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Individual condensation of salicylaldehyde and a variety of different

pyridines (equimolar concentration) in polar solution results in

a yellowish-orange precipitate (imine-derived product). The study

shows that these small-molecule compounds possess turn off and on

fluorescence properties upon chelation with Zn2+ ions. When reacted

with other metal ions, there was no significant increase in the fluo-

rescence intensity of the probes. However, there was multi-fold

increase in fluorescence intensity when the probes reacted with

Zn2+ ions. The probes can be employed as zinc-specific sensors in

multiple applications including bioimaging, nanotechnology and

environmental sciences.
Zinc is the second most abundant trace element in the human
body aer iron, constituting approximately 0.004% of total body
mass and predominantly existing in the divalent Zn2+ state.1 It is
an essential micronutrient involved in numerous physiological
processes, including metabolism,2 neurotransmission,3 DNA
synthesis, apoptosis regulation,4 immune response5 and enzy-
matic function6. Due to its central role in these pathways,
maintaining optimal zinc homeostasis is critical. Zinc de-
ciency is associated with developmental delays, impaired
immune function, metabolic disorders, and increased suscep-
tibility to certain cancers. Conversely, excessive zinc levels may
induce toxicity and are implicated in the progression of several
neurodegenerative diseases, including Alzheimer's disease,7

familial amyotrophic lateral sclerosis,8 and Parkinson's
disease9,10.

These contrasting outcomes underscore the need for precise,
sensitive, and selective detectionmethods tomonitor zinc levels
in biological and environmental samples.11 Among therapeutic
approaches, zinc supplementation—particularly using zinc
acetate—has demonstrated high bioavailability (∼100%) under
physiological conditions (pH 7.4) and remains one of the most
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effective strategies for correcting zinc deciency.12,13 Moreover,
zinc acetate has been utilized in diagnostic and therapeutic
applications, such as injectable formulations for monitoring
tumour growth in certain cancers.14–17 Fluorescence-based
detection has emerged as a leading technique for the selective
identication and quantication of transition metal ions,
notably Zn2+, due to its high sensitivity, real-time monitoring
capability, and minimal invasiveness.18,19 This method has
found widespread utility across diverse elds, including cellular
biology,20 nanotechnology,21–23 and environmental science.24,25

Fluorescent probes typically comprise three functional compo-
nents: (i) a uorophore, which generates a measurable emission
upon excitation; (ii) a recognition moiety, which selectively
binds the target analyte; and (iii) a linker that connects the
uorophore to the recognition site. Upon interaction with the
analyte—such as Zn2+—the recognition event induces a struc-
tural or electronic change that activates the uorophore,
leading to a uorescence response detectable by spectroscopic
methods.26,27 The sensitivity and selectivity of these probes are
highly dependent on the electronic conguration of the
uorophore core and its interaction with the target molecule.

Fluorescent probes possessing enhanced spectroscopic
properties, high signal-to-noise ratios, and strong target speci-
city have become indispensable tools in diverse areas
including bioimaging,28,29 environmental monitoring,30 protein
labelling,31–33 drug development,34,35 and food safety testing.36,37

Among these, pyridine-based uorophores have attracted
considerable attention owing to their strongmetal-coordination
ability, high photostability, and tunable photophysical charac-
teristics, which enable precise modulation of uorescence
intensity and emission wavelength.38 Continued development
of such systems is essential for advancing the understanding of
zinc biology and addressing issues related to its dysregulation.

Zinc-sensing uorescent probes constitute one of the most
extensively studied classes of probes for biological imaging due
to their operational simplicity, excellent cell permeability,
biocompatibility, and negligible interference from competing
biological ions.39,40 Their uorescence enhancement typically
This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Emission spectra of free compound 1 (red) and its Zn+2 complex
(blue) in methanol. Photos of solutions of compound 1 (left) and its
zinc complex (right) in methanol under fluorescent light.

