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etabolic characteristics and
molecular mechanisms of large to giant congenital
melanocytic nevi: implications for melanoma risk
and therapeutic targets†

Ge Song, ‡ac Tao Dai, ‡b Yongqiang Ren, c Yajie Chang, a Pengfei Guo, a

Zhanwei Wang, b Guiping Shen *a and Jianghua Feng *a

Large to giant congenital melanocytic nevi (LGCMN) present clinical challenges due to their complex

phenotypic heterogeneity and increased melanoma risk. Molecular-level research is essential for

understanding the pathogenic mechanisms of LGCMN and identifying potential therapeutic targets.

Tissue samples from 67 LGCMN lesions and 49 matched controls were analyzed using metabolomics

and transcriptomics to identify metabolic characteristics and gene expression differences. A protein–

protein interaction network and a multi-layer network of key metabolites–genes-pathways were

established to explore the metabolic characteristics and gene associations with LGCMN. Metabolic

analysis revealed a consistent dysregulation in amino acid metabolisms, including arginine, alanine,

aspartate, glutamate, phenylalanine, and tyrosine, across LGCMN lesions and subtypes. Compared to

controls, 18 upregulated metabolites and 7 downregulated metabolites were identified in LGCMN

lesions. Metabolic profiles varied among LGCMN subtypes, with the trunks subtype exhibiting significant

alterations in branched-chain amino acids. Network analysis identified 23 genes related to

melanogenesis and amino acid metabolism, including TYR, SOX10, and MITF, which showed strong

correlation with tyrosine, phenylalanine, and branched-chain amino acids (r > 0.6). High centrality values

for genes (e.g., EDNRB, TYR, MITF, SOX10, and MAPK3 > 0.300) and amino acids (e.g., tyrosine at 0.397

and phenylalanine at 0.374) emphasize their pivotal roles in melanogenesis. This study reveals significant

metabolic and molecular differences between LGCMN lesions, normal skin, and across LGCMN

subtypes, highlighting the deregulation of amino acid metabolism and key genes involved in

melanogenesis. These insights enhance our understanding of LGCMN's biological heterogeneity and

provide novel avenues for therapeutic intervention.
1. Introduction

Recent medical research has improved our understanding of
congenital melanocytic nevi (CMN).1,2 Large CMN (LCMN, 20–
40 cm in diameter) and giant CMN (GCMN, >40 cm in diameter)
are rare, neural crest-derived melanocytic lesions3,4 that tend to
enlarge with age and are oen characterized by a rough and
irregular surface. The prevalence of large to giant CMN
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(LGCMN) is approximately 1 in 20 000 to 1 in 500 000, and their
complex morphology and heterogeneous structure pose signif-
icant challenges for surgical removal and increase the risk of
malignant transformation into melanoma.5

Surgical intervention, while effective in removing large skin
lesions, can result in signicant surgical trauma, postoperative
wound healing challenges, and potential functional impair-
ments, imposing substantial psychological and economic
burdens on patients.6 Non-surgical treatments, such as laser
therapy and chemical peeling, offer symptomatic relief but
cannot completely remove the lesions and may increase the
risks of recurrence and malignancy. These limitations highlight
the importance of in-depth molecular-level research into the
pathological mechanisms of LGCMN.

Multi-omics approaches have become a focal point in
disease research, aiming to uncover novel therapeutic targets
and develop more effective treatment strategies.7 Notably,
NRASQ61R and BRAF have been identied as major somatic
Anal. Methods, 2025, 17, 3229–3238 | 3229
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mutations in LGCMN, which persistently activate the MAPK
signaling pathway in melanocytes.8 Studies on immortalized
cell lines originating from GCMN have revealed heightened
activity in PI3K/Akt and Bcl-2 pathways, suggesting their crucial
role in the maintenance and survival of LGCMN. Tran-
scriptomic studies have also identied abnormal expression of
various transcription factors (especially MITF) in LGCMN.
Histone deacetylase inhibitors, such as vorinostat (SAHA), can
suppress MITF expression and induce cell apoptosis, providing
a promising strategy for non-surgical treatment of LGCMN.9

RNA sequencing of distinct LGCMN features suggests that
different regions of the lesion may be driven by diverse molec-
ular events, resulting in phenotypic variations.8 Metabolomics
studies provide new insights into the pathological mechanisms
of LGCMN. Research indicates signicant abnormalities in
amino acid metabolism, tricarboxylic acid (TCA) cycle, and
carbohydrate metabolism pathways among LGCMN patients.
1H nuclear magnetic resonance (1H NMR)-based metabolomics
studies have revealed alterations in multiple metabolite levels
in the serum and urine of GCMN patients, particularly in amino
acid and energy metabolism, suggesting their key role in
disease progression.10 Additionally, primary cutaneous mela-
noma exhibits metabolic reprogramming, with signicant
changes in tryptophan and histidine metabolism pathways.11

The associations between changes in arginine metabolism and
glycerophospholipids and melanoma progression highlight the
signicance of metabolic regulation in lesion processes.12

In this study, we employed 1H NMR-based metabolomics to
discern metabolic differences between LGCMN lesions and
normal control skin, as well as among subtypes. We also
employed transcriptomics (RNA-seq) to identify differentially
expressed genes, integrating network pharmacology and
various algorithms to determine potential targets for LGCMN.
Ultimately, a gene–metabolite-pathway network was con-
structed for a comprehensive evaluation. The ndings from this
study provide a foundation for further investigation into the
pathogenesis of LGCMN and offer possibilities for the devel-
opment of targeted therapies for these lesions.

