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advanced interpretation of LDI-
TOF mass spectra: a computational approach

Lubomı́r Prokeš*a and Lukáš Pečinka bc

Mass spectrometric analysis of inorganic materials is widely used. However, no major advances have been

made in this area compared to the significant progress in the analysis of biological materials. This work

introduces a novel open-source R workflow that efficiently processes and models isotopic distributions

in laser desorption ionisation time-of-flight mass spectrometry (LDI-TOF MS) analysis. Furthermore, it

facilitates the comparison of modeled isotopic envelopes with experimental data and the selection of

appropriate models that reveal the composition of complex experimental mass spectra. It overcomes the

limitations of commercial software and opens new possibilities for the analysis of novel industrial materials.
LDI-TOF MS is an analytical method that is gaining increasing
attention for its expanding range of applications, particularly in
mineralogy, materials science, and solid speciation analysis and
also in the elds of forensic science, laser generated clusters,
science of arts, and mass spectrometry education.1–16

Commercial instruments are designed for easy application,
predominantly in a matrix-assisted laser desorption/ionisation
MS (MALDI MS) setup. Existing soware oen struggles with
complex overlapping isotopic patterns and is typically limited to
specic instrument types. Open-source soware for MS data
analysis is predominantly limited to the visualisation and basic
preprocessing of mass spectra, typically without the ability to
customise parameters or select specic algorithms, e.g.
smoothing, baseline correction, or data transformation.
Furthermore, such tools commonly lack essential functional-
ities, including spectral alignment, comparison with theoretical
models, and the application of advanced statistical methods.
Examples of widely used soware are Mass++ or mMass 3.17,18

This limits the application of routines, which drives efforts to
develop universal tools for cross-platform mass spectra analysis.
MALDI mass spectrometers are produced by various companies,
with BRUKER as the market leader. Each company provides its
evaluation soware, which is oen incompatible with data from
other instruments. Researchers oen turn to the R programming
language to overcome these compatibility challenges and enable
exible data analysis regardless of the hardware used (https://
cran.r-project.org/). Although R may offer lower computational
efficiency compared to other programming languages, it is
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widely favoured for its simplicity and the wide array of
available libraries for bioinformatics and MS data analysis.19,20

These include libraries for MS data, e.g. MALDIquant,
MALDIquantForeign, MSnbase, CHNOSZ, EnviPat,
InterpretMSSpectrum, and massSpecWavelet, and for
biostatistics, e.g. caret, mixOmics, and FactoMineR.21–30 The large
number of libraries enables researchers to concentrate on the
scripts themselves, rather than on the construction of libraries.
The objective of this technical note is to develop
a comprehensive workow to facilitate the identication of
signals in mass spectra, focussing on clusters with complex
isotopic distributions and overlapping patterns. This systematic
workow for LDI-TOF MS data analysis is implemented in the
open-source R programming language, using libraries from
CRAN and Bioconductor (https://www.bioconductor.org/), along
with custom functions. Key functions essential for
understanding the workow are explained in this article, with
a detailed description of the libraries and functions available in
the Github repository.

Experimental section

A newly developed MS workow was tested on a series of data
obtained in our laboratory. The MS data of binary mixtures of
gallium–selenium and gold–arsenic are demonstrated through
this work. Similar data were published by our research group,
where lists of detected clusters from these element mixtures
were given.1–15,31

Code

The R code employs a combination of custom scripts and open-
source libraries. The MS data can be exported as raw les;
therefore, pre-processing the mass spectra is essential for reli-
able results. The script can be readily modied and adapted to
analyse different experimental setups e.g. mzML or mzXML les,
This journal is © The Royal Society of Chemistry 2025
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commonly used in MS. The code was developed to facilitate the
use of commonly used txt and csv les throughout the scientic
community. These formats are natively supported by commer-
cial soware. The code presented was divided into three subsets
in order to maintain clarity:

The initial subset focusses on a comprehensive analysis of
the mass spectrum, including preliminary processing steps
such as transformations, baseline correction, and normal-
isation. To facilitate this, themass spectrum is segmented using
automatic clustering based on the signal-to-noise ratio (S/N) or
predened thresholds. Furthermore, the script integrates
companion functions to detect isobaric contamination in mass
spectra, a common issue in ICP-MS.32,33

