RNA
molecules 18 to 24 nucleotides long. They function as tran-
scriptional repressors by binding to the untranslated region
(UTR) of target messenger RNA (mRNA), decreasing the
expression of target genes. Over 30 miRNAs present in
human joint tissue are implicated in regulating cartilage
homeostasis and OA development. Among these,
miR-140 has attracted considerable interest and multiple
miR140 targets have been identified and described.'®®
Notably, the inhibitory effect of miR-140 in chondrocyte
hypertrophy has been shown to occur through the inhibition
of histone deacetylase (HDAC)-4 and SMAD1."¢7-1%%

II1.5. Hypoxia-mimicking molecules

It is well recognized that the chondrogenic differentiation of
MSCs can be achieved by maintaining the cells under
hypoxic conditions, thus simulating the native environment
of articular cartilage.'®® Additionally, hypoxic culture con-
ditions have been shown to suppress the expression of
markers associated with endochondral ossification through
the activation of the PI3K/Akt/FoxO pathway.'’® Secretion of
the ECM was found to be enhanced when using human
articular chondrocytes pretreated with hypoxia prior to
encapsulation in alginate hydrogels and implantation in a
nude mouse model.”*

Hypoxia induces the expression and stabilization of
hypoxia-inducible factor-1oa (HIF-1a), a key regulator of the
hypoxic response that plays a critical role in chondrocyte

1878 | Biomater. Sci, 2025, 13,1871-1900
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differentiation and survival in vivo. Under normoxia con-
ditions, HIF-1a is hydroxylated by prolyl-hydroxylase domain
enzymes (PHDs) and the factor inhibiting HIF (FIH) hydroxyl-
ase, resulting in immediate ubiquitination and subsequent
proteasomal degradation of the subunit. In a low-oxygen
environment, the activities of PHDs and FIH are inhibited.
HIF-1a accumulates in cells and binds to HIF-1f to form
HIF-1, which then binds to HRE to participate in multiple sig-
nalling pathways by regulating the transcription of hundreds
of genes, including those specific to cartilage. Currently, HIF
signalling pathways mainly include PI3K-Akt/HIF-1a, SENP1/
HIF-1a, HIF-1a/BNIP3, and MAPK/HIF-1a'’? (Fig. 1). Instead of
hypoxia incubators or chambers, several hypoxia-mimetic
agents have been employed to induce hypoxia. These mole-
cules are not widely studied but their low cost and ease of use
make them a promising class of potential tools for use in carti-
lage TE.'”?

I1.5.1. DMOG (dimethyloxalylglycine). DMOG (dimethyl-
oxalylglycine) is a competitive inhibitor of hydroxylase
enzymes, and its presence results in increased nuclear localiz-
ation of HIF-1a, thereby promoting chondrogenic differen-
tiation through the increased production of type II collagen
and other extracellular matrix components.’”* Recently, the
sequential application of DMOG and PTHrP encapsulated in
PLGA microspheres effectively mimicked the hypoxic micro-
environment, thereby promoting chondrogenic differentiation
with phenotypic stability.'”®

II1.5.2. DFO (deferoxamine). DFO (deferoxamine) is a chelat-
ing agent that is approved by the Federal Drug Administration
for the treatment of excess iron.'’® The activity of PHD is
dependent on Fe** and O, concentrations. Consequently, a
reduction in iron concentration results in decreased HIF-1a
hydroxylation and its accumulation in cells. As a PHD inhibi-
tor, DFO is a suitable agent for mimicking hypoxic conditions
and therefore represents a promising molecule with the poten-
tial to optimize biomaterials and existing TE techniques for
tissue regeneration.'””

I11.5.3. Cobalt chloride (CoCl,). Cobalt chloride (CoCl,) has
the capacity to impede the degradation of HIF-1a protein,
thereby inducing its accumulation and, consequently, indu-
cing hypoxia. This characteristic is derived from the ability of
Co”" to inactivate FIH by substituting Fe*" in the iron-binding
center of the enzyme."”®'7? CoCl, encapsulation into an algi-
nate scaffold is shown to promote chondrogenesis without the
use of costly growth factors."®°

As described above, many biomolecules (Table 3) can be
used to regulate cellular activity at different stages of chon-
drogenesis, depending on their function or the time of
application. However, most of these active molecules have
short-term action due to their rapid elimination or degra-
dation after delivery. Therefore, they must be protected
before being released in a controlled manner. Scaffold
engineering to precisely fine-tune the spatiotemporal
release of biomolecules is therefore being investigated to
better control cell behaviour and in fine, improve cartilage
TE efficacy.'*?

