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Introduction: Analysis of small molecule metabolites found in blood plasma of patients undergoing treat-

ment for STEMI has the potential to be used as a clinical diagnostic and prognostic tool, capable of pre-

dicting disease progression, risk of negative outcomes, and response to treatment. Methods: Rapid mass

spectrometry has been used to measure the metabolite profiles of coronary aspirate blood plasma from

288 STEMI patients enrolled in the Oxford Acute Myocardial Infarction (OxAMI) study. Supervised machine

learning applied to the mass spectra was used to stratify patients based on clinically relevant variables

related to health and treatment response. Results: In this small proof-of-concept study, patient mortality

and microvascular obstruction (MVO) were predicted with over 80% accuracy; heart failure diagnosis,

ischemic time, peak troponin, and thrombus score were predicted with over 76% accuracy, and creatinine

and index of microcirculatory resistance (IMR) were predicted with over 70% accuracy. Using feature-

reduction methods, we were able to identify key mass-to-charge (m/z) peaks in the mass spectra that

correlated with the assignment to particular patent groups. These may potentially be used in the future as

mass spectrometric biomarkers in the development of a diagnostic and prognostic test for STEMI risk.

1 Introduction

ST-segment-elevation myocardial infarction (STEMI) is a severe
yet common clinical condition that continues to be associated
with a high risk of patient mortality.1 From 2021 to 2022, over
85 000 confirmed acute myocardial infarction (AMI) cases were
reported by the National Cardiac Audit Programme in the UK,
36% of which were the higher-risk STEMI, and the remaining
64% being the lower-risk non-ST-segment-elevation myocardial
infarction (NSTEMI).2 Current treatments and advances in hos-
pital care have lead to a gradual decrease in mortality of AMI
patients.3 However there remain a high number of cases in
which mortality occurs in the two years post-presentation due
to complications including subsequent heart failure. In
addition, patient readmission as a result of cardiovascular epi-
sodes and related diseases remains a significant burden on

healthcare systems.4–6 Identification of ‘high risk’ patients
earlier on in their treatment journey would allow a more tar-
geted response to their initial STEMI, employing more aggres-
sive treatments that are withheld from the general patient
population due to a high risk of complications, cost, or unplea-
sant side effects. The aim of the present study is to determine
whether biological markers present in coronary aspirate blood
plasma of STEMI patients can prove predictive for their pro-
gression and recovery trajectory. Classification of patients into
risk categories for disease progression will allow for more per-
sonalised, targeted treatments that may prolong or enhance
the lives of patients with cardiovascular disease.

Due to recent improvements in the availability, collection
and publication of large clinical datasets, an influx of studies
have been published over the last three years that utilise
machine learning and multivariate statistics to predict out-
comes for STEMI patients.7–12 Some of the models developed
within studies include data for thousands of patients, in the
form of both demographic information (age, sex, family
history) and clinical parameters (thrombus score, IMR, tropo-
nin), and can predict negative patient outcomes such as mor-
tality with high accuracy. The OxAMI data set has been used
previously to develop models of this type, with varied
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results.13–20 These various studies have led to the development
of a range of functions and composite scores; examples
include the age-thrombus burden index of microcirculatory re-
sistance (ATI) score and resistive reserve ratio (RRR), both of
which show prognostic value for STEMI patients.18–20 Based on
these results, it is clear that indicative predictions of probable
patient outcomes and response to treatment are possible
based on early patient information. Within the present study,
we take this relationship closer to the pathology of the disease,
by linking the prediction of patient outcomes directly to a
measurement of metabolites in the blood.

