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for small-sample near-infrared spectroscopy
classification
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and Xiangzeng Kong *ab

Near-infrared (NIR) spectroscopy, with its advantages of non-destructive analysis, simple operation, and fast

detection speed, has been widely applied in various fields. However, the effectiveness of current spectral

analysis techniques still relies on complex preprocessing and feature selection of spectral data. While

data-driven deep learning can automatically extract features from raw spectral data, it typically requires

large amounts of labeled data for training, limiting its application in spectral analysis. To address this

issue, we propose a self-supervised learning (SSL) framework based on convolutional neural networks

(CNN) to enhance spectral analysis performance with small sample sizes. The method comprises two

learning stages: pre-training and fine-tuning. In the pre-training stage, a large amount of pseudo-labeled

data is used to learn intrinsic spectral features, followed by fine-tuning with a smaller set of labeled data

to complete the final model training. Applied to our own collected dataset of three tea varieties, the

proposed model achieved a classification accuracy of 99.12%. Additionally, experiments on three public

datasets demonstrated that the SSL model significantly outperforms traditional machine learning

methods, achieving accuracies of 97.83%, 98.14%, and 99.89%, respectively. Comparative experiments

further confirmed the effectiveness of the pre-training stage, with the highest accuracy improvement,

reaching 10.41%. These results highlight the potential of the proposed method for handling small sample

spectral data, providing a viable solution for improved spectral analysis.
1. Introduction

Near-infrared (NIR) spectroscopy is a versatile analytical tech-
nique that operates within the 780–2526 nm wavelength range.
This range corresponds to the overtone and combination band
absorption regions of hydrogen-containing functional groups,
such as OH, CH, and NH, which are commonly found in organic
molecules. When NIR light interacts with a sample, the chem-
ical bonds of these functional groups absorb specic wave-
lengths, producing spectra that carry valuable information
about the molecular structure.1 Given that different samples
contain varying types and concentrations of these groups, the
resulting spectra reect unique characteristics such as peak
positions, bandwidths, and shapes. These features enable both
qualitative and quantitative analysis of various samples,
making NIR spectroscopy a powerful, non-destructive, and cost-
effective tool for a wide range of applications.2 However, the
broad spectral range, low signal intensity, and overlapping
spectral peaks oen make direct interpretation challenging,
culture and Forestry University, Fuzhou

com; xzkong@fafu.edu.cn

neering, Fujian Agriculture and Forestry

–1100
necessitating advanced computational techniques for accurate
data analysis.3

In recent years, the rapid development of articial intelli-
gence technology, especially the widespread application of
machine learning methods, has greatly promoted the develop-
ment of chemometrics.4 By building models that map spectral
data to sample characteristics, machine learning enables fast
and accurate predictions of new sample components or prop-
erties. Traditionally, this process involves three key stages:
spectral preprocessing, feature selection, and model construc-
tion. However, incorrect preprocessing oen leads to distortion
of the original signal, and feature selection, which oen leads to
partial loss of information, can reduce the accuracy of spectral
data analyses.5 Therefore, there is a need for an integrated data-
driven analysis method that works directly on spectral data and
is capable of extracting data critical features and eliminating
human interference.6 Recent studies have demonstrated that
deep learning models, which can process raw, high-
dimensional data end-to-end, excel in capturing complex
patterns without requiring extensive preprocessing.7 These
models, composed of multiple layers of nonlinear trans-
formations, are capable of learning abstract representations
from raw spectral data, thereby enhancing the accuracy of
predictions. Despite their potential, training deep learning
This journal is © The Royal Society of Chemistry 2025
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models oen requires a large amount of labeled data, and
labeling NIR spectral data typically relies on costly and time-
consuming offline chemical analysis methods. This severely
limits the scale of available labeled data and, consequently,
constrains the optimization of model performance. Effectively
training deep learning models with limited labeled data
remains a key issue in the eld of spectral data analysis.

The predominant methodologies employed for training
models utilizing label information include supervised learning,
unsupervised learning, semi-supervised learning, and transfer
learning, each with its own strengths and limitations. A concise
overview of these four learning paradigms is presented in
Table 1. Supervised learning builds direct relationships
between spectral data and their labels but is prone to over-
tting, especially when labeled data is limited. Conversely,
unsupervised learning does not depend on external labels, yet it
is characterized by poor interpretability and presents challenges
when applied directly to NIR spectroscopy analysis, which is
oen utilized for data dimensionality reduction prior to the
implementation of supervised learning techniques.8 Semi-
supervised learning combines the strengths of both super-
vised and unsupervised methods, but its performance can be
limited by assumptions about data distribution. Transfer
learning allows knowledge transfer from one domain to
another, helping mitigate the challenge of limited labeled data,
but differences between domains can lead to negative transfer
effects. In summary, when dealing with limited sample sizes,
each of these methods faces various degrees of challenge,
complicating the effective training of models for spectral
analysis.