This journal is © The Royal Society of Chemistry 2025
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V. Interactions and mechanisms
involved in biomolecule delivery from
scaffolds

IV.1. Non-covalent interactions

As the field of cartilage TE has rapidly expanded, many three-
dimensional and porous scaffolds are considered to be active
biomolecule-release systems. Typically, active molecules
entrapped in polymer materials are released into the surround-
ing medium due to the combination of diffusion of the mole-
cule through the matrix and matrix erosion. The proportion of
these two contributions depends on the nature of the poly-
mers, the hydration level of the matrix, its porosity and inter-
actions, specific or not, between the active compounds and the
supporting materials. Regarding diffusion, in the absence of a
covalent bond between the biomolecules and the matrix, the
retention rates and release kinetics mostly result from weak
interactions and steric hindrance (Fig. 2).

IV.1.1. Steric hindrance. Steric hindrance is a physical
barrier to the diffusion of active compounds or vector particles
through hydrogels. The meshes of the scaffold create a steric
obstruction, which hinders the diffusion of the biomolecules
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and delays their release. Steric interactions are involved when
biomolecules are loaded or released by diffusion through and
out of the matrix. In the case of particles used as reservoirs of
biomolecules or small molecules, or in the case of vectors
used to protect and deliver nucleic acids, the relevant dimen-
sions are those of the carriers. The loading rate and delivery
kinetics thus depend not only on the biomolecule or vector
size but also on the chemical nature and structure of the
matrix in which they are immobilized. Structural features
include the morphology, density (concentration, crosslinking
rate), and porous structure (tortuosity, pore size) of the
scaffold. As an example, more than 95% of IGF-1 was released
over a 28-day period, with gelatin microparticles cross-linked
with 40 mM glutaraldehyde, while similar release values were
obtained after only 6 days when using microparticles cross-
linked with 10 mM glutaraldehyde.'®

To control the release of siRNA, siRNA lipoplexes encapsu-
lated in a gellan gum hydrogel exhibited prolonged release
over 60 days, while naked siRNA was released from the hydro-
gel within 48 h.'®* Similarly, the impact of steric interactions
was evaluated in the case of siRNA nanoparticles (si-NPs)
loaded in a porous biodegradable polyester-polyurethane
(PUR) scaffold.'® The si-NPs were formulated with a defined

Modified scaffold
- Low density
- High porosity

: Encapsulated biomolecule
- Large pore size
El

Biomolecule encapsulation

Fig. 2 Schematic representation of possible steric interactions between active molecules and scaffolds, and their modulation to alter biomolecule

release kinetics. Biomolecule engineering: small, unmodified (green) and
scaffold matrix based on their size and structure. Scaffold engineering: th
actions: high-density scaffolds with low porosity and small pore sizes limit

large or modified biomolecules (purple) interact differently within the
e scaffold porosity and density are tuned to control biomolecule inter-
diffusion, while low-density scaffolds with high porosity and large pore

sizes enhance release of molecules. Biomolecule encapsulation: biomolecules are effectively encapsulated in (nano-)particles within the scaffold,

ensuring confinement and preserving functionality.

Table 4 Main entrapment mechanisms used for the controlled release of biomolecules involved in the chondrogenic differentiation of MSCs

Interaction type Entrapment mechanism

Biomolecules

Ref.

Non-covalent interactions

Covalent interactions

Multi-scaffolding system

Weak interactions
Steric entrapment

Crosslinking
Photoimmobilization

Click chemistry

Combination of several techniques

This journal is © The Royal Society of Chemistry 2025

TGFp1-2-3/PTHrP/bFGF/BMP-2/curcumin/
chondroitin sulphate/nucleic acid
TGFp1-2-3/IGF/bFGF/PTHrP/BMPs/kartogenin/
chondroitin sulphate/curcumin/nucleic acid
TGF-f1-3/BMP-2/BMP-4/kartogenin
BMP-2/PDGF

TGF-$1/BMP-2
TGF-f1-2-3/BMP-7/kartogenin/curcumin

173, 179-182 and 188-293
151-153, 156 and 164-169

207-210 and 212

95 and 217-221
227-228

237-246 and 253-255
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sive diblock copolymer used for siRNA packaging and intracellular delivery. The homo-2-(diethylamino)ethyl methacrylate (DMAEMA) block was
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fit was determined and is overlaid here for each data set. Reproduced from ref. 183 with permission from Elsevier, copyright 2012.

charge ratio between positively charged tertiary amines on the
DMAEMA block of the polymer and negatively charged phos-
phate groups on the siRNA backbone (Fig. 3). The diffusion
and release kinetics of encapsulated siRNAs and free siRNAs
were compared. The release data demonstrated cumulative
release of si-NPs approaching 80% over 21 days, which was
considerably slower than naked siRNAs completely released in
three days. The release rates of naked and complexed siRNAs
scaled with their hydrodynamic diameters and their diffusivity
throughout the PUR matrix. This property is particularly useful
for gene transfer strategies, since NPs preserve nucleic acid
integrity and serve as a vector that enables genetic material to
cross the cell membrane.'>*'8%'%> Recently, we demonstrated
that it was possible to obtain different siRNA diffusion profiles
from a collagen hydrogel, depending on the size of the vector
used."®® Interestingly, the inhibition profiles of the target gene
Runx2 over time was correlated with the release kinetics, and
hence with the size of the siRNA vector.