In the second part, a detailed analysis of a specic region of
the mass spectrum is performed. For the selected region,
a detailed isotopic distribution analysis is performed. This
includes calculating the theoretical stoichiometry of potential
clusters, determining their relative abundances, and assessing
the t based on the similarity of the overall isotopic distribu-
tion. Furthermore, a comparison with the theoretical models is
carried out by assessing the deviations between the m/z posi-
tions of the experimental and theoretical data. Additionally, the
code includes a function to calculate the monoisotopic mass,
which enhances the accuracy of isotopic characterisation.

The third section focuses on the analysis of spectra con-
taining isotopically low abundance elements and monoisotopic
elements, where regularly repeated series were observed, char-
acterized by a gradual increase in the number of atoms of
a specic element.

Both the source code and a tutorial workow are available on
GitHub: https://github.com/luboprok/LDI-TOF-MS.
Fig. 1 Mass spectrum segmentation using automatic clustering based
on the signal-to-noise ratio with marked clusters (A). Selected region
of the mass spectrum for further analysis in the blue rectangle (B).
Modeling of experimental data using isotope distributions of calcu-
lated clusters (C).
Data processing workow

Scripts can be simply adopted by readers via a change of
parameters or script modication. The preprocessing of mass
spectra entails several steps adapted from the MALDIquant and
MALDIrppa library.

In addition to these basic functions, there are several other
functions that we developed:

(1) Mass spectra resampling: the reduction of data size and
compatibility of mass spectra recorded with different numbers
of points in a given range can be achieved through mass spectra
resampling. This results in a reduction in computational
memory requirements throughout the entire downstream
process, thereby accelerating the overall process.

(2) Cluster stoichiometry: to identify signals in the mass
spectrum, a function from the InterpretMSSpectrum library is
utilised. Preliminary identication of molecular formulae
associated with peak clusters is performed using the rcdk
library.34 Additionally, the monoisotopic peak of the given
signal is estimated along with the corresponding number of
atoms for each element and the charge of the resulting ion. The
tolerance range is also determined, which denes how much
the theoretical monoisotopic signal may deviate from the set
value. The mass spectra were automatically divided into distinct
regions as shown in Fig. 1A. The mass spectrum within the
This journal is © The Royal Society of Chemistry 2025
selected region of interest 430–500 Da (Fig. 1B) was selected as
example data, revealing a complex isotopic distribution.
Different clusters identied in Fig. 1A can be easily analysed.

(3)Modeling of the mass spectrum: the workow integrates the
EnviPat library for the selection and consideration of specic
clusters. A theoretical model was constructed within a dened
domain using the selected resolution. The relative contribu-
tions of the individual signals were estimated from the theo-
retical isotopic envelopes corresponding to each ion. The
calculated clusters were sorted according to the m/z difference
and used for isotopic modeling. The isotopic distribution of the
four most probable clusters is shown in Fig. 1C.

(4) Pattern superposition: individual isotopic distributions of
theoretical signals are tted to the measured data by superpo-
sition, and the percentage contributions estimated accordingly.
The difference between theoretical and measured data was
calculated and presented as a ‘mirror’ plot, as shown in Fig. 2A.

(5) Cumulative of the theoretical pattern: the cumulative
theoretical distribution, which incorporates the percentage
contributions of each signal, is computed and normalised to
100% based on the most dominant signal. Only negligible
differences were observed in the contribution of individual
isotopes, as shown in Fig. 2B and C (cumulative signals).

(6) Mass spectra alignment: the experimental and theoretical
data are converted to mass spectra. The experimental data are
recalibrated on the m/z scale using the warping function in the
MALDIquant library.