SSL represents a novel paradigm within the eld of machine
learning, providing an innovative approach to the challenge
posed by the scarcity of labeled samples.16 By designing learning
tasks, SSL facilitates the automatic extraction of meaningful
information from unlabeled data, a process referred to as pre-
training, which establishes the initial parameters of the
model. Following this, the model can be ne-tuned using
a limited set of labeled data to optimize its performance for
specic tasks. A signicant advantage of SSL lies in its capacity
to capture the intrinsic representations of data during the pre-
training phase, which is essential for enhancing model perfor-
mance. Firstly, since SSL does not depend on manual labeling,
it can effectively leverage large volumes of unlabeled data for
training, thereby facilitating the development of deeper and
more complex neural network architectures that typically
exhibit superior feature extraction and generalization capabil-
ities. Secondly, by ne-tuning the model for diverse down-
stream tasks, SSL allows for rapid adaptation to the specic
requirements of these tasks while preserving the model's
generality. This not only improves network performance but
also leads to substantial savings in computational resources
and time.17 Given the high dimensionality and limited avail-
ability of labeled NIR spectral data, SSL is particularly well-
suited to addressing these challenges, offering signicant
potential for improving spectral analysis.

Therefore, this study proposes a CNN-based SSL learning
model designed to tackle the NIR spectral classication
This journal is © The Royal Society of Chemistry 2025 Anal. Methods, 2025, 17, 1090–1100 | 1091
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challenge. By leveraging the pre-training and ne-tuning
mechanism inherent to self-supervised learning, the model
offers a practical solution for small sample modeling. We rst
collected near-infrared spectral data from three different tea
tree varieties and used these data to train and test the model,
demonstrating its initial effectiveness. To thoroughly evaluate
the model's generalization ability and robustness, we further
introduced three publicly available NIR spectral datasets for
training and testing. In addition, we emphasize the signicant
classication performance advantages of the proposed model
by comparing it against traditional machine learning methods.
Finally, a series of comparison and ablation experiments were
conducted to optimize the model's framework parameters and
validate its overall rationality.

2. Related work and background
2.1. NIR spectroscopy analysis based on deep learning

Deep learning represents an advanced machine learning para-
digm that evolves from traditional shallow learning frame-
works. The fundamental principle of deep learning is the
abstract representation of data through a multi-layered neural
network architecture, where the outputs of lower layers serve as
inputs for higher layers, thereby establishing a bottom-up
learning trajectory. This methodology facilitates the develop-
ment of a mapping relationship between inputs and outputs,
enabling the prediction, classication, or recognition of
samples through multi-layer feature representation.6 In the
domain of spectral analysis, numerous experiments and studies
have demonstrated that deep learning techniques surpass
conventional machine learning methods in terms of spectral
analysis accuracy.18 Notably, CNN, characterized by their
distinctive convolutional operations of and signicantly reduce
the number of parameters requiring optimization, thereby
enhancing training efficiency and demonstrating robust feature
extraction capabilities.13 Consequently, CNN and their variants
have been extensively investigated and applied across various
elds.

In ref. 19, a CNN-based method for NIR data analysis was
proposed, and classication experiments were conducted on
four types of drugs from nine brands, achieving an accuracy of
97.3%. The results indicate that this method demonstrates
superior recognition capabilities compared to traditional
machine learning methods. Its advantages include the elimi-
nation of complex feature engineering, and the ability to handle
high-dimensional data, thereby improving classication accu-
racy and reliability. In ref. 9, the authors utilized the VGGNet19,
a variants of CNN, for classifying pine tree NIR spectroscopy
data, achieving a classication accuracy of 98.41%. The
performance is signicantly higher than that of support vector
machines (SVM) at 71.26% and backpropagation neural
networks (BPNN) at 76.19%. Compared to traditional machine
learning methods, deeper network architectures can effectively
reduce noise, extract ne spectral features, address the issue of
peak overlap in spectra, and enhance model generalization
capabilities by incorporating dropout layers and batch
normalization. Although deep models show great potential in
1092 | Anal. Methods, 2025, 17, 1090–1100
spectral modeling, they typically require a substantial number
of parameters usually rely on a large amount of labeled spectral
data for training. In ref. 20, the authors argue that deep
learning-based spectral modeling is most effective when the
sample size exceeds 2000. In practice, obtaining labeled data is
both time-consuming and costly, and acquiring data volumes in
the thousands is even more challenging. To address the chal-
lenge of training deep learning models with strong generaliza-
tion capabilities using limited labeled data, we designed an SSL
solution, which provides an effective resolution to this problem.
2.2. Self-supervised learning