IV.1.2. Scaffold degradation. One major function of scaffolds
applied to cartilage TE is to provide 3D support for chondro-
cytes, and thus to promote ECM secretion. However, the
scaffolds are not intended to stay in the joint. Ideally, they
should be gradually degraded and replaced with the newly
created cartilage matrix. This is why scaffolds used in cartilage
TE are generally made of biodegradable materials.'®”"®®
Scaffold degradation is accompanied by a reduction of steric
constraints and therefore plays an important role in the
release of encapsulated biomolecules (Fig. 4).

A multitude of factors can affect the rate of scaffold degra-
dation in vivo, including the surrounding environment, the com-

1880 | Biomater: Sci,, 2025, 13,1871-1900

position and structure of the biomaterial, and the physical
loading to which the scaffold is subjected."®*'°' Indeed, the
degradation of a polymer scaffold involves chain cleavage pro-
cesses induced for instance by hydrolysis, oxidation or photode-
gradation."®® In vivo, scaffold degradation takes place in an
aqueous biological environment where hydrolysis plays an
important role, often promoted by enzymatic activities (pro-
teases, esterases...). In the context of cartilage TE, the degra-
dation of the natural polymer scaffold, comprised of collagen for
instance, may be accelerated by matrix metalloproteases (MMPs)
secreted by chondrocytes resulting in accelerated or triggered
release of biomolecules.'®> As an example, micelles containing
miR-140 entrapped in MMP-sensitive microparticles composed
of gelatin methacryloyl hydrogel have been developed.'®® In the
presence of MMPs, complete release of miR-140 from the micro-
particles was achieved after 5 days, compared to more than 14
days in the absence of MMPs (Fig. 5). The authors exploited the
presence of large amounts of MMPs in the OA joint capsule to
degrade the scaffold, thus releasing the entrapped micelles
loaded with miR-140. After in vivo injection, a notable reduction
in osteophyte formation and OARSI score was demonstrated in a
DMM:-induced OA model. The group that received the micelles
containing miR-140 entrapped in MMP-sensitive microparticles
demonstrated the most favourable outcome with regard to GAG
level, indicating optimal retention of the cartilage thickness. In
addition, the expression of COL2 was the highest while MMP13
expression exhibited an inverse correlation among this group.
These findings collectively suggest that these MMP-sensitive
microparticles have the potential to delay the degeneration of
articular cartilage and the progression of OA.

This journal is © The Royal Society of Chemistry 2025
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Similarly, MMP-13-responsive hydrogel microspheres were hyaluronidase only, the drug release efficiency reached 82% on
used to control the release of celecoxib-loaded liposomes in day 5 after immersion in the solution containing MMP13 and
the context of OA."** Compared to microspheres immersed in  hyaluronidase, indicating a significantly accelerated release of

This journal is © The Royal Society of Chemistry 2025 Biomater. Sci., 2025, 13,1871-1900 | 1881
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celecoxib in the presence of MMP13 (Fig. 6b). After inducing
OA in rats via ACL transection and partial medial meniscect-
omy, intra-articular injection of these microspheres yielded a
significant reduction in cartilage degeneration,'** as shown by
a lower OA score, larger joint space width and reduced osteo-
phyte formation.

The rate of degradation also depends on the composition
and structure of the biomaterial. For example, the release of cur-
cumin from a gelatin scaffold can be prolonged by adding silk
fibers to the scaffold."”> Another study showed that the degra-
dation rate of a scaffold made of PLGA and PLA nanofibers
could be adapted by varying the PLGA/PLA ratio: the higher the
PLGA/PLA ratio, the faster the scaffold degraded.'*® Finally, carti-
lage repair is also correlated with mechanical loading applied to
the scaffold. Higher shear stresses resulted in early and fast
release of sirolimus, with high cumulative drug release.'®”

However, achieving precise control of biomolecule delivery
solely by adjusting scaffold biodegradation remains limited.
One reason is that, depending on the application, it might be

View Article Online

Biomaterials Science

required that the active molecule be released faster than the
scaffold degradation rate, which should be consistent with the
rate of neo-tissue formation. In contrast, diffusion out of a
highly solvated hydrogel is often very fast, hence retention of
the active compounds through weak interactions or reversible
covalent attachment to the matrix is needed. Different strat-
egies have been explored to achieve optimal delivery profiles of
single or multiple drugs.’®® A comprehensive understanding
of the interactions and release mechanisms underlying the
drug delivery kinetics is key to providing new insights into car-
tilage repair.