Fig. 2 (A): Emission spectrum of compound 1 complexation with Zn2+

when compared with Mn2+, Cu2+, and Ca2+. (B): Fluorescence emis-
sion spectra of compound 1 (10 mM) with various amounts of Zn2+ (0–
1.0 equiv.) in methanol.
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arises from zinc coordination, which suppresses photoinduced
electron transfer (PET) quenching between the receptor and
uorophore, resulting in a pronounced emissive response.41 A
wide range of zinc-responsive probes based on naphthol,
coumarin, rhodamine, and uorescein scaffolds has been re-
ported; however, these systems are generally of high molecular
weight.42 In contrast, the development of small-molecule
uorophores remains relatively unexplored, despite their
potential advantages in terms of synthetic accessibility, sensi-
tivity, and selectivity.

In this work, we report the design and synthesis of a series of
small-molecule imine-derived uorophores (#320 amu) exhib-
iting high affinity and selectivity for Zn2+ ions. The target
compounds were prepared via condensation of salicylaldehyde
with four pyridine derivatives: 5-aminopyridine-2-carboxylic
acid (1), 2-amino-3-chloro-5-triuoromethylpyridine (2), 5-
amino-2-triuoromethylpyridine (3), and 2-amino-3-
hydroxypyridine (4) (Scheme 1). Detailed synthetic procedures
are provided in the SI.

The structural identity of the synthesized compounds was
conrmed by 1H NMR spectroscopy. We found sharp singlet
signals in the range of d 8.66–5.50 ppm, consistent with the
formation of imine (–C]N–) functional group. Purity of the
probes was conrmed with sharp melting point values and
molecular weight on mass spectra (see SI). Following structural
conrmation, the UV-Vis absorption and uorescence
responses of the probes to Zn2+ ions were evaluated. Schiff bases
are well-established as versatile ligands for metal ion coordi-
nation due to their electron-rich imine moiety, which facilitates
stable complex formation with various metal ions.43,44 The
combination of donor and acceptor groups by a delocalized p-
system leads to uorescence enhancement via intramolecular
charge transfer (ICT).45 The synthesized probes demonstrated
signicant uorescence enhancement in the presence of Zn2+

ions, supporting their potential as metal ion sensors. Solutions
of each probe were prepared in methanol at a concentration of
1.0 × 10−3 mM. Zinc acetate stock solution was prepared at the
same concentration (1.0 × 10−3 mM) in methanol. Notably, the
UV-Vis spectra of probe 1 exhibited no shi in absorption
maxima upon Zn2+ addition. This suggests minimal perturba-
tion to their ground-state electronic transitions. In contrast, the
uorescence spectrum revealed pronounced changes between
probe 1 and its zinc complex. The free probe 1 displayed
Scheme 1 Schematic diagram of organic synthesis of compounds 1–
4.

This journal is © The Royal Society of Chemistry 2025
moderate emission intensity at a wavelength of about 360 nm,
which increased by approximately 4.5-fold upon the addition of
Zn2+ ions (Fig. 1), indicating a strong uorescence “turn-on”
upon metal binding. The selectivity of probe 1 was examined by
reacting the probe with four different metal ions: Zn2+, Mn2+,
Cu2+, and Ca2+. Under UV light (short and long wavelengths),
only the Zn2+–probe complex displayed bright green uores-
cence. The uorescence intensity of each complex was
measured (Fig. 2A). Upon addition of 1.0 equivalent of each
metal ion, Zn2+ induced a signicant enhancement in uores-
cence intensity compared to the other ions. In contrast, Mn2+,
Cu2+, and Ca2+ elicited minimal emission changes (Fig. 2A),
indicating high selectivity of probe 1 for Zn2+ ions. The observed
uorescence enhancement is attributed to chelation-enhanced
uorescence (CHEF) and inhibition of photoinduced electron
transfer (PET) upon Zn2+ coordination. Additionally, Zn2+