2. Methods
2.1 Sample collection

This study was approved by the Medical Ethics Committee of
Tongji Hospital affiliated to Tongji University, China (SBKT-
2023-149). Written informed consent was obtained from all
participants. Patients with LGCMN were diagnosed by experi-
enced plastic surgeons based on clinical presentations and
conrmed postoperatively through histopathology using the
BEST classication system.13 From January 2020 to September
2023, a total of 67 LGCMN patients undergoing surgical excision
were enrolled in this study. Of these, perilesional normal skin
samples were successfully obtained from 49 patients due to
intraoperative constraints. These 49 adjacent normal tissues
were matched one-to-one with their corresponding lesion
samples. Among these, ve patients were diagnosed with
LGCMN and concomitant other diseases during pathological
examination, including three with neurobromatosis, one with
3230 | Anal. Methods, 2025, 17, 3229–3238
leiomyoma, and one with malignant melanoma. All collected
tissues, including LGCMN lesion samples and corresponding
perilesional normal skin (control, more than 5 mm away from
the tumor margin), were stripped of subcutaneous fat while
retaining the epidermis and dermis, then placed in liquid
nitrogen and stored at −80 °C for subsequent analyses.

2.2 Pathological examination of skin tissues

Tissue blocks soaked in 4% paraformaldehyde were dehy-
drated, cleared, waxed-embedded, and sectioned coronally at
a thickness of 4 mmusing a rotary microtome. The sections were
dewaxed and stained with hematoxylin and eosin (HE). The
stained samples were examined under an Olympus light
microscope (Olympus Optical Co., Japan).

2.3 1H NMR analysis and data processing

Approximately 150 mg of tissue was extracted using the Bligh–
Dyer method to obtain freeze-dried powder.14 This powder was
then mixed with 0.6 mL of ice-cooled extraction solution
(CH3OH : CHCl3 : H2O = 2 : 2 : 3). The mixture was vortexed and
le on ice for 15 min, followed by centrifugation at 4 °C at 10
000 g for 15min to obtain the supernatant. The supernatant was
transferred to a 1.5 mL tube and lyophilized for 24 h to remove
methanol and water. The resulting freeze-dried tissue powder
was dissolved in 1.5 mol L−1 phosphate buffer prepared with
500 mL of D2O (pH 7.4, containing 0.05% sodium 3-(trime-
thylsilyl) propionate-2,2,3,3-d4 (TSP)). Each sample was mixed
and centrifuged at 4 °C at 10 000 g for 10 min. The supernatant
was then transferred into a 5 mm NMR tube.

1H NMR spectra were acquired on a Bruker Advance III
spectrometer (Bruker Corporation, Kalsruhe, Germany) oper-
ating at 850.29 MHz and 298 K. A NOESYGPPR1D (RD-90°-t1-
90°-tm-90°-Acq) was used to detect small molecule metabolites.
A total of 64 transients were collected into 32 K data points over
a spectral width of 17 kHz. The acquisition time was set to
1.93 s, with a relaxation delay of 3.0 s and a xed interval t1 of 4
ms. The water resonance was irradiated during the relaxation
delay, and the mixing time tm was 100 ms. NMR spectra were
processed using MestReNova (Version 14.1.1, Mestrelab
Research S. L., Spain), including phase and baseline correc-
tions, window selection (d0.6–9.8), and removal of water (d4.68–
5.18) andmethanol (d3.32–3.38) peaks. Data were normalized to
the total spectral area to account for sample concentration
differences and imported into MATLAB (R2014b, MathWorks,
USA) for spectral alignment using the icoshi package.15

2.4 RNA sequence analysis and data processing

Total RNA was extracted from skin tissues using an RNeasy
Fibrous Tissue Mini Kit (Qiagen, USA). RNA quality was assessed
with a nanophotometer (IMPLEN, USA) and Agilent Bioanalyzer
2100 (Agilent, USA), retaining only samples with an RNA Integrity
Number (RIN) $ 7.0. cDNA libraries were prepared using an
NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, USA) and
sequenced. Clean reads were obtained by removing adapters,
poly-N sequences, and low-quality reads. Reads were aligned to
the reference genome using Hisat2 v2.0.5, and gene expression
This journal is © The Royal Society of Chemistry 2025
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Table 1 Demographic data and clinical characteristics of LGCMN
patients

# Subjects

LGCMN tissues
Matched control
tissues

p-valueTotal (N = 67) Total (N = 49)