Self-supervised learning, a machine learning paradigm, lever-
ages the intrinsic properties of data as supervisory signals,
eliminating the dependence on large amounts of labeled data.
This approach consists of two stages: model pre-training and
model ne-tuning. In the pre-training stage, a series of predic-
tion or classication tasks are constructed based on the
intrinsic attributes of the data, such as partial image recon-
struction, context prediction, and transformation recognition of
signals.21 These tasks are designed to encourage the model to
discover and extract deep patterns from the data while solving
them. Subsequently, in the ne-tuning stage, a small amount of
labeled data is used to make targeted adjustments to the pre-
trained model, optimizing its performance for specic appli-
cation scenarios and tasks. The applicability and efficiency of
SSL have been fully validated across multiple elds. In
computer vision,22 self-supervised learning models like SimCLR
(a simple framework for contrastive learning of visual repre-
sentations) have shown excellent performance in image classi-
cation tasks. In natural language processing,23,24 self-
supervised models such as GPT (general pre-training) and
BERT (bidirectional encoder representation from transformers)
have been successfully applied to complex tasks like machine
translation and languagemodeling. In time series,25 researchers
have constructed positive and negative samples in the pretext
task based on electroencephalogram (EEG) signals to achieve
SSL, extracting characteristics of sleep EEG signals to facilitate
emotion recognition tasks.

Inspired by the successful application of SSL in various
domains, we explored its potential for NIR spectral data pro-
cessing. NIR spectral data presents challenges such as small
sample sizes and signicant complexity. SSL, with its unique
advantages, emerges as a crucial solution to these challenges.
3. Materials and methods
3.1. Self-supervised learning framework

The proposed self-supervised framework comprises two distinct
learning stages. In the initial stage, a transformation recogni-
tion network is developed to learn representations of NIR
spectral data by identifying the transformations to the raw
spectra. This stage emphasizes the acquisition of robust and
generalized features from unlabeled NIR spectral data, with the
task dened as the pretext task. In the subsequent stage,
a spectral classication network is trained utilizing NIR spectral
This journal is © The Royal Society of Chemistry 2025
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Fig. 1 The proposed self-supervised learning framework consists of two networks: (A) NIR spectroscopy transformation recognition network
and (B) NIR spectroscopy classification network. In the first stage, the transformation recognition network is trained using automatically
generated pseudo-labels to learn meaningful near-infrared spectral representations. In the second stage, the shared parameters of the trans-
formation recognition network are transferred to the spectral classification network, which is then fine-tuned using the labelled data to complete
the training of the model. Only the spectral classification network was used in the testing.
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data that has been annotated with human-generated class
labels to classify the types of samples; this task is referred to as
the downstream task. The features derived from the NIR spec-
tral data at the shared layer in the rst stage are transferred to
the qualitative analysis network in the second stage, thereby
enhancing efficiency and performance through the reuse of
network parameters. Fig. 1 illustrates the overall framework of
our SSL approach, which consists of a two-part network: (A) the
NIR spectroscopy transformation recognition network and (B)
the NIR spectroscopy classication network. A detailed expla-
nation of these two components will now be provided.

3.1.1 NIR spectroscopy transformation recognition
network. We developed and implemented a one-dimensional
convolutional neural network (1D CNN) for NIR spectroscopy
Fig. 2 Structure and parameters of (a) the shared layer in our propose
spectral classification network.

This journal is © The Royal Society of Chemistry 2025
transformation recognition, incorporating multi-task learning
(MTL) to enhance performance. MTL is a learning paradigm in
machine learning that seeks to simultaneously learn multiple
related tasks, allowing the knowledge gained from one task to
be utilized by others, with the objective of improving the
generalization performance across all tasks.26

The core of the network architecture consists of shared layers
and task-specic layers, with the input layer serving as the data
entry point. The shared layer plays a crucial role in extracting
effective and generalizable features from the spectral data and
transferring these learned features to the NIR spectral classi-
cation network. The specic structure and parameters of the
shared layer are illustrated in Fig. 2(a). As illustrated, the shared
layer is composed of three convolutional blocks. Each block
d self-supervised learning framework and (b) the classifier in the NIR

Anal. Methods, 2025, 17, 1090–1100 | 1093
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begins with two consecutive one-dimensional convolutional
layers for feature extraction, followed by batch normalization
and ReLU activation functions to enhance the model's stability
and nonlinear processing capabilities. A max pooling layer, with
a pool size of 2, is then employed to diminish feature dimen-
sions while retaining essential information. The convolutional
kernel size is consistently set to 3, and the number of lters in
the convolutional layers progressively increases from 32 to 64
and then to 128. This design is intended to extract universal
features from the raw data that are effective across various
transformation tasks. Following processing in the shared layers,
the features are forwarded to the task-specic layers for further
processing and classication. The task-specic layers consist of
seven independent branches, each tasked with a binary classi-
cation task objective, determining whether the input spectrum
corresponds to the raw data or one of the six predened
transformations. Each branch comprises three fully connected
layers, with a ReLU activation function applied between them to
facilitate nonlinear transformation, and 50% dropout strategy
implemented aer each fully connected layer to mitigate the
risk of overtting.