binding likely restricts C]N bond isomerization, further
contributing to uorescence recovery. An intramolecular charge
transfer (ICT) process may also be involved in the emission
enhancement. A titration experiment (0–1.0 equivalents) was
performed with 0.1 equivalent incremental additions of Zn2+ to
the methanolic solution of probe 1. The emission intensity
increased in a concentration-dependent manner, with a strong
peak observed at 366 nm upon excitation at 282 nm (in MeOH).
This conrms the quantitative response of the probe to Zn2+

ions (Fig. 2B). Probes 2–4 also exhibited strong uorescence
enhancement in the presence of Zn2+ under UV light. Their
absorbancemaxima were observed in the blue region at 306 nm,
342 nm, and 358 nm, respectively (Table 1). While probe 2
showed no change in the absorption maxima upon addition of
Anal. Methods, 2025, 17, 9530–9535 | 9531
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Table 1 Absorption and fluorescence emission spectra of synthesized
compounds (1–4) and their zinc acetate (Zn(OAc)2) interaction in
methanol

Probe # Absorbancemax (nm) Emissionmax (nm)

1 282 360
1+Zn 282 366
2 366 580
2+Zn 368 562
3 342 500
3+Zn 348 520
4 358 520
4+Zn 432 561

Fig. 3 (A) Labeling normal (404), (B) cancer (408) prostate cells with
probe 1 in the presence and absence of zinc.

Fig. 4 Optimized molecular structures (top), spatial electronic distri-
butions of HOMO and LUMO energy levels of starting material, probe
1, and probe 1 + zinc (bottom) respectively.
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Zn2+ ions, probe 3 recorded a slight red shi (342–348 nm) while
probe 4 showed a signicant shi in absorbance maxima from
358 nm to 432 nm aer the addition of Zn2+ ions.

The development of novel uorescent probes is essential for
the selective detection of target analytes such as metal ions in
complex biological samples. Particularly, zinc plays a crucial
role in numerous physiological processes, and notably, the
prostate contains the highest concentration of zinc in the
human body—approximately three to ten times greater than
that found in other tissues. However, in prostate cancer (PC),
zinc levels are markedly reduced.46 Several studies have docu-
mented up to a six-fold decrease in zinc concentration in
cancerous prostate tissue compared to healthy tissue.47 The
current reliance on serum prostate-specic antigen (PSA) as
a diagnostic marker for prostate cancer has faced growing
criticism due to its limited specicity, which oen results in
overdiagnosis and overtreatment.48 In contrast, one of the most
consistent biochemical hallmarks of prostate cancer is
a signicant reduction in intracellular zinc levels.49,50 This
diminished capacity of prostate cells to accumulate and secrete
zinc presents a promising avenue for early detection of the
disease.

In our preliminary cell-imaging studies, we successfully
distinguished healthy prostate cells from malignant ones based
on their uorescence intensity. Upon the addition of probe 1,
tumor cells exhibited markedly lower uorescence compared to
normal prostate cells (Fig. 3), reecting their reduced intracel-
lular zinc content. To assess the sensitivity of probe 1 to Zn2+

ions within cells, prostate cancer cells were incubated with
a known concentration of zinc acetate solution (50 mM) and
labeled with the probe 1 (10–20 mM). Confocal images of xed
cells—PC-404 (normal) and PC-408 (tumor)—aer labeling with
probe 1 were captured (Fig. 3). The uorescence intensity varied
between the normal and tumor cells depending on the presence
or absence of Zn2+, indicating that the probe effectively
responds to intracellular zinc levels.