IV.1.3. Weak interactions. Although steric interactions
between scaffolds and biomolecules are ubiquitous, other
non-covalent interactions can be exploited to finely tune the
spatio-temporal release of biomolecules. Electrostatic and
hydrophobic non-covalent interactions are widely involved in
the interactions between scaffolds and growth factors (Fig. 7).

Several natural macromolecules—abundant in the connec-
tive tissues of vertebrates (collagen, heparin, or hyaluronic
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Fig. 6 MMP13-responsive hydrogel microspheres for precise delivery of celecoxib. (a) Schematic representation of the responsive release of cele-
coxib from hydrogel microspheres induced by MMP13. (b) Drug release profiles of celecoxib in HAase, MMP13 and MMP13/HAase solutions. (c)
Measurement of joint space width of the lateral knee joint compartment evaluated from X-rays. (d) Relative osteophyte volume measured by micro-
CT. (e) OARSI scores determined on histological sections of knee joints. Reproduced from ref. 194 with permission from Elsevier, copyright 2024.
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scaffold, enabling stable and enhanced interactions with biomolecules.

acid) and largely used to elaborate scaffolds for TE—exhibit
attractive interactions with diffusing active biomolecules.
Collagen is the main component of the cartilage ECM and
among the most used material for the construction of
scaffolds in TE. Some GFs, including TGF-p1, bFGF and
BMP-2, are demonstrated to naturally possess a strong affinity
for collagen and can bind to collagen-based scaffolds via ionic
interactions. However, the release profiles usually feature an
initial burst, which makes this approach unsuitable for con-
trolled release.’®*?°° One possibility to enhance their binding
to the scaffold and slow down their release is to engineer
recombinant GF by adding a collagen binding domain (CBD)
at one terminus.”**°*> Indeed, recombinant PTHrP expressed
as a fusion with a CBD heptapeptide displayed a higher col-
lagen-binding capacity than that of the native PTHrP, with a
dissociation constant two times lower.>** Applied to cartilage
TE, this engineered peptide allowed for sustained release from
a collagen scaffold and a prolonged effect over several days.
Conversely, peptides with a strong affinity for specific regions
of GFs can be designed and bound to the scaffolds to control
the GF presentation and activity.”** The modification of
scaffolds with such peptides resulted in higher retention, less
dissemination and better controlled release, thus reducing the
amount of GFs required and providing a more cost-effective
approach for TE applications.?®>2%” Several TGFp1-binding
peptides, including HSNGLPL, have been used to functionalize

biopolymer scaffolds, with in wvitro and in vivo
applications.>*®>'* Similarly, the incorporation of heparin into
scaffolds is widely used for drug delivery

purposes.'9*19%2127215 [ndeed, positively charged amino acids

of GFs can interact with GAGs through electrostatic inter-
actions, particularly with the sulphate groups of heparan sul-
phate proteoglycans (HSPGs), which are widely produced in
the ECM of tissues.”’®*'®2*° For instance, heparin was
trapped as a semi-interpenetrated polymer within a cross-
linked network or covalently bound to a polymer backbone by
grafting tyramine, methacrylate, thiols or maleimide moieties
to the heparin chains.?**>* Once trapped in the network of
polymers or grafted onto the scaffold, electrostatic interactions
established between heparin and GFs such as TGF-f or bFGF
slowed down their release. Recently, heparin covalently conju-

This journal is © The Royal Society of Chemistry 2025

gated to a hyaluronan hydrogel was shown to achieve the sus-
tained release of 60% TGF-p1 after two weeks, whereas in the
absence of heparin, 97% of TGF-p1 was released over the same
period.**® The system demonstrated remarkable efficacy for
promoting chondrogenesis, as shown by 19- and 32-fold
increases in aggrecan and type 2 collagen expression, respect-
ively, after 21 days of differentiation when heparin was co-
valently conjugated to a hyaluronan hydrogel (Fig. 8).