3.1.1.1 Six NIR spectroscopy transformation. The primary
objective of the NIR Spectral transformation recognition
network is to extract features relevant to spectral classication
through the execution of spectral transformation recognition
tasks. Specically, to effectively identify the various types of
transformations in NIR spectroscopy, the recognition network
must discern invariances within the transformed spectra. In
this study, we implemented six distinct transformations on the
raw spectral data. Following this, we labeled both the raw data
and the transformed spectral data with their corresponding
identiers, with raw data labeled as 0 and the transformed data
labeled from 1 to 6, corresponding to the six transformations.
This combined dataset was utilized as the training dataset for
the NIR spectroscopy transformation recognition network. A
detailed description of the six spectral transformations is
provided below.27

(1) Add noise: random noise with Gaussian distribution is
added to the raw NIR spectroscopy.

(2) Offsets: offset refers to the movement of NIR spectroscopy
along the longitudinal axis, where the offset is determined by
a factor of 0.1 times the standard deviation of the training set.
This means that the vertical axis value of each data point may
increase the standard deviation of the training set by up to 10%.

(3) Multiplication: the amplitude of the raw NIR spectros-
copy aer multiplication is stretched or compressed, and the
multiplication is performed at 1 ± 10.1 times the standard
deviation of the training set.

(4) Horizontal ip: the raw NIR spectroscopy is ipped
according to the horizontal line.

(5) Vertical ip: the raw NIR spectroscopy is ipped accord-
ing to the vertical line.

(6) Permutation: the raw NIR spectroscopy is evenly divided
into m segments and shuffled, randomly rearranging them.

3.1.1.2 Loss function. The entire NIR spectral trans-
formation recognition network is performing a multi-task
learning process, and each sub-task is a binary classication
1094 | Anal. Methods, 2025, 17, 1090–1100
task. We use BCEWithLogitsLoss, a loss function commonly
used for binary classication problems. This function combines
sigmoid activation with binary cross-entropy loss, providing an
efficient and stable gradient computation method for handling
binary classication tasks. In the NIR spectroscopy trans-
formation recognition task Tp, we dene the input as a tuple
table (Xj,Yj), where Xj is the NIR spectroscopy aer jth trans-
formation, Yj is the label generated aer the jth transformation,
and j ˛ (0,N) is the total number of NIR spectroscopy trans-
formations, which is equal L × 7, where L is the total number of
the samples. The loss function of each label is dened by the
following equation, where the prediction probability of the jth
task is dened as jj:

Lj = [Yj ln jj + (1 − Yj)ln(1 − jj)] (1)

In our multi-task learning approach, the model is trained by
minimizing the total loss Ltotal, which is the weighted average of
each individual loss Lj, from the NIR spectroscopy trans-
formation recognition network. Here, aj is loss coefficient of the
jth task:

Ltotal ¼
XN

j¼0

ajLj (2)

3.1.2 NIR spectroscopy classication network. The struc-
ture of the NIR spectral classication network includes the
same shared layer as the NIR spectroscopy transformation
recognition network. Following the shared layer, three fully
connected layers are employed, the specic structure and
parameters of the classication are illustrated in Fig. 2(b). To
effectively leverage knowledge from the pre-trained model, the
weights of the shared layer from the NIR spectrum trans-
formation recognition network are transferred to the spectral
classication network. The core task of this network is to clas-
sify spectral data by ne-tuning the model using NIR spectra
with limited human-labeled category annotations.

3.1.2.1 Loss function. In the NIR spectroscopy qualitative
analysis task Tf, we dene the input as a tuple table (Xi,yi), where
Xi is the raw NIR spectral data, yi is the corresponding category
label, and i ˛ (0,M), M is the total number of NIR spectroscopy
input data. Accurate qualitative analysis of NIR spectroscopy is
achieved by minimizing the cross-entropy loss function, which
is dened by the following equation:

L ¼
XM

i¼1

yi ln bi (3)

where the prediction probability of the ith task is dened as bi.
3.2. Datasets

3.2.1 Sample preparation and spectral acquisition
3.2.1.1 Preparation of tea fresh leaf samples. In this experi-

ment, three tea tree varieties cultivated in Anxi County,
Quanzhou City, Fujian Province, China were selected: Ben-
shan variety, Huangdan variety, and Tieguanyin variety. Fresh
tea leaves were harvested on November 18, 2023, yielding
This journal is © The Royal Society of Chemistry 2025
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Fig. 3 Fresh tea leaves from different tea plant varieties: (a) Benshan variety, (b) Huangdan variety, and (c) Tieguanying variety. (d) Handheld
NIRez-G1 spectrometer.
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a total of 855 leaves (285 leaves from each variety). The fresh
tea leaves from different varieties are shown in Fig. 3, and
different varieties of leaves cannot be effectively distinguished
by the naked eye. Aer harvesting, the fresh tea leaves were
placed in black sealed bags for subsequent spectral data
collection.