Gender 67 49 0.263
Male 26 (38.81%) 25 (51.02%) —
Female 41 (61.19%) 24 (48.98%) —
Age at diagnosis (years) 5.17 � 7.19 4.38 � 8.09 0.330
Distribution pattern 0.699
Bonce 13 (19.40%) 14 (28.57%) —
Extremity 8 (11.94%) 6 (12.24%) —
Shawl 20 (29.85%) 13 (26.53%) —
Trunks 26 (38.81%) 16 (32.65%) —
Pathological types 0.540
Intradermal nevus 31 (46.27%) 27(55.10%) —
Compound nevus 35 (52.24%) 22(44.90%) —
Junctional nevus 1 (1.49%) 0 —
Comorbidities — —
Neurobromatosis 3 (4.48%) — —
Leiomyoma 1 (1.49%) — —
Malignant melanoma 1 (1.49%) — —

Paper Analytical Methods

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
/1

1/
20

26
 1

:0
5:

11
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
was quantied with Cufflinks v2.2.1. RNA-seq data were rst
normalized using the TrimmedMean ofM-values (TMM)method
in the edgeR package to correct for sequencing depth and
composition bias. Differential expression analysis was then per-
formed using the limma R package and Student's t-test, consid-
ering genes with a fold change >2 and adjusted p < 0.05 as
signicantly differentially expressed.

2.5 Metabolites and gene set enrichment, pathway and
molecular network analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed
to elucidate the biological signicance of differentially expressed
genes. GO analysis (http://geneontology.org/) categorized target
genes according to biological processes, cellular components,
and molecular functions, while KEGG pathway analysis (https://
www.kegg.jp/) identied relevant signaling pathways. Both
analyses were conducted using the clusterProler packages in
R, considering a p < 0.05 as indicative of statistically signicant
enrichment pathways associated with the candidate genes. The
Human Metabolome Database (HMDB, https://www.hmdb.ca/)
provides comprehensive information on metabolites.
Differential genes identied from the volcano plot were used to
construct a protein–protein interaction (PPI) network in the
STRING database (https://string-db.org/) with a condence
score > 0.4. In this study, we employed three distinct methods,
MCODE, cytoNCA, and cytoHubba plugins in Cytoscape (v3.9.1,
Cytoscape Consortium, USA), to identify hub genes. Each
method utilizes a unique algorithm to assess network topology.
MCODE was used to identify densely connected subnetworks
within the PPI network. Subnetworks with an MCODE score > 5
were selected as signicant modules. cytoNCA evaluated six
topological metrics (betweenness, closeness, degree,
eigenvector, LAC, and network centrality), selecting hub genes
that exceeded the median values for all six metrics through
three iterative rounds. cytoHubba ranked genes based on ve
centrality metrics (closeness, betweenness, stress, radiality, and
bottleneck), dening hub genes as those appearing in all ve
rankings. The intersection and pairwise unions of the three
methods were extracted using Venn diagram analysis to
determine central hub genes. Finally, gene–metabolite
correlations and enriched pathways were integrated to
construct a multi-layer gene–metabolite-pathway network.

2.6 Statistical analyses

Multivariate statistical analysis was conducted using SIMCA
(v14.1, Umetrics, Umea, Sweden). Principal component analysis
(PCA) was used to assess sample distribution and identify
clusters or outliers, while supervised partial least squares
discriminant analysis (PLS-DA) and orthogonal PLS-DA (OPLS-
DA) with Pareto scaling were utilized to highlight metabolic
differences between groups. Model quality was evaluated using
R2X, R2Y, and Q2 values obtained from cross-validation, and
permutation tests with 200 iterations were conducted to
conrm model reliability and prevent overtting. Signicant
metabolites were identied based on their absolute correlation
This journal is © The Royal Society of Chemistry 2025
coefficient (jrj), variable importance in projection (VIP), fold
change, and p-value and were visualized in a four-dimensional
volcano plot, where fold change and p-value served as axes
and jrj and VIP were represented by color and size.

All other statistical analyses, including non-parametric tests,
Student's t-tests, and chi-square (c2) tests, were conducted
using OriginPro (v2024b, OriginLab, Northampton, MA, USA).
The results were expressed as mean ± standard deviation (SD).
T-tests were used to assess differences in continuous variables,
chi-square tests were used for categorical data, and the Wil-
coxon test was applied for non-normally distributed data.
Visualizations such as bubble plots, Venn diagrams, and
correlation heatmaps were also generated using OriginPro. A p-
value of less than 0.05 was considered statistically signicant.
3. Results
3.1 Demographic data and clinical characteristics of the
patients

A total of 67 patients were enrolled, providing 67 samples of
LGCMN tissue and 49 matched samples of perilesional normal
tissue. Table 1 details the patients and tissue characteristics,
which predominantly consist of intradermal nevi and
compound nevi. The pathological tissue images are shown in
Fig. 1a. HE staining revealed the structural variations of
different types of nevi with distinct patterns and depths of
melanocyte distribution.
3.2 Metabolomics analysis and identication of key
metabolic pathways in LGCMN tissues