To gain deeper insight into the photochemical characteristics
of the designed pyridine-based uorophores in the presence of
zinc, computational studies were performed using the Gaussian
16 program. The optimized molecular geometries, molecular
orbital distributions, and excitation energies of the synthesized
probes were calculated to elucidate their electronic structures
and photophysical properties (see SI for detailed Computational
methods). The optimized structures of amine starting material,
9532 | Anal. Methods, 2025, 17, 9530–9535
probe-1 (the salicylaldehyde imine product), and probe-1 + Zn are
shown in Fig. 4. The frontier molecular orbitals (FMOs),
including the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO), were analyzed
to gain insights into the electronic properties and electron
density distribution patterns. The orbital distributions for amine
starting material, probe-1, and probe-1 + Zn are illustrated in
Fig. 4. For probe-1, the electron density of the HOMO is primarily
localized on the aminopyridine ring. Meanwhile, the electron
densities of HOMO − 1, LUMO, and LUMO + 1 are delocalized
across the entire molecular structure. This delocalization indi-
cates efficient overlap between electron transitions, suggesting
facile electron transfer processes. For probe-1 (salicylaldehyde
imine product), the HOMO electron density is also predomi-
nantly delocalized on the aminopyridine ring. The HOMO − 1
and LUMO electron densities show signicant delocalization on
the salicylaldehyde ring, while the LUMO − 1 electron density is
distributed similarly to the HOMO, predominantly on the
This journal is © The Royal Society of Chemistry 2025
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aminopyridine ring. For probe-1 + Zn, the introduction of the Zn
atom signicantly alters the electronic structure. The electron
density of the HOMO is primarily localized on the Zn atom, while
the HOMO − 1 shows delocalization on the salicylaldehyde ring.
In contrast, the LUMO electron density is delocalized across the
entire molecular structure, and the LUMO − 1 shows electron
density distributed on both the aminopyridine and salicyl-
aldehyde rings. These results highlight signicant intra-
molecular charge transfer (ICT) from the Zn atom (acting as
a donor) to the aminopyridine and salicylaldehyde rings. The
introduction of Zn into probe-1 results in noticeable changes in
the spatial distribution of the molecular orbitals. These changes
alter the position and energy of the HOMO and LUMO levels,
signicantly affecting the HOMO–LUMO gap. (See SI Document).

The UV-Vis spectrum calculated using TD-DFT revealed
absorption maxima at 220 nm, 300 nm, and 362 nm for starting
material, probe-1, and probe-1 + Zn, respectively (Fig. S2, SI). A
noticeable red shi in the UV-Vis spectra is observed for probe-1
+ Zn compared to probe-1. This red shi arises from the
redistribution of electron density upon the introduction of Zn,
particularly its localization at the metal center. The enhanced
ICT from Zn to the aminopyridine and salicylaldehyde rings
contributes to the increased uorescence intensity of probe-1 +
Zn. This property is particularly signicant for its application as
a zinc-sensing uorescent probe for biological imaging. The
strong uorescence emission is attributed to the efficient
charge transfer facilitated by the Zn atom, making these probes
highly suitable for biological imaging applications.

In conclusion, a series of small-molecule imine-based uo-
rescent probes were synthesized and characterized for selective
Zn2+ detection. The probes exhibited signicant uorescence
enhancement upon Zn2+ coordination, driven by chelation-
enhanced uorescence (CHEF) and suppression of photoin-
duced electron transfer (PET). Among them, probe 1 demon-
strated outstanding sensitivity and selectivity toward Zn2+, with
minimal interference from other biologically relevant metal
ions. Density functional theory (DFT) calculations corroborated
the experimental data, showing that Zn2+ binding induces
intramolecular charge transfer (ICT) and alters the electronic
structure to enhance emission intensity (SI). Cell-based imaging
further conrmed the capacity of the probe to distinguish
between normal and malignant prostate cells based on intra-
cellular Zn2+ levels, underscoring its potential application as
a zinc-sensitive diagnostic tool. Overall, these ndings highlight
the promise of small, efficient uorophores for real-time Zn2+

monitoring in biological systems and for early detection of zinc-
related pathologies such as prostate cancer or breast cancer.
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