3.2.1.2 NIR spectral data acquisition. The instrument used in
this study was a handheld long-wave near-infrared spectrometer
(NIRez-G1, Isuzu Optical Corp., Taiwan, China), as shown in
Fig. 3(d). The spectral wavelength range of the instrument is
950–1650 nm, and the spectral resolution is 10 nm. Prior to data
collection, the spectrometer was preheated for 30 minutes to
ensure the reliability of the initial spectral measurements of the
fresh tea leaves. Before collecting the NIR spectral reectance of
tea leaves, spectral data of the dark current and reference board
are rst obtained for the calibration of the raw spectra prior to
data processing. Initially, spectra from three different positions
on a standard whiteboard (HIS-CT-250 × 280) are collected
using the NIR spectrometer, and the average is recorded as W.
Subsequently, a black opaque plastic disc is used to cover the
sampling port, and spectra are collected three times, with the
average recorded as B. To obtain as much spectral information
as possible from the tea leaf surfaces, spectra are collected from
three different locations on the leaf during the experiment, and
the average is used as the raw spectral data for that sample. The
reectance is then calculated for the tea leaves using eqn (4) for
calibration.
Fig. 4 Presents the raw spectra of (a) tea, (b) mangoes, (c) tablets, and (d)
from various varieties. The curves depicted are averages of the spectra, w
the ± standard deviation.

This journal is © The Royal Society of Chemistry 2025
Rc ¼ Dc � B

W � B
(4)

In the formula, Rc represents the spectral reectance of fresh tea
leaves, Dc denotes the raw spectral data of the tea leaves; W
indicates the raw spectral data of the standard white board; and
B signies the raw spectral data of the dark current.

Spectral data were collected from 855 spectral data from
fresh tea leaves of three varieties (3 varieties × 285 samples)
following the method described above. In order to reduce noise
and individual variability in the data and to improve represen-
tativeness, in each variety, three spectral data were averaged to
generate new spectral data, resulting in a total of 285 average
spectral reectance data, which were varietally labelled for
subsequent experiments.

3.2.2 Data summary and public datasets. Fig. 4 illustrates
the raw spectral curves of our tea data and three public datasets,
including their means and standard deviations. It is evident
that the spectral curves of samples from various varieties within
each dataset demonstrate a signicant degree of similarity, with
certain curves exhibiting complete overlap. Table 2 provides an
overview of these datasets, while the subsequent sections
provide detailed descriptions of public datasets, including
access information.

3.2.2.1 Mango.28 This dataset comprises NIR spectral data
obtained from 186 whole mango samples representing four
distinct varieties: Kweni, Cengkir, Palmer, and Kent. The spec-
tral data, illustrated in Fig. 4(b), were collected using a benchtop
coal, respectively, illustrating themean± standard deviation of samples
ith the upper and lower boundaries of the translucent areas indicating
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Table 2 Provides a summary of the datasets utilized in the study

Datasets Samples Variables Classes Wavelength range Available

Tea 285 228 3 950–1650 nm Data will be made available on request
Mango 186 1557 4 1000–2500 nm https://www.hub.uu2025.xyz/10.1016/

j.dib.2019.104789
Tablet 310 404 4 700–2500 nm http://www.models.life.ku.dk/Tablets
Coal 5016 1499 12 1000–2500 nm https://doi.org/10.5281/zenodo.11137126
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Fourier transform infrared spectrometer (Thermo Nicolet
Antaris II TM) over a wavelength range of 1000 to 2500 nm.

3.2.2.2 Tablet.29 This publicly available dataset comprises
310 NIR spectroscopy samples of pharmaceutical drugs, which
are categorized into four groups according to the concentration
of active substances. The dataset encompasses a NIR spectros-
copy wavelength range of 700 to 2500 nm. A representation of
the NIR spectroscopy data is illustrated in Fig. 4(c).

3.2.2.3 Coal.30 This publicly available dataset comprises NIR
spectral data for 24 distinct types of coal and coal-measure
rocks, with 12 types represented in each category. For each
sample type, researchers collected approximately 418 NIR
spectroscopy measurements, encompassing various levels of
granularity and acquisition conditions. The wavelength range of
the dataset extends from 1000 to 2500 nm, with selected spec-
tral graphs illustrated in Fig. 4(d).

3.3. Implementation

To train the NIR spectroscopy transformation recognition
network and the spectral classication network, we utilized the
Adam optimizer with a learning rate of 0.0001 and a batch size
of 32. The NIR spectroscopy transformation recognition
network was trained for 100 epochs, while the spectral classi-
cation network underwent training for 250 epochs. Addition-
ally, we implemented a 5-fold cross-validation method to assess
model performance. Following the random shuffling of the
dataset, 80% of the data was designated as the training set for
training the model, with the remaining 20% allocated for
testing model. This process was repeated ve times; however,
the data shuffling was conducted only once at the outset and
was not repeated in subsequent iterations.