To investigate the potential pathogenesis of LGCMN, metab-
olomics analysis was conducted on the 1H NMR data of the
tissues. Metabolites were identied from NMR spectra of the
Anal. Methods, 2025, 17, 3229–3238 | 3231
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Fig. 1 Histological and metabolomic differences between LGCMN
lesions and control skin. (a) HE staining of intradermal, junctional, and
compound nevi (×100, ×200). (b) PCA, OPLS-DA plots, and model
validation by permutation analysis. (c) Volcano plot of significant
differential metabolites (jrj > 0.6, VIP > 1, and p < 0.01). (d) Bubble plot
of disturbed metabolic pathways.

Fig. 2 OPLS-DA score plots (left), permutation tests (middle), and
volcano plots (right) for 1H NMR data of LGCMN lesions and peri-lesion
skin in four subtypes: bonce (a), extremity (b), shawl (c), and trunks (d).
Differential metabolites (jrj > 0.6, VIP > 1, and p < 0.01) are shown, with
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LGCMN tissues with references to the existing literature16,17 and
conrmed through the HMDB. Spectral details of the identied
metabolites are provided in supplementary Table S1.† The PCA
score plot revealed a signicant separation between the two
groups of samples (Fig. 1b, le), reecting a substantial metabolic
difference between LGCMN and perilesional control skins. To
enhance the resolution and effectiveness of the model, OPLS-DA
was conducted on the NMR data. The score plot (Fig. 1b, middle)
and model parameters (R2Y and Q2) indicated signicant differ-
ences between LGCMN and control groups. The permutation test
(Fig. 1b, right) conrmed the validity of the model. Twenty-ve
metabolites were identied to be differentially expressed
between the two groups using jrj > 0.6, VIP > 1, and p < 0.01 as the
critical criteria. Among them, 18 metabolites were upregulated in
LGCMN skin, including citrulline, alanine, phenylalanine, serine,
glycine, hypoxanthine, tyrosine, choline, phosphorylcholine (PC),
aspartate, trimethylamine N-oxide (TMAO), glutamate, lysine,
valine, isoleucine, leucine, phosphocreatine (PCr), and glycer-
ophosphorylcholine (GPC), while 7 metabolites were down-
regulated, including 3-hydroxybutyrate, N-acetylglutamate (NAG),
methylmalonate, a-ketoisovalerate, asparagine, pyruvate, and
methionine. The corresponding volcano plot displayed the
3232 | Anal. Methods, 2025, 17, 3229–3238
metabolites contributing to classication (Fig. 1c and ESI
Table S2†).

To explore the potential metabolic mechanisms of LGCMN,
KEGG pathway analysis was performed on the differential
metabolites. The resultant bubble plot illustrated the signi-
cance and impact of various metabolic pathways (Fig. 1d). The
metabolic differences between LGCMN and control tissues are
primarily inuenced by several amino acid metabolism path-
ways. Notably, arginine biosynthesis, alanine, aspartate and
glutamate metabolism, glycine, serine and threonine metabo-
lism, and phenylalanine, tyrosine and tryptophan biosynthesis
exhibited the highest signicance, indicating their critical roles
in the metabolic network. Other important pathways include
valine, leucine and isoleucine degradation and phenylalanine
metabolism, highlighting their relevance in the overall meta-
bolic landscape.
3.3 Specic metabolic features of different LGCMN subtypes

To investigate the heterogeneity within LGCMN and link it to
metabolic diversity, metabolomic analysis was conducted on
tissue samples from different phenotypic LGCMN lesions.
However, PCA and PLS-DA score plots did not effectively
distinguish between different LGCMN phenotypes (Fig. S1†). To
enhance the resolution of subtype differences, OPLS-DA was
performed on the pair-wise groups including bonce LGCMN vs.
control-bonce, extremity LGCMN vs. control-extremity, shawl
LGCMN vs. control-shawl, and trunks LGCMN vs. control-
trunks. The permutation test results conrmed the model's
key metabolites listed in Table S2.†

This journal is © The Royal Society of Chemistry 2025
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strong explanatory and predictive power, underscoring signi-
cant metabolic differences between LGCMN lesions and control
skin. Volcano plots (Fig. 2a–d), integrating the correlation
coefficients, VIP values, fold changes, and t-test P values (ESI
Table S2†), were used to identify potential biomarkers for each
subtype.