Achieving an accurate representation of the biochemical
composition of complex biological matrices such as blood
plasma is challenging. Most analytical instruments report on a
selected fraction of the matrix with known physiochemical
attributes, e.g. ‘lipophilic molecules’, or require the use of
various mechanical and chemical separation steps involving
the addition of solvents that may alter the sample. Recent
developments in ion-source technology have led to the intro-
duction of a range of analytical instruments that can measure
complex samples in their native state under atmospheric con-
ditions, and in some cases in vivo. Ambient ionisation mass
spectrometry has enabled the rapid analysis of biological
samples in a clinical setting, and has been employed in a
diverse range of applications, from tumour differentiation and
margin delineation to quantitative analysis of pharmaceuticals
in blood micro-samples.21–24 Atmospheric solids analysis
probe mass spectrometry (ASAP-MS) is a form of ambient ion-
isation instrument capable of performing untargeted profiling
of the small-molecule composition of solid and liquid biologi-
cal samples in their native state.25–27 Measurements are com-
pleted in a matter of seconds, making these compact instru-
ments a potential candidate for use in a clinical setting. The
method provides an untargeted ‘molecular fingerprint’ of the
sample, allowing for a pattern recognition approach to bio-
marker discovery to be conducted. This approach comp-
lements conventional specific biomarker discovery methods in
a number of ways. Firstly, there is no requirement for compre-
hensive knowledge of the biochemical pathways and specific
molecules underpinning the disease, saving time as well as
costs associated with multi-omics analysis studies. Secondly,
many biomolecules may be measured simultaneously, provid-
ing an opportunity to identify subtle relationships between
metabolites that may otherwise be missed, and potentially
opening studies up to include biomarkers beyond the current
known molecular space. In the case of STEMI metabolomics,
an untargeted approach may shed some light on the relation-
ship between metabolic pathways for lipophilic and non-lipo-
philic molecules, with (amongst others) both glucose and lipid
metabolism known to play a crucial role in myocardial ische-
mia-reperfusion injury.28

The pattern recognition process required to link mass spec-
trometric fingerprints with clinical outcomes may be per-
formed in a number of ways, with some of the most promising
being machine-learning approaches.29 A variety of machine
learning algorithms have been developed to conduct pattern

recognition or classification analysis on multivariate data sets,
including collections of mass spectra.29–32 These can be
employed in the present context to classify patients into risk
groups based on correlations between the mass spectra and a
number of clinical parameters known to be linked with further
complications or patient mortality. Machine-learning methods
can also be combined with feature reduction techniques in
order to determine which features of the mass spectra, i.e.
which molecular signals, are most important in the classifi-
cation process. Such approaches identify which metabolite
mass peaks show significant differences between the patient
groups, and might therefore be worthy of further investigation
as potential biomarkers.

In the present study, we have investigated the use of
machine learning to analyse mass spectra of coronary aspirate
blood plasma from STEMI patients enrolled on the OxAMI
clinical study,33,34 with the goal of stratifying patients accord-
ing to their future cardiac risk. The coronary aspirate samples
were collected during the primary percutaneous coronary
intervention (pPCI) undergone by patients on admission to
hospital, and were chosen for this initial proof-of-concept
study as we hypothesised they were likely to contain the
highest concentrations of metabolites related to the coronary
event. The coronary aspirate is a waste product of the cardiac
catheterisation procedure, and is usually disposed of. While
mass spectrometric analysis of clinical samples has become a
key tool for the generation of models predicting clinical out-
comes in various disease states, including in cardiovascular
diseases,35–39 we believe this is the first application of
ASAP-MS in the prediction of outcomes for any disease.
ASAP-MS provides results much more rapidly than alternative
high-resolution-omics techniques, as well as having low
resource and training requirements. This makes it potentially
suitable for use within a clinical setting, though we note that
the relatively low m/z resolution means that obtaining detailed
molecular assignments for the m/z signals would require
measurements with a higher resolution technique over the
mass ranges of interest. For these reasons, we will focus on the
ability of ASAP-MS coupled with machine learning methods to
classify patients into appropriate risk groups, rather than on
biomarker discovery.

2 Methods

The overall workflow for the study is summarised in Fig. 1. We
describe each of the steps in more detail in the following.

2.1 Study patients and criteria

The 283 coronary aspirate plasma samples used in this study
were acquired from STEMI patients enrolled in the Oxford
Acute Myocardial Infarction (OxAMI) clinical study, who under-
went primary percutaneous coronary intervention (pPCI) at the
John Radcliffe Hospital, Oxford, between 2010 and 2021. We
were granted access to a set of samples in order to investigate
the utility of ASAP-MS fingerprinting for prognostic purposes,
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as a small early-stage side project within the primary clinical
investigations of the study. It should be emphasised that the
pilot metabolomic fingerprinting analysis performed within
the present study is a secondary use of the samples, and not
the primary clinical study objective for the overall OxAMI
project. The selection criteria for patients enrolled in the
OxAMI study have been described in detail previously.40–42

Briefly, STEMI was identified by chest pain continuing for
>30 min and ST elevation >2 mm in >2 contiguous leads.
Exclusion criteria were symptom duration >12 h, the presence
of severe haemodynamic instability, and contraindication to
the use of adenosine. The study was conducted in accordance
with the Declaration of Helsinki. All participants gave written
informed consent (REC number 10/H0408/24).