The experiments were conducted on a system equipped with
16 GB of RAM and an Intel i7-13650HX CPU (4.9 GHz, 14 cores),
paired with an NVIDIA RTX 4060 GPU with 8 GB of memory. The
soware environment consisted of Windows 11, Python 3.8.0,
PyTorch 2.2.1, and CUDA 12.1. Both the proposed self-
supervised learning model and the comparison models were
trained and tested under this conguration. We will share the
construction process and implementation details of the model
for researchers in related areas at https://www.github.com/
ryzhao0620/SSL-of-NIR-Spectroscopy-classication-based-on-
CNN.git.

3.4. Comparison experiment algorithms and evaluation
indicators

3.4.1 Comparison experiment algorithms. In order to
assess the efficiency of the SSL model in the analysis of NIR
1096 | Anal. Methods, 2025, 17, 1090–1100
spectral data, it is pertinent to note the limited research available
on SSL within this domain. Consequently, we have selected
several establishedmachine learning algorithms as comparative.
These algorithms include random forest (RF),31 which constructs
multiple decision trees and utilizes ensemble learning to
enhance predictive accuracy; SVM,32 which classies data by
maximizing the margin and is particularly effective for high-
dimensional datasets, accommodating nonlinear classication;
k-nearest neighbors (kNN),33 a straightforward and easily
implementable method that classies based on the distance
between samples; extreme learning machine (ELM),34 which
employs a single-layer feedforward neural network architecture
characterized by rapid learning capabilities; BPNN,35 which
optimizes parameters through gradient descent and is well-
suited for complex pattern recognition tasks; and partial least
squares discriminant analysis (PLS-DA),36 which integrates
regression analysis with discriminant analysis, making it
particularly effective for high-dimensional data analysis and
procient in feature extraction. For a comprehensive under-
standing of the principles underlying the machine learning
algorithms, please consult the relevant references. To ensure the
fairness of the comparative analyses, all comparative algorithms
need to be consistent with the proposed method in the way of
training data segmentation. Specically, a 5-fold cross-validation
is used to train and test themodels, and the average of the results
of the ve experiments is taken as the nal evaluation index, to
ensure the stability and reliability of the results.

3.4.2 Evaluation indicators. In evaluating the performance
of the SSLmodel in NIR spectral data analysis, we used accuracy
(Acc) and F1 score (F1) as key evaluation metrics. Accuracy
measures the proportion of correctly predicted samples by the
model and is calculated as:

Acc ¼ TPþ TN

TPþ TNþ FPþ FN
(5)

In the formula: TP means the prediction and the actual result
are true, and the prediction is correct; FP means the prediction
is true, but the actual is false, the prediction is wrong; FN,
means the prediction is false, but the actual is true, the
prediction is wrong; FN means the prediction and the actual
result are false, and the prediction is correct.9,37

The formula for the F1 score is as follows:

F1 ¼ 2� precision� recall

precisionþ recall
(6)

Precision ¼ TP

TPþ FP
(7)
This journal is © The Royal Society of Chemistry 2025
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Table 3 Shows the accuracy of the transformation recognition task on tea variety data and three publicly available datasets

Transformation

Tea Mango Tablet Coal

Acc F1 Acc F1 Acc F1 Acc F1

Raw 0.9536 0.9324 1.0000 0.9189 1.0000 1.0000 0.9932 0.9899
Adding noise 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Offsets 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Multiplication 0.9879 0.97834 0.9432 0.9321 1.0000 1.0000 1.0000 1.0000
Horizontal ipping 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9901
Vertical ipping 1.0000 0.9741 0.9868 1.0000 0.9891 1.0000 0.9768 1.0000
Permutation 1.0000 1.0000 1.0000 1.0000 0.9909 1.0000 1.0000 1.0000
Average 0.9916 0.9835 0.9900 0.9787 0.9971 1.0000 0.9957 0.9971
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Recall ¼ TP

TPþ FN
(8)

The F1 score represents the weighted harmonic means of
precision and recall, considering the performance of both
metrics, thus offering a more comprehensive and robust
evaluation.

4. Results and discussion
4.1. NIR spectroscopy transformation recognition results

As shown in Table 3, our transformation recognition network
achieved exceptionally high accuracy and F1 scores on the
diverse datasets of Tea, Mango, Tablet, and Coal, with average
accuracy exceeding 99% and F1 scores accuracy exceeding 97%.
These results indicate that SSL enables the model to deeply
explore the underlying features of spectral data, capturing both
local details and global structures, thereby maintaining robust
recognition capabilities across various transformations. More-
over, the network exhibited consistent performance and strong
generalization across different datasets.