A Venn diagram illustrated signicant metabolic differences
among the four LGCMN subtypes (Fig. 3a, le). For example, the
trunks subtype uniquely contained 6 metabolites (aspartate,
choline, leucine, lysine, pyruvate, and a-ketoisovalerate), while
also sharing 5 metabolites with the shawl subtype (3-hydrox-
ybutyrate, aspartate, isoleucine, NAG, and tyrosine), suggesting
a certain degree of similarity in their metabolic proles.
Notably, only the trunks subtype included all branched chain
amino acids (BCAAs: leucine, isoleucine, and valine). Among
the 30 differential metabolites, 21 demonstrated signicant
differences in their relative concentrations across the four
LGCMN subtypes as shown in the box plots (Fig. 3a, right).
These ndings highlight distinct metabolic differences among
subtypes, providing a comprehensive view of metabolic char-
acteristics in each LGCMN subtype.
Fig. 3 Potential biomarkers and differential metabolic pathways in
LGCMN subtypes (bonce, extremity, shawl, and trunks). (a) Venn
diagram of biomarkers between lesions and adjacent tissues (left) and
their relative concentrations analyzed by the Wilcoxon test (right, ***p
< 0.001, **p < 0.01, *p < 0.05, and ns: not significant). (b) Bubble plot of
disrupted pathways, with deeper reds indicating higher significance (p
< 0.05).

This journal is © The Royal Society of Chemistry 2025
Pathway enrichment analysis of these potential biomarkers
was conducted to further understand the metabolic dysregula-
tion among different subtypes of LGCMN. Based on a criterion
of p < 0.05, eight, three, ten, and seven disrupted metabolic
pathways were identied from the bonce, extremity, shawl, and
trunks subtypes, respectively (Fig. 3b and Table S3†). Notably,
the shawl and trunks subtypes exhibited pronounced disrup-
tions in amino acid metabolism (for example, arginine
biosynthesis, alanine, aspartate and glutamate metabolism,
glycine, serine and threonine metabolism, and phenylalanine,
tyrosine, and tryptophan biosynthesis) and energy metabolism
(for example, pantothenate and CoA biosynthesis). This
suggests distinct metabolic characteristics between these
subtypes. Furthermore, signicant metabolic disruption in
valine, leucine, and isoleucine degradation was exclusively
observed in the trunks subtype.
3.4 Systematic screening and analysis of differential genes
and core networks in LGCMN

In the transcriptomic analysis of 10 matched pairs of LGCMN
lesions and adjacent control tissues (details provided in ESI Table
S4†), the OPLS-DA score plot revealed their distinct
Fig. 4 Comprehensive analysis of DEGs in LGCMN. (a) OPLS-DA plots
and volcano plots highlight DEGs (jlog2FCj > 2 and padj < 0.05). (b)
Protein–protein interaction network (MCODE) identifies six gene
clusters. (c) ClueGO enrichment analysis for clusters. (d) Three-layer
hub gene network (cytoNCA) with centrality-based nodes. (e) Heat-
map of top 30 hub genes ranked by cytoHubba algorithms.

Anal. Methods, 2025, 17, 3229–3238 | 3233
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Fig. 5 Analysis of key hub genes and their correlations with metab-
olites and pathways. (a) Venn diagram of hub genes identified using
MCODE, cytoNCA, and cytoHubba. (b) GO and KEGG enrichment
analysis with corresponding bubble plot. (c and d) Correlation between
hub genes and metabolites (*p < 0.05). (e) Cytoscape network of
metabolites, genes, and pathways, with correlations assessed using the
Spearman coefficient.

Analytical Methods Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
/1

1/
20

26
 1

:0
5:

11
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
transcriptomic proles. The model's robustness and predictive
strength were conrmed with R2Y = 0.943 and Q2 = 0.893
(Fig. 4a). A volcano plot revealed 991 differentially expressed genes
(DEGs) with at least twofold changes (P < 0.05), of which 395 were
upregulated and 596 were downregulated (Fig. 4a, right). The
DEGs were imported into the STRING database for topological
analysis. Aer removing isolated nodes, a protein–protein inter-
action (PPI) network comprising 612 nodes and 921 edges was
obtained. This initial PPI network was further analyzed using
Cytoscape 3.9.1, where the MCODE plugin identied 22 func-
tional modules. Six clusters with scores greater than 5 were
highlighted (Fig. 4b), with details provided in Table 2.

Enrichment analyses of the six clusters showed the key
processes such as melanocyte differentiation in cluster 1, the
pigment biosynthetic process in cluster 2, collagen bril orga-
nization in cluster 3, excitatory synapse assembly in cluster 4,
regulation of morphogenesis of an epithelium in cluster 5, and
antioxidant activity in cluster 6 (Fig. 4c). These ndings suggest
that the hub genes within these functional modules are mean-
ingful and align with the pathological mechanisms associated
with LGCMN.

To ensure robust identication of hub genes, MCODE,
cytoNCA, and cytoHubba were combined to capture network
centrality and connectivity. As shown in Fig. 4d, a three-layer
hub gene network was constructed and analyzed with
cytoNCA, nally identifying 27 hub genes (Fig. 4d, right).
Additionally, a heatmap was generated to rank the top 30 hub
genes based on ve different centrality algorithms (closeness,
betweenness, stress, radiality, and bottleneck) in cytoHubba,
from which 19 core genes were selected for further analysis
(Fig. 4e and Table S5†). This multi-dimensional approach
ensures the robustness of the selection, highlighting key genes
consistently identied across different analytical methods.