(7) Fit isotopic pattern: tting of the linear combination of
individual theoretical cluster spectra into the experimental
spectrum is performed using nonlinear regression with the Port
algorithm (function nls in the basic stats library) followed by the
calculation of the mixed isotopic pattern.32,35,36 The nal t
(Fig. 2D) showed a strong match between the experimental data
and the proposed cluster combination, with respective
percentage contributions of Se6

+ (100%), GaSe5
+ (100%),

Ga2Se4
+ (40%), and Ga3Se3

+ (20%).
Anal. Methods, 2025, 17, 8502–8506 | 8503
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Fig. 2 Comparison of measured and theoretical data using a mirror
plot (A). Experimental data compared with individual model contri-
butions (B, C), and the cumulative sum of the proposed models
overlaid with the experimental spectrum (D).
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(8) Peak identication and selection: peak detection is per-
formed using the signal-to-noice ratio (SNR) ratio with the
MALDIquant library or a threshold intensity value with the
MALDIrppa library. A local maximum must be higher than the
threshold to be recognised as a peak. The threshold can be
estimated directly or calculated from the SNR, where the
threshold is equal to the SNR × estimated noise.34 Examples of
detected peaks in the region of 430–500 Da, according to
a selected parameter, SNR, are presented in Fig. 3A and in 3B
with the m/z values.31,34

(9) The Kendrick mass (KM) and the Kendrick mass defect
(KMD): the remainders of the KM and the KM for fractional base
units are calculated using exact mass calculation with the
InterpretMSSpectrum library. Visualisation of the KM and the
KMD is a concept used in high-resolution MS to simplify the
Fig. 3 Detected signals within the m/z range of 430–500 Da (A).
Ga3Se3

+ model showing the m/z positions of detected signals (B).
Kendrick analysis based on the KMD (C). Spectral overlay of HfO+ and
Pt+ signals (D).

8504 | Anal. Methods, 2025, 17, 8502–8506
analysis of complex mixtures.37–39 For the calculation of the KM,
an element or molecular fragment (base unit) is set to an integer
value (nominal mass) instead of its IUPAC mass. This adjust-
ment creates a new mass scale. KMD is the difference between
the nominal KM (an integer) and the exact KM. Compounds
with the same KMD oen belong to the same homologous
series; clusters differing only in the number of base units, have
the same KM defect but different nominal KM, and are posi-
tioned along a horizontal line on the plot. Horizontal lines of
different KMD correspond to clusters of different compositions.
In our workow, the exact mass of a particular element can be
chosen as the base unit (e.g. elements contained in clusters or
oxygen if oxidation processes are studied). An example of the
Kendrick plot (Fig. 3C) is shown for the Selenium atom. The
colours correspond to the region of the mass spectra identied
in Fig. 1A. The plot of the remaining KM on the y-axis of the
Kendrick plot produces neat point alignments for all the series
along the mass range.38 Two-dimensional mapping according to
Artemenko et al., using the plot of normalised isotopic shi
(NIS) vs. normalizedmonoisotopic mass defect (NMD), may also
be applied for visualization of compositional differences
between clusters, if the elemental composition of clusters is
known.40

(10) Calculating average mass (library CHNOSZ), exact mass
(library InterpretMSSpectrum), andmonoisotopic mass (function
utilising a list of isotopes from the enviPat library) and 2D
mapping of clusters according to Artemenko et al.40 Modeled
mass spectra of selected chemical formulae and given resolu-
tions also served as a tool to detect isobaric overlaps. For
example, the superposition of the Pt+ and HfO+ model mass
spectra was crucial to study the spectral interferences in ICP-MS
(Fig. 3D).

Outputs not directly presented in the article are available on
GitHub.

Discussion

Today, the primary focus of MS analysis is on the investigation
of biomolecules and organic compounds. Numerous free tools
for the visualisation, processing, and analysis of MS data are
now available for this propose, for example, Mass++, MZmine 2,
mMass 3, Open MS, and XCMS2.17,18,41–43 These tools provide
advanced functions; however, most of them do not allow the
integration of additional code to implement the ideas of
researchers. They lack exibility in setting preprocessing
parameters and applying other statistical functions. Untargeted
metabolomics typically relies on mass spectral matching by
comparing a query spectrum to library entries and selecting the
closest match. Huber et al. developed an open-access Python
package that imports, processes, and compares MS/MS data.44