The coronary aspirate blood samples were obtained during
pPCI to restore blood flow to the affected coronary artery. The
plasma component of each sample was isolated by mechanical
separation using a centrifuge, snap frozen in dry ice, and
stored in a freezer at −80 °C until measurements were made.

Data available for patients enrolled in the OxAMI study
include standard medical demographic information (e.g. age,
sex), health and lifestyle indicators (e.g. weight, smoking, dia-
betes, blood pressure), and measured clinical parameters rele-
vant to the presentation and treatment of the STEMI. Table 1
shows the distribution of patients across the various demo-
graphic and health indicators. We note the highly uneven pro-
portions of patients in each category for some parameters,
including gender and body mass index (BMI), a direct conse-

Fig. 1 Summary of the workflow employed in the present study. See text for further details.
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quence of the various well known risk factors for myocardial
infarction (MI).

2.2 Measurement protocol

Frozen blood plasma samples with volumes of between 0.2
and 2 mL, stored at −80 °C in 2 mL micro tubes, were obtained
from the Oxford Heart Centre, John Radcliffe Hospital. Mass
spectra of blood plasma were recorded on an Advion
expression® compact mass spectrometer ASAP-MS instrument,
equipped with Advion Mass Express data acquisition software
and Advion Data Express data manipulation software (both
version 6.9.38.1). The detailed experimental protocol used in
our laboratory for plasma ASAP-MS measurements has been
published previously,43 along with steps that can be taken to
maximise data quality for clinical data sets recorded via
ASAP-MS.44 When following the protocol summarised below,
we typically achieve a coefficient of variance below 40% for
plasma measurements.43

Prior to the measurements, the glass capillaries (Advion ASAP
S01 short) that form the tip of the ASAP probe used to load the
samples into the instrument (see section 2.2) were sterilised by
heating in an oven for 30 minutes at 250 °C, and then stored in a
desiccator. At the start of each day, instrument calibration was
conducted using Advion APCI calibration/tune standard mix. All
subsequent measurements were made with the ion source set to
‘high temperature, low fragmentation’ positive ion mode. Initially,
following calibration, the instrument was operated with an
unloaded probe for 30 min to allow the background signal to
stabilise. For each sample, a clean capillary was loaded into the
ASAP probe and used to record a background measurement for
30 s. The probe was then removed from the mass spectrometer,
and the tip cooled with a small amount of methanol and dried
with lens tissue before loading the sample. Prior to measurement,

each sample was thawed at room temperature and then mixed by
vortex mixer for 15 seconds to obtain a homogeneous sample.
Only a tiny amount of sample is needed for an ASAP-MS measure-
ment; a suitably small amount of sample was transferred to the
probe tip by sampling from the internal surface of the sample
tube just above the level of the plasma surface. The probe was
then inserted into the ASAP-MS instrument and data acquired for
25 s, before the probe was removed, cleaned with methanol, and
wiped dry with lens tissue. The sampling, measurement, and
cleaning steps were repeated four more times using the same
capillary for a total of five measurements per sample. The capil-
lary was then discarded and a fresh capillary inserted for the next
sample. In between measurements, the total ion count was moni-
tored to ensure return to the baseline level before a new sample
was introduced. An example mass spectrum recorded for one of
the OxAMI plasma samples is shown in Fig. 2.