4.2. NIR spectroscopy classication results

Table 4 summarizes the classication accuracy and F1 score of
each model across four classication tasks. The results show
that in the presence of limited labeled data, SSL models
signicantly outperform all other traditional machine learning
methods, the accuracy of the four classication tasks reached
0.9912, 0.9783, 0.9814 and 0.9989, respectively.
Table 4 The accuracy and F1 score of our proposed self-supervised lea
across four classification tasks

Datasets

Tea Mango

Acc F1 Acc F1

RF 0.8421 0.8343 0.8872 0.8
SVM 0.7614 0.7598 0.8550 0.8
kNN 0.8281 0.8293 0.8390 0.8
ELM 0.9509 0.9487 0.9622 0.9
BPNN 0.8903 0.8897 0.9248 0.9
PLS-DA 0.9018 0.9006 0.9356 0.9
Ours 0.9912 0.9832 0.9783 0.9

This journal is © The Royal Society of Chemistry 2025
In this experiment, the sample sizes for the Tea, Mango and
Tablet datasets were limited to 285, 186 and 310, respectively,
which presents a challenge for deep learning models due to the
small sample size.38 To assess the performance of the self-
supervised model in the context of limited labeled data for
coal classication, we conducted comparative experiments.
These experiments employed a gradient-increase strategy,
which involved gradually augmenting the amount of NIR
spectral data from 5% to 50%. Through this methodology, we
systematically evaluated the performance disparities between
SSL algorithms and traditional machine learning methods
across varying data quantities. Table 5 provides a visual repre-
sentation of the accuracy achieved by various methods for each
data quantity. The experimental results demonstrate that,
under conditions of limited labeled data (specically at 5% data
quantity), the accuracy of SSL methods signicantly surpasses
that of the traditional machine learning methods. Furthermore,
as the amount of labeled data increases, the accuracy of all
algorithms improves; however, SSL methods consistently
exhibit the highest accuracy throughout the evaluation.
4.3. Effectiveness of self-supervised per-training

To evaluate the efficacy of self-supervised pre-training, a series
of comparative experiments were conducted primarily varied in
the self-supervised pre-training phase. Initially, the self-
supervised model was pre-trained utilizing an unlabeled data-
set, followed by ne-tuning the pre-trained model with labeled
data, a process referred to as SSL ne-tuning. In contrast, we
conducted an additional set of experiments in which the self-
rning method is compared to that of the traditional machine methods

Tablet Coal

Acc F1 Acc F1

902 0.8516 0.8509 0.6637 0.6634
548 0.9129 0.9104 0.9334 0.9332
402 0.8548 0.8487 0.5981 0.5965
587 0.9426 0.9393 0.9234 0.9198
231 0.8871 0.8823 0.9075 0.9026
312 0.9581 0.9566 0.9181 0.9143
736 0.9814 0.9789 0.9989 0.9978
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Table 5 Comparison of accuracy between self-supervised and
traditional machine methods at different data proportions for the coal
classification task

Sample size Ours RF SVM kNN ELM BPNN PSL-DA

50% 0.9983 0.6057 0.8498 0.5609 0.8876 0.8744 0.8963
40% 0.9976 0.5873 0.8478 0.5419 0.8648 0.8654 0.88.4
30% 0.9951 0.5360 0.7967 0.5107 0.8167 0.8572 0.8616
20% 0.9934 0.4570 0.7411 0.4288 0.6607 0.8266 0.8398
10% 0.9916 0.3909 0.7143 0.3434 0.6019 0.6086 0.7114
5% 0.9791 0.3750 0.6652 0.2583 0.5333 0.5587 0.6179
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supervised pre-training phase was omitted, and the same
architecture was trained from scratch using only the labeled
data, a method termed fully supervised learning. It is worth
noting that, apart from the use of unlabeled data for pretraining
in the SSL ne-tuning group, all other experimental conditions
were kept consistent between the SSL ne-tuning group and the
fully supervised learning group, including data splitting, model
hyperparameters, and classication evaluation metrics. Given
the ample sample size of the Coal dataset, we established
multiple gradients of data quantity to assess the effectiveness of
SSL within the context of classication task involving the coal
data. As illustrated in Fig. 5, the experimental results unequiv-
ocally demonstrate that SSL exhibits signicant superiority
across our tea dataset and the three public datasets, particularly
in scenarios characterized by small sample sizes, where classi-
cation accuracies are signicantly surpassed those of the
supervised learning models employing the same architecture.
On the coal dataset, as the volume of training data increased,
the performance of both learning methodologies improved;
however, SSL consistently maintained its advantage. This
superiority can be attributed to the self-supervised pre-training
Fig. 5 Figures (a) and (b) illustrate the classification accuracies and F1 sc
supervised learning methodologies. Figures (c) and (d) present the clas
employing supervised learning and self-supervised learning.