Similarly, Oh et al. developed an R Shiny-based user interface
that implements six different similarity metrics to t experi-
mental data to database.45

In contrast to biomolecules, there is a scarcity of freely
available soware for inorganic substances that would allow us
to process and interpret the acquired data together with the
identication of the substances in the spectra. As far as we
This journal is © The Royal Society of Chemistry 2025
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know, there are only isotope distribution calculators, e.g. envi-
Pat (https://www.envipat.eawag.ch/), Isotope Distribution
Calculator and Mass Spec Plotter (https://www.sisweb.com/
mstools/isotope.htm), and ChemCalc (https://
www.chemcalc.org/). However, these calculators are limited to
the computation of a single isotopic distribution and do not
support the simulation of overlapping distributions within
a mass spectrum. This limitation can be addressed using the
commercially available Launchpad soware from Kratos
Analytical Ltd, which allows for the calculation of up to ve
isotopic distributions and their superposition by summing
the individual intensity proles. However, this soware, along
with web-based calculators, lacks the advanced capabilities
required for tasks such as spectral alignment, superposition
of multiple isotopic distributions, or integration into
automated workows and shows insufficient compatibility
with modern operating systems.

However, inorganic substance analysis is of great impor-
tance for mineralogy, materials science, and solid speciation
analysis, as well as in the elds of forensic science, laser-
generated clusters, science of arts, and mass spectrometry
education.1–16 LDI-TOF MS was applied in compositional and
structural characterization of powders and thin lms of various
chalcogenide glasses, useful optic materials applied in infrared
spectroscopy, sensors and thermal imaging.1,5,7

The technique has also been applied for the identication
and characterisation of As- and Cu-sulde minerals, as well as
inorganic components in ancient and modern cosmetics,
including PbCO3, BiOCl, ferrocyanide, and bentonite.11,14,16,46

Furthermore, LDI-TOF MS has been successfully used to iden-
tify inorganic pigments such as gold (Au), vermilion (HgS),
orpiment (As2S3), copper-based pigments including verdigris
(Cu(CH3COO)2$[Cu(OH)2]3$2H2O), malachite (CuCO3-
$Cu(OH)2), and emerald green (3Cu(AsO2)2$Cu(CH3COO)2), as
well as Prussian blue (Fe4[Fe(CN)6]3) and lead chromate
(PbCrO4). These pigments were identied in historical manu-
scripts, paintings, coatings, and paints.12,13,15 The classical
application of LDI-TOF is the characterisation of oxidation and
corrosion products of Cu–Ag–Zn alloys, as well as other mate-
rials, including thin lms of black phosphorus, arsenic, and
titanium carbide thin lms.5,6,47–50 Additionally, the technique
allows the generation of clusters via laser ablation synthesis
directly within the mass spectrometer, making it highly valu-
able for studying various elements, compounds, and nano-
materials for scientic and educational applications.2–4,9,11,51

In addition, the user-modiable workow, accompanied by
detailed descriptions, allows for easy parameter adjustment and
the integration of new applications by the user. This would be
difficult or impractical to achieve through a user interface in
Shiny (R) or a Python graphical interface. Also, creating a new
library would limit the ability to modify functions and set their
parameters for beginner users. For these reasons, the develop-
ment of an R-based workow with comprehensive documenta-
tion appears to be a viable solution for all types of users.
This journal is © The Royal Society of Chemistry 2025
Conclusions

This study presents an open and exible R-based workow for
advanced analysis of the mass spectra acquired by LDI-TOF MS.
The proposed script enables the modeling of complex isotopic
distributions, comparison with experimental data, and detec-
tion of overlapping signals. By using freely available libraries
and custom functions, it offers broad possibilities for custom-
isation and extension. It streamlines the characterization of
new materials, offering a versatile and accessible solution for
the advancement of mass spectrometric analyses. To our
knowledge, this is the rst openly available workow that
enables the detection and modelling of complex overlapping
isotopic patterns, including tting to experimental spectra and
comparison with theoretical models. Moreover, R is widely
adopted by the research community and remains fully sup-
ported on current operating systems.
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