To rene the selection of hub genes, a Venn diagram was
used to integrate the results from MCODE, cytoNCA, and cyto-
Hubba. The nal set comprised ve genes identied by all three
methods including EDNRB, TYR, SOX10, EGF, and RACK1 and
an additional 18 genes from pairwise intersections, resulting in
23 key genes (Fig. 5a and Table S6†). These hub genes were
subjected to GO and KEGG pathway analyses, revealing signif-
icant enrichment in biological processes such as pigmentation,
melanocyte differentiation, and melanin biosynthesis; cellular
components such as the melanosome membrane and pigment
granules; and molecular functions including protein binding
and oxidative activities (Fig. 5b and Table S7†). The KEGG
pathway analysis highlighted pathways associated with
Table 2 Details of the 6 sub-networks delineated using the MCODE plu

Cluster MCODE score Nodes Edges Gene

1 9.111 10 41 PAX3, MITF, MLANA, PMEL, E
2 9 9 36 COL7A1, COL4A5, COL6A5, CO
3 5.091 12 28 NLGN1, WNT2B, NRXN1, WNT
4 5 5 10 DUOX1, GPX2, DUOX2, ALB, a
5 5 5 10 RPLP2, RPS20, RACK1, EIF3G,
6 5 5 10 PDE6G, ROM1, PRPF6, PRCD,

3234 | Anal. Methods, 2025, 17, 3229–3238
melanogenesis, stem cell pluripotency signaling, and cancer-
related pathways, including tyrosine metabolism, MAPK
signaling, and PD-1/PD-L1 immune interaction. This functional
annotation highlights the central roles of these hub genes in key
biological processes and pathways, suggesting their potential as
therapeutic targets in LGCMN.

Spearman correlation analysis revealed signicant associa-
tions among the 23 hub genes (Fig. 5c), suggesting co-
regulation in shared biological processes. EDNRB showed
strong positive correlations with TYR, SOX10, MITF, SLC24A5,
and SLC45A2 (r > 0.6), indicating their joint involvement in
gin

DNRB, GPR143, SLC24A5, SLC45A2, TYR, and SOX10
L11A2, COL28A1, COL17A1, COL23A1, COL13A1, and COLGALT2
7A, EGF, WNT16, LRRTM4, PTPRS, WNT3, RSPO1, NTNG1, and WNT4
nd GPX3
and RAD23A
and BEST1

This journal is © The Royal Society of Chemistry 2025
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melanogenesis. Similarly, TYR correlated positively with SOX10
and MITF (r > 0.6), supporting their cooperative roles in mela-
nocyte function. Moderate correlations between EGF, RACK1,
and MAPK3 (0.4 < r < 0.6) suggest their interactions in cell
proliferation and signaling.

Fig. 5d shows correlations between 23 hub genes and various
metabolites, emphasizing links between gene expression and
metabolic processes. EDNRB, TYR, SOX10, MITF, PMEL,
SLC24A5, and SLC45A2 showed strong positive correlations
with tyrosine and phenylalanine (melanin precursors) (r > 0.6)
and BCAA, indicating that these genes and amino acids may
have mutual regulatory roles in melanogenesis. MAPK3 was
positively correlated with PC, tyrosine, and phenylalanine, and
negatively with 3-hydroxybutyrate, suggesting regulatory roles
in signaling and energy metabolism.

The gene–metabolite-pathway interaction network offers
a more holistic and integrated perspective (Fig. 5e). It reveals
signicant disruption in amino acid metabolism and melano-
genesis pathways in LGCMN, with particular involvement of
genes such as TYR, MITF, MAPK3, SLC45A2, PMEL, SLC24A5,
EDNRB, SOX10, and RACK1, all of which exhibit a closeness
centrality above 0.300. Tyrosine and phenylalanine also
exhibited high closeness centrality values (0.397 and 0.374,
respectively), further emphasizing their centrality in the mela-
nogenic process. The interactions of 3-hydroxybutyrate, leucine,
valine, and isoleucine with genes such as TYR, MITF, and
SOX10 suggest a role of BCAA in melanocyte metabolism and
proliferation. Although melanogenesis and tyrosine metabo-
lism pathways may have fewer direct connections, they play
central roles through their associations with key genes and
metabolites. Overall, the interaction between melanogenesis
and amino acid metabolism is particularly pronounced in the
network analysis, underscoring the critical importance of these
pathways in the pathophysiology of LGCMN.