1098 | Anal. Methods, 2025, 17, 1090–1100
process, during which the model effectively acquired multi-
dimensional and general features by recognizing and differen-
tiating various data transformations. This process positively
inuenced subsequent classication tasks, thereby thoroughly
validating the effectiveness of self-supervised pre-training.

4.4. The depth of the self-supervised model

In this section, we assess the quality of learned representations
in relation to the depth of the self-supervised model. Repre-
sentations obtained from each convolutional block were
extracted and employed for downstream spectral classication
of NIR spectral data, as depicted in Fig. 6(a). To validate the
efficacy of our approach with small sample sizes, only 5% of the
total Coal data volume was utilized as data for the experiments
conducted in this section and in Section 4.5. During the
experiments, Representations learned by convolutional blocks
1, 2, and 3 were extracted and applied to spectral classication.
As illustrated in Fig. 6(b), the features extracted from convolu-
tional block 3 demonstrated signicant performance enhance-
ments compared to those from Blocks 1 and 2. An attempted
was made to stack three embedding vectors to generate a new
embedding vector for the qualitative analysis task. However, the
results indicated that the embedding derived from Convolu-
tional Block 3 consistently produced the best performance. This
nd suggests that representations obtained from the nal
convolutional layer demonstrate superior generalization capa-
bilities and improved performance in spectral classication
tasks.

4.5. The importance of multi-task learning

This section discusses the performance of spectral classica-
tion when performing multiple tasks to learn NIR spectroscopy
ore of tea, mango and tablet utilizing and supervised learning and self-
sification accuracies and F1 score across 12 categories in Coal, also

This journal is © The Royal Society of Chemistry 2025
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Fig. 6 The effects of utilizing embeddings derived from a neural network at various depths for spectral classification. In (a), the experimental
setup is illustrated, while (b) presents the corresponding results.

Fig. 7 Figures (a)–(d) show the performance comparison between single-task and multi-task self-supervision on each of the four datasets. MT
refers to multi-task, while T1 through T6 represent the followings techniques: adding noise, offsets, multiplication, horizontal flipping, vertical
flipping, and permutation, respectively.
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representations. Multi-task networks may have an impact on
the overall performance, which might be different from several
individual tasks aggregated together. Fig. 7 illustrates
a comparative spectral classication derived from learning
NIR spectroscopy via multitasking versus a single-task
approach. The ndings indicate that the multitask network
consistently surpasses the performance of the single-task
network. This advantage can be attributed to the synergistic
effects of various transformation recognition tasks, which
enable the self-supervised model to acquire higher-level
representations of spectral data more effectively. By adapting
to these transformations, the neural network enhances its
training performance.27 In particular, the addition of noise and
offsets simulates diverse scattering and shi phenomena that
may manifest in the spectra, while multiplication operations,
along with horizontal and vertical ips, assist the model in
capturing overall intensity or amplitude variations. Addition-
ally, permutation operations augment the model's sensitivity
to minor changes in wavelength positions. Collectively, these
strategies facilitate a more profound understanding and
representation of spectral data by the model. Furthermore, it is
essential to investigate the impact of SSL of individual tasks on
downstream tasks. Given that each transformation task
contributes uniquely to the learning of NIR spectral repre-
sentations, we optimize the overall model training process by
assigning weights to the loss functions of different tasks
This journal is © The Royal Society of Chemistry 2025
during execution. This approach is conducive to the rapid
convergence of the model.
5. Conclusion

In this study, we proposed a novel SSL framework based on CNN
to address the challenges of NIR spectroscopy classication
with limited labeled data. Our method successfully combines
the advantages of deep learning and SSL by employing a two-
stage training process: pre-training with unlabeled data and
ne-tuning with a small amount of labeled data. This approach
enables the automatic extraction of intrinsic spectral features,
reducing the need for complex preprocessing and feature
engineering typically required in traditional machine learning
techniques. The experimental results on both our own tea
dataset and publicly available NIR spectroscopy datasets
demonstrated that the proposed SSL method signicantly
outperforms traditional machine learning models. Our frame-
work achieved classication accuracies of up to 99.12% on the
tea dataset and showed superior generalization abilities on
external datasets, with accuracies of 97.83%, 98.14%, and
99.89%, respectively. Moreover, the comparative and ablation
experiments conrmed that the pre-training phase of SSL
provided substantial performance improvements, particularly
for small-sample spectral data. The highest observed accuracy
Anal. Methods, 2025, 17, 1090–1100 | 1099
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improvement reached 10.41%, further underscoring the effec-
tiveness of the SSL approach.

In conclusion, the CNN-based SSL framework developed in
this study provides a practical and effective tool for NIR spec-
troscopy analysis, enabling better performance in scenarios
with limited data availability. This work opens new possibilities
for integrating SSL into spectral analysis workows, advancing
the eld toward more automated and reliable classication
models.
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