Interestingly, sulphated alginate, which is used in cartilage
TE for its beneficial effects on chondrocyte proliferation and
phenotype maintenance, can also act as a GAG analogue and
interact with most GFs, thereby extending their therapeutic
effect.>?”">3" This dual property of alginate was used to form a
macro-porous alginate scaffold, where uronic acid units were
sulphated to mimic heparin, and successfully loaded with
TGF-p1 to enhance MSC chondrogenesis.>*> Finally, electro-
static interactions can also be involved, in particular for gene
therapy applications using non-viral vectors for gene
transfer."'>*233234 Naked nucleic acids bear a negative charge,
while the vectors obtained by complexation with cationic poly-
mers or lipids exhibit a net positive charge.'®*>*® For example,
the incorporation of siRNA into positively charged copolymer
micelles significantly slowed down the release from injectable
polyurethane; this could be attributed in part to attractive
electrostatic interactions between the vector and the scaffold
matrix.'®*

Hydrophobic interactions also largely participate in the
retention of biomolecules in a scaffold. As an example, gelatin
or gelatin-silk fibroin microspheres have been used for the
sustained release of curcumin adsorbed into the microspheres
for the treatment of OA.'®® The slower release rate with
gelatin-silk fibroin microspheres than gelatin microspheres
was attributed to hydrophobic interactions between curcumin
and the hydrophobic domains of the silk fibroin, along with
the lower degradation rate compared to that of pure gelatin
microspheres. It is also possible to alter the interactions
between proteins and scaffolds to control the biomolecule
release kinetics. For example, PLGA microspheres have been
used as pharmacologically active microcarriers for the delivery
of TGF-B3 to promote the differentiation of MSCs into chon-
drocytes.**® In this study, PLGA microspheres were modified
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with poloxamer P188, resulting in a more hydrophilic scaffold
and therefore allowing for greater and sustained release of
TGF-p3, reaching 70% on day 30. These PLGA microspheres
modified with poloxamer P188, exerted a superior effect on
chondrogenic differentiation compared to unmodified
PLGA-TGF-f3.

IV.2. Covalent interactions

Covalent binding of biomolecules to scaffolds is commonly
used to increase retention rates and significantly reduce the
initial burst release often observed with non-covalent
methods.*®” Biomolecules can be directly grafted to the
materials or attached vig a linker. The immobilization strat-
egies may involve existing chemical functions present on the
scaffolds and biomolecules or require previous activation.
Because biomolecules are usually not soluble or will be
denatured in organic solvents, their bioconjugation requires
the use of aqueous-based chemistry. To address these needs,

1884 | Biomater. Sci, 2025, 13, 1871-1900

various activation strategies are being developed, and the main
biocompatible chemical immobilization systems adapted to
cartilage TE are presented below (see also Table 4) (Fig. 9).
1v.2.1 Direct grafting. One of the most common methods to
conjugate biomolecules is the formation of an amide bond
between a carboxyl group of the biological factor and a
primary amine on the scaffold matrix, or vice versa. The zero-
length linker 1-ethyl-3-(3-(dimethylamino)propyl) carbodi-
imide hydrochloride (EDC), a water-soluble carbodiimide, is
often used to activate the carboxyl groups.’’***®* EDC is
released after the formation of the amide bond, leaving no
additional atom between the biomaterial and the biofactor.
EDC has been used to conjugate TGF-pf1, TGF-f3, BMP-2 and
BMP-4 to a variety of biomaterials.”**>** The release of TGF-p3
immobilized on the PLGA-gelatin—chondroitin sulphate-HA
hybrid scaffold demonstrated a biphasic pattern characterized
by a fast release of 14.5% of the initial loading during the first
day followed by a plateau on day 7 to reach 29.5% release after

This journal is © The Royal Society of Chemistry 2025
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28 days. The release of TGF-f3 induced the chondrogenic
differentiation of MSCs.>*® To improve biomolecule immobiliz-
ation, sulfo-N-hydroxysuccinimide (sulfo-NHS) is often com-
bined with EDC to form a more stable amine-reactive sulfo-
NHS ester intermediate, with improved reaction efficiency in
aqueous media.**>**”**3 The combination of EDC and NHS
activation was used to conjugate KGN on chitosan-based nano-
particles (NPs) and microparticles (MPs), which resulted in
higher in vitro chondrogenic differentiation of MSCs compared
to control with unconjugated KGN.>** The in vitro release of
KGN was compared between MPs and NPs, with 55% of KGN
released from MPs and 35% released from NPs over a 50-day
period (Fig. 10). Micropellets of MSCs treated with kartogenin-
conjugated MPs or NPs exhibited stronger Safranin-O and
Alcian blue staining, indicating enhanced proteoglycan syn-
thesis. In vivo, the administration of CHI-KGN NPs or
CHI-KGN MPs resulted in a reduction of degenerative changes
in rats with induced OA, as reflected by a significant reduction
in OARSI scores.