4. Discussion
4.1 Metabolic abnormalities and potential pathogenic
mechanisms of LGCMN

LGCMN is characterized not only by abnormal phenotypic and
pathological features but also by various metabolic abnormali-
ties. CMN syndrome is associated with signicant increases in
BMI, reductions in sub-nevus fat and muscle mass, and endo-
crine abnormalities such as the premature thelarche variant
(3%), persistent cryptorchidism (6%), and insulin resistance.18

Although endocrine disorders may inuence metabolic status,
studies on endocrine changes in LGCMN are limited, and their
specic role remains unclear. Hormonal imbalances could
potentially impact metabolic pathways by modulating cellular
signaling networks and enzyme activities.18 Building on our
previous ndings of systemic metabolic changes in GCMN, this
study shis the focus to tissue-specic metabolic alterations in
LGCMN lesions. While our earlier work revealed signicant
changes in serum and urine metabolomes, the present study
offers direct insights into lesion-site metabolism rather than
systemic indicators in biouids. We identied signicant
disruptions in amino acid and energy metabolism in LGCMN
This journal is © The Royal Society of Chemistry 2025
tissues, hallmarks of metabolic reprogramming closely linked
to tumor onset and progression.19 These tissue-specic ndings
provide novel insights into the interactions between metabolic
pathways and key melanogenesis-related genes, extending our
understanding of LGCMN pathophysiology beyond the systemic
changes previously reported. Approximately 33% of melanomas
originate from benign melanocytic nevi, with some studies
considering melanocytoma as an intermediate genetic stage
between nevi and melanoma. As a benign melanocytic tumor,
LGCMN may share genetic and metabolic traits with
melanoma.20,21

The amino acid alterations in LGCMN tissues are similar to
characteristics observed in melanoma. For example, in the
BRAFV600E melanoma model, the same types of amino acids
observed in our results are upregulated. During activated BCAA
catabolism, the enzymes branched-chain aminotransferases 1
and 2 (BCAT1/2) transfer nitrogen to a-ketoglutarate to produce
glutamine, supporting cell proliferation. The BCAT inhibitor
gabapentin effectively blocks BCAA transamination, thereby
suppressing melanocyte proliferation and invasion.22,23 While
LGCMN is not malignant, its metabolic prole shares certain
features with neoplastic conditions, suggesting that BCAA
metabolismmay play a role in lesion progression. Leucine, a key
BCAA, activates mTORC1 signaling, which regulates protein
synthesis, cellular growth, and metabolic adaptation. Moreover,
a-ketoisovalerate, a BCAA-derived keto acid, has been impli-
cated in metabolic signaling and redox balance, potentially
inuencing cellular homeostasis in LGCMN lesions.23

In parallel, deciencies in amino acids such as citrulline,
alanine, and aspartate can signicantly inhibit melanoma cell
proliferation.24,25 Inducing citrulline deciency, for instance,
can lead to the death of up to 80% of cancer cells in vitro,
providing a theoretical basis for citrulline-decient therapies.26

Glutamate, serine, and glycine provide precursors for protein,
nucleic acid, and lipid synthesis, supporting the metabolic
demands of tumor cells.27,28 Lysine inuences the tumor
microenvironment and genomic stability through epigenetic
regulation, such as via KMTs and KDMs.29,30 These ndings
suggest that alterations in amino acid availability and metab-
olism could impact the growth dynamics and clinical behavior
of LGCMN lesions.

The energy metabolism pathways in LGCMN also show
notable alterations, including pyruvate dehydrogenase kinase
(PDK) inhibiting the conversion of pyruvate to acetyl-CoA to
maintain high glycolytic levels and support rapid tumor prolif-
eration.31 PCr, as a quick energy reserve, helps mitigate oxidative
stress during tumor cell proliferation, while 3-hydroxybutyrate
and a-ketoisovalerate regulate tumor energy balance, aiding
adaptation to oxidative stress.32 In lipid metabolism, choline
metabolites such as PC and GPC are closely linked to melanoma
progression; the former marks tumor malignancy, while the
accumulation of the latter inhibits apoptosis and promotes
tumor cell spread.33,34 Thus, the alterations in amino acid, energy,
and lipid metabolism observed in LGCMN are similar to those in
melanoma, suggesting that these metabolic pathways may play
a signicant role in LGCMN pathology.
Anal. Methods, 2025, 17, 3229–3238 | 3235
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4.2 Metabolic differences and clinical signicance of
LGCMN subtypes

Some researchers have identied potential genetic and
molecular differences among LGCMN classications such as
bolero, bathing trunk, and satellite nevi, but these efforts have
yielded limited correlations.8 Similarly, our metabolomic
analysis across subtypes revealed only limited differentiation.
The metabolic differences observed across different LGCMN
subtypes reect their biological heterogeneity. The shawl and
trunks subtypes, in particular, exhibit signicant variations in
amino acid metabolism, including arginine, alanine, and
phenylalanine. An abnormal valine, leucine and isoleucine
degradation pathway is especially prominent in the trunks
subtype, potentially associated with its unique clinical
features or growth pattern. These lesions oen cover larger
areas and are more likely to exhibit complex features such as
satellite nevi and nodules. Some cases in the trunks subtype
also display a distinctive “buttery” distribution13,18 and
a higher risk of malignancy. In this study, one patient with the
trunks subtype developed melanoma and ultimately suc-
cumbed to the disease. This phenomenon has also been
observed in previous literature and recent cases of bathing
trunk patterns of malignancy.4 Case reports have shown that
patients with the trunks subtype of LGCMN may experience
rapid progression to melanoma following immunotherapy.35

Elevated BCAA levels in melanoma are closely associated with
tumor proliferation and malignancy, reecting its metabolic
state and serving as a potential biomarker for cancer
progression and prognosis.36,37 Such characteristics further
highlight the clinical distinctiveness and malignancy risk of
the trunks subtype.
4.3 Hub gene-metabolite-pathway network and potential
regulatory mechanisms in LGCMN

The multi-omics based multi-layered gene–metabolite-pathway
network for LGCMN revealed signicant differences in
melanin production, cell proliferation, and signal regulation.
The core regulatory axis consists of genes such as EDNRB,
SOX10, TYR, and MITF, which directly inuence melanin
production and melanocyte development.38 TYR, as a rate-
limiting enzyme, catalyzes the conversion of tyrosine to dop-
aquinone, initiating melanin synthesis.39 SOX10, as a key
regulator of neural crest cell differentiation, supports melano-
cyte proliferation by regulating MITF, TYR, and PMEL. MITF,
a central transcription factor, promotes melanogenesis and cell
proliferation.40 High expression of SOX10 and MITF in LGCMN
and melanoma, along with their inhibition reducing stem cell
characteristics and suppressing tumor formation, indicates
their critical role in LGCMN malignant transformation.9,41

Additionally, genes such as PMEL, SLC24A5, and SLC45A2
stabilize the melanosome structure and regulate calcium
balance and pH to support the stability of the melanogenesis
network.42–44

In terms of metabolic regulation, tyrosine and BCAA
metabolism play particularly important roles. The association
of BCAA with genes such as SOX10 and MITF underscores its
3236 | Anal. Methods, 2025, 17, 3229–3238
signicance in melanocyte proliferation and metabolic regula-
tion, suggesting that intervening in amino acid metabolism
could potentially aid tumor therapy by targeting specic meta-
bolic pathways or combining dietary regulation.45 Previous
studies have shown that BCAA application in B16F0 melano-
cytes can inhibit melanin production.46 In melanoma cells with
BRAF mutations and hyperactive MAPK pathways, limiting
leucine availability could suppress melanoma growth.47 The
amino acid enrichment characteristics of LGCMN also suggest
new intervention possibilities for targetingMAPK and PI3K/AKT
signaling pathways.

The MAPK pathway regulates transcription factors such as
Elk-1, Myc, and CREB, promoting the expression of MITF, TYR,
and SOX10 and enhancing melanocyte proliferation and
malignant potential.48 Furthermore, the MAPK pathway forms
a synergistic network with genes such as EGF, RACK1, and IL-
18. EGF activates the MAPK pathway to stimulate cell prolifer-
ation, with observed downregulation in melanoma consistent
with our ndings.49 RACK1 regulates signaling correlating with
melanoma malignancy, and IL-18 regulates melanin produc-
tion, potentially inuencing local inammatory responses
within LGCMN.50 Inhibitors such as trametinib and alpelisib
show promise in LGCMN treatment, signicantly controlling
lesion progression by inhibiting MAPK and PI3K pathways.2,51

It should be pointed out that this study has several limita-
tions. Firstly, due to the small sample size, validation in larger
cohorts is required to establish the reliability and generaliz-
ability of disease-specic biomarkers. Secondly, the lack of
hormone level assessments in LGCMN patients in clinical
reports limits the analysis of the relationship between meta-
bolic ndings and hormonal status, affecting our under-
standing of LGCMN pathogenic mechanisms. Finally, due to
the rarity of malignant melanomas arising from giant nevi, it
has not been possible to collect sufficient malignant samples
for comparative analysis with LGCMN, limiting a comprehen-
sive understanding of the potential pathogenic mechanisms
underlying LGCMN malignancy.

5. Conclusions

This study presents a systematical exploration of unique gene
and metabolic characteristics of LGCMN through metab-
olomic and transcriptomic analyses. A multi-layered hub
gene–metabolite-pathway network provides novel insights
into the pathogenic mechanisms of LGCMN. Key genes such
as TYR, SOX10, and MITF play signicant roles in melano-
genesis and cell proliferation, and their associations with
tyrosine, phenylalanine, and BCAA underscore the importance
of amino acid metabolism in LGCMN. Notably, the potential
for BCAA metabolism intervention to inhibit melanin
synthesis introduces a promising avenue for non-surgical
LGCMN treatment. Furthermore, the activation of the MAPK
and PI3K/AKT pathways is closely correlated with LGCMN
proliferation and potential malignancy. The integration of
gene regulation and metabolic associations offers valuable
insights into LGCMN pathogenesis and guides development
of targeted therapies.
This journal is © The Royal Society of Chemistry 2025
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J. Malvehy, J. Invest. Dermatol., 2019, 139, 900–908.

9 D. Basu, C. M. Salgado, B. Bauer, R. M. Hoehl,
C. N. Moscinski, L. Schmitt and M. Reyes-Múgica,
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