However, immobilization on the scaffold and the various
necessary steps required can affect the bioactivity of the drug.
Carbodiimide coupling can occur with the amine groups
present in the lysine residues or N-terminus of GF, as well as
the carboxylic groups present in the aspartate or glutamate
residues or C-terminus. This lack of selectivity may result in
some bioactive functional groups being involved in grafting
bond formation, potentially resulting in a loss of GF bioactiv-
ity.>** Similarly, the presence of numerous functional groups
leads to the random immobilisation of GF, thereby affecting
the accessibility of ligands to the corresponding cell
receptors.”®

Iv.2.2. Click chemistry. Click chemistry represents a quick,
selective, and high yielding chemical conjugation method
without the need for extensive post-processing to remove by-
products.>*>**¢ Click reactions offer the advantage of being

This journal is © The Royal Society of Chemistry 2025

nontoxic for cells and can be done in water or in complex bio-
logical environments avoiding multiple steps that can affect
biomolecule/drug bioactivity.**” Among them, thiol-based
click strategies are based on reactions with free thiols that are
present in cysteine residues of native GFs. Alternatively, thiols
can be introduced chemically to the primary amines of bio-
molecules, notably proteins, using 2-iminothiolane, also
known as Traut’s reagent.>*®**° This chemical modification
was applied for instance to the immobilization of TGF-p1 onto
an acrylated poly(glycidol) (PG-Acr) hydrogel. Acrylate groups
on PG-Acr played roles in both hydrogel formation and conju-
gation with the thiolated GF via Michael-type addition.
Grafting of TGF-f1 did not compromise hydrogel formation
and improved the chondrogenesis of encapsulated MSCs com-
pared to gels with TGF-f1 simply impregnated without thiola-
tion.>®® The GAG/DNA and collagen/DNA ratios were approxi-
mately two times higher and the cartilage ECM was thicker
when TGF-f1 was grafted. This clearly demonstrated the
superior effect of covalent immobilization of TGF-p1 onto the
hydrogels compared to non-covalent incorporation.

Another major click chemistry reaction that is attracting a
great deal of interest in the biomedical field is strain-promoted
azide-alkyne cycloaddition (SPAAC). For example, alkyne
groups were added to BMP-2 and azides were added to a
methoxy polyethylene glycol-polycaprolactone to facilitate
attachment and in fine improve cell differentiation.>®" In
another example, hydroxyethyl cellulose (HEC) was modified
to make it amenable for biorthogonal click chemistry. This
largely available modified natural polymer has been con-
sidered for cartilage TE but it lacks reactive functional groups.
A method based on an initial esterification step with citric
acid to introduce carboxylic functions (handles), which are
used to introduce either azide or alkyne (DBCO) moieties, was
developed. Alkyne- and azide-modified HEC are then mixed
and reacted through SPAAC to form a biocompatible and

Biomater. Sci,, 2025, 13,1871-1900 | 1885
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biorthogonal HEC scaffold.*®® The reactivity introduced into
HEC can be exploited to immobilize biomolecules, for
instance, N-terminal azide-modified GF. However, poorly con-
trolled covalent modifications can negatively affect the activity
of biomolecules. Therefore, the immobilization strategy
should be appropriate for the chemistry of biomaterials, the
availability of reactive groups in the biomolecule structure and
the location of the reactive groups relative to the receptor
binding domain.>**?>*

Iv.2.3. Photoimmobilization.
another common method to immobilize biofactors on bioma-

Photoimmobilization is

terials. Photoinitiated reactions provide additional control over
the location of biomolecule grafting sites within a 3D structure
thanks to localized application of UV irradiation. The bio-
molecule is first functionalized with a photoreactive group
such as benzophenone or azidophenyl.>*>?*® Then, the modi-
fied biomolecule is bound to the biomaterial upon exposure to
light, typically UV.?°>?%%2%7 A major advantage of photoimmo-
bilization over other immobilization methods lies in its ability
to easily generate GF patterns. By using photomasks or laser
scanning light sources, GFs can be immobilized in specific

1886 | Biomater. Sci., 2025,13, 1871-1900

locations within both 2D and 3D matrices; this enables
enhanced control over cell behaviour. BMP-2, PDGF and other
GFs were photoimmobilized to promote osteogenesis or
chondrogenesis.'™>***%" As an example, TGF-f1 was conju-
gated to acrylated PEG molecules (acryloyl-PEG-NHS) through
the reaction of amine groups on GFs with succinimidyl groups
on PEG.*®” This PEG-TGF-f1 conjugate was combined with
PEG-diacrylate and the mixture was exposed to UV light to
initiate the crosslinking reaction and form a hydrogel.
Covalently immobilized TGF-p1 increased ECM production by
vascular smooth muscle cells embedded in the PEG hydrogel.
The production of collagen was significantly greater when
TGF-p1 was tethered to the hydrogels than when soluble TGF-
f1 was used. Furthermore, the Young’s modulus, which
reflects the stiffness of the scaffold, was significantly higher
when TGF-f1 was tethered to the scaffolds.

IV.3. Multi-scaffolding system

Hydrogels are efficient biomaterials for TE, as already widely
described, but are limited for the long-term delivery of bio-
molecules mainly due to the lack of strong interactions to

This journal is © The Royal Society of Chemistry 2025
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prevent or slow down the release of molecules.*®"*%*72% To
overcome this limitation, drug-loaded MPs or NPs can be
incorporated into the hydrogels. Such composite systems,
owing to the wide range of chemical structures and properties
available for the polymers or inorganic materials, are a strong
alternative for the localized entrapment of bioactive cargo, and
their controlled and sequential release in cartilage TE>®°
(Fig. 11).

MPs and NPs display high surface area to volume ratios,
small dimensions, high drug encapsulation efficiencies and
the capacity to quickly respond to surrounding environmental
stimuli, such as temperature, pH, magnetic fields or
ultrasound.>®”>*° In this field, the PLGA polymer is widely
used due to its controllable degradation profile, ease of manu-
facture and FDA approval for drug delivery in clinical appli-
cations.””® Recently, an injectable hydrogel system (Col-
Apt@KGN MPs), which is a collagen-based scaffold containing
aptamer 19S (Apt19S) and PLGA-based MPs encapsulating
KGN, was described to enable the sequential release of Apt19S
and KGN*>"* (Fig. 12). Apt19S was rapidly released from the
hydrogel within 6 days, while KGN was slowly released for 33
days via the degradation of PLGA MPs. Apt19S enabled the
recruitment of endogenous MSCs and KGN promoted their
chondrogenic differentiation and cartilage-specific ECM
secretion, as confirmed by higher production of GAGs in the
Col@KGN MP and Col-Apt@KGN MP groups after 14 and 21
days. In a rabbit model of full-thickness cartilage defects, the
Col-Apt@KGN MP group demonstrated the most effective
repair, with the regenerated tissue showing a smooth surface
and uniform integration into the surrounding healthy cartilage
and an ICRS score significantly superior to that of the other
groups after 14 weeks.

Another composite scaffold, consisting of an injectable chit-
osan/silk fibroin hydrogel and PLGA MPs loaded respectively
with SDF-1 and KGN, was successfully used to achieve the
sequential release of these two biomolecules for cartilage
TE.””” The authors suggest that the burst release of SDF-1 (ca.
40% after 24 h) accounts for the recruitment of endogenous
MSCs to the defect area. The slower and sustained release of
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KGN promoted the differentiation of MSCs into chondrocytes,
hence favouring cartilage repair. This approach gave interest-
ing results in vivo, after creating surgical lesions on rabbit
knees.

Finally, polyionic complex NPs loaded with TGF-f2 were
encapsulated into an alginate hydrogel impregnated with
BMP-7. This resulted in the sequential delivery of biological
factors; BMP-7 was released faster than TGF-p2, with 80% and
30% of the GF, respectively, being released after 21 days of
incubation.””® Since the molecular weight of the polymer that
forms the particles could affect the release kinetics of the
encapsulated drug, this property was also evaluated to tune
the release of different active compounds. In vitro, TGFp3
loaded into low-molecular-weight PLGA (10 kDa)-based MPs
exhibited sustained release over 28 days, reaching approxi-
mately 96% of the initial dose.>’ In contrast, lenvatinib, an
anti-angiogenic small molecule, was released at a much slower
rate from high-molecular-weight PLGA (100 kDa)-based MPs,
with only 40% being released after 56 days. Although TGFf3
and lenvatinib have distinct chemical natures, their dual
release from 10 kDa and 100 kDa PLGA MPs resulted in the
significant downregulation of osteogenesis-related genes
(BMP2, RUNX2, OPN, OCN, ALP) being observed after 56 days.

Processing and 3D structures, as described in section II.3,
offer versatile strategies for manipulating drug loading and
release profiles from scaffolds."**?”® Layer-by-layer assembly is
commonly used to construct porous scaffolds with good per-
formance in avoiding GF loss of function, while achieving a
high sequestration rate under mild aqueous conditions and
controlled delivery. A method for the 3D printing of hydrogels
with core-shell capsules sensitive to external stimuli was devel-
oped for the on-demand release of biomolecules.”’® The cap-
sules consisted of an aqueous core, which could be formulated
to maintain the activity of payload biomolecules—here, the
horse peroxidase (HRP) protein was used as a proof-of-concept
—and a PLGA shell that sterically held the molecules inside
the capsules. The shell is loaded with plasmonic gold nano-
rods (AuNR) that selectively disrupt the capsules when irra-
diated with a laser at a specific wavelength, therefore triggering
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densities for the precise spatial distribution and controlled release of biomolecules.
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the release of HRP with high spatiotemporal control.>”®

Similarly, TGF-p1-embedding core-shell nanospheres were fab-
ricated via co-axial electrospraying of the GF along with PLGA
and then mixed to form a bioink composed of 10% gelatin
methacrylate (GelMA), 5% polyethylene glycol diacrylate
(PEGDA) and a biocompatible photoinitiator.””” The MSC-
laden constructs were 3D bioprinted by stereolithography and
the sustained release of TGF-f1 for up to 21 days significantly
improved the chondrogenic differentiation of encapsulated
MSCs.

V. Challenges and future
perspectives

Despite considerable advances being made in optimising
scaffold design and association with bioactive molecules, clini-
cal translation has achieved only limited success in the treat-
ment of articular cartilage defects. While pre-clinical experi-
ments in small and large animal models have yielded promis-
ing results, further investigation is necessary to assess the
clinical safety, reliability, and efficacy of the TE strategy. With
regard to the controlled release of drugs over space and time,
the majority of research revolves around conditions simulated
in vitro. However, there is a lack of clear evidence regarding the
actual dosage and kinetics of growth factor release in vivo. It is
necessary to create reliable assessment tools that can noninva-
sively track growth factor delivery after implantation. Real-time

1888 | Biomater: Sci,, 2025, 13,1871-1900

monitoring in living organisms represents one of the main
challenges that requires urgent consideration, in particular for
cartilage TE.

A further issue that requires attention is the occurrence of
hypertrophic or fibrotic neotissue over time following scaffold
implantation in cartilage repair strategies. It is of paramount
importance to prevent hypertrophy or fibrosis to enable appro-
priate integration between the implant and surrounding
endogenous tissues. To address this challenge, the incorpor-
ation of anti-hypertrophic or anti-fibrotic cues may enhance
the stability and longevity of engineered cartilage, thereby
advancing the field closer to developing functional cartilage
repair therapies. It is therefore crucial to gain a deeper under-
standing of the precise timing and dosage for their application
and to control their release from scaffolds. Concurrently, cell
source modulation, genetic engineering and optimisation of
culture conditions will be pivotal factors in the translation of
TE approaches for clinical success.

The microenvironment-responsive release approach is
emerging as a promising solution for controlling the timing of
molecule release. The use of cleavable linkers, such as those
sensitive to pH or proteases, represents a significant opportu-
nity to selectively release active molecules in response to
changes in the nearby tissue environment, thereby controlling
the temporal and spatial availability of specific factors for
optimized tissue regeneration. Future strategies will undoubt-
edly benefit from evolving advances in monitoring, fabrication
techniques and novel strategic pairings of biomolecules.

This journal is © The Royal Society of Chemistry 2025
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VI. Conclusion

Cartilage TE seeks to generate neo-tissue that mimics the phys-
iological function of native cartilage, offering a viable solution
for cartilage repair. However, existing strategies often result in
the deposition of an ECM with suboptimal biomechanical pro-
perties that degrade over time, poor integration into the host
tissue or tissue fibrosis. To enhance cartilage regeneration
using scaffolds containing MSCs or chondrocytes, various bio-
molecules have been incorporated into different types of bio-
materials in order to boost their biological activity and reduce
the need for repeated injections. These biofactors play crucial
roles in differentiation processes or cartilage homeostasis and
typically require sustained release due to their rapid clearance
in vivo. Moreover, the kinetics of their release must be tailored
to the specific biofactor. Recent advances have successfully
employed scaffolds as biomolecule reservoirs, ensuring pro-
longed release of active molecules over weeks or even months,
with promising outcomes for cartilage engineering.
Innovations in biomaterials chemistry have further improved
the control and retention of biomolecules within scaffolds,
preserving their bioactivity. However, the majority of controlled
release research is conducted in vitro, under simulated con-
ditions, and the absence of real-time monitoring in living
organisms remains a major limitation, hindering further pro-
gress in the field. It is clear that future strategies will greatly
benefit from the integration of advanced monitoring techno-
logies, innovative fabrication techniques, and the development
of novel agent combinations. Additionally, cleavable linkers,
responsive to pH or proteases, offer a promising approach for
the selective release of active molecules in response to
dynamic changes in the local tissue environment, representing
a critical avenue for future research and application in carti-
lage TE.
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