2.3 Data processing

Raw data files were exported for analysis via the Advion Data
Express software and processed using a Python 3.7 script. As
explained above, five sample measurements are made on each
acquisition. However, the mass spectrometer completes a scan
every 900 ms during the entire acquisition period, and the raw
data files contain all of these scans stored in sequence. Some
of these scans correspond to ‘background’ recorded when the
probe was not present in the ion source, and some correspond
to signal recorded during one of the five 30 s intervals when
the probe loaded with sample was inserted into the ion source.
The Python script: (i) identified these regions based on the
rapid rise in the total ion count on each insertion of the probe;
(ii) calculated the average and standard deviation of the mass
spectra recorded over each 30 s sample measurement; and (iii)
binned the mass spectra to unit mass in order to reduce the
file size and remove the need for precise spectral alignment to
be performed. An equivalent background spectrum was gener-
ated using the 30 s background measurement (see section
2.2), and subtracted from each of the five ‘signal’ measure-
ments. The five background-corrected spectra were then nor-
malised to unit area under the spectrum, and averaged to
generate a single mass spectrum for each sample. We note

Table 1 Demographic information for patients enrolled in the OxAMI
study. Columns 2 and 3 give the number of patients in each demo-
graphic group, while column 4 gives the percentage of patients enrolled
in the OxAMI study for which the relevant data are unavailable. Full
details may be found in earlier publications from the OxAMI study40–42

Clinical parameter Group 1 Group 2
%
missing

Patient sex Female,
48

Male,
217

6.36

Previous cardiological history No, 214 Yes, 106 6.36
Current smoker No, 160 Yes, 106 6.01
Ex-smoker No, 117 Yes, 106 29.68
Smoker or ex-smoker No, 78 Yes, 184 7.42
Hypertension No, 154 Yes, 112 6.01
Diabetes No, 226 Yes, 40 6.01
Hypercholesterolemia No, 165 Yes, 100 6.36
Family history of MI No, 157 Yes, 109 6.01
Previous MI No, 249 Yes, 16 6.36
Previous pPCI No, 250 Yes, 15 6.01
Peripheral vascular disease No, 134 Yes, 5 50.88
Chronic obstructive pulmonary
disease or Asthma

No, 125 Yes, 16 50.88

Age over 60 No, 108 Yes, 155 7.07
BMI over 25 No, 64 Yes, 174 15.90

Fig. 2 Example of an ASAP mass spectrum recorded for one of the
OxAMI plasma samples.
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that we have recently carried out a detailed study (to be pub-
lished separately45) in which we used the data set recorded in
the present study to compare a wide variety of different nor-
malisation methods, including quantile, vector, and Pareto
scaling approaches. We concluded that the choice of normali-
sation protocol had only a very small effect on the outcomes of
the data analysis described in the following section, and that
simple area-under-the-curve normalisation is entirely satisfac-
tory in this context.

2.4 Data analysis

As noted above, the data analysis was designed to investigate cor-
relations between the ‘molecular fingerprints’ contained within
the plasma mass spectra, and a number of clinical parameters
of interest,40–42,46,47 as detailed in Table 2. Five standard super-
vised machine learning classification models were chosen in
order to investigate correlations between the plasma mass
spectra and relevant clinical parameters, based on an evaluation
of each algorithm’s robustness, suitability across a range of data
types, and ease of use. The K-nearest neighbours48 (KNN),
support vector machines49 (SVM), and linear discriminant ana-
lysis50 (LDA) algorithms treat the mass spectral data as vectors in
N-dimensional space (with N the number of data points, i.e.
mass bins, in each mass spectrum), and classify mass spectra
into categories either by considering the distances between
vectors, projecting them onto a new set of axes, or finding multi-
dimensional surfaces that separate them into classes. The naïve
Bayes classifier (NBC) algorithm50 is a probabilistic model based
on Bayesian statistics, while the random forest classifier51 (RFC)
model uses decision trees to assign each mass spectrum to the
appropriate class. These classical machine-learning methods
can be considered to be closer to multivariate statistics than to
more sophisticated methods such as deep neural networks, and
are suitable for use with the relatively low numbers of samples
available in the present study.

Further details of the machine learning models can be
found in the SI. All data analysis was conducted using custom
MATLAB R2022a and Python 3.7 software. Machine learning
analysis was run on CPU nodes within the University of Oxford
Advanced Research Computing cluster.

The numbers of patients involved in the OxAMI study, and
therefore the number of samples in the mass spectral data set,
were too low to perform the regression analysis required in
order to predict numerical values for each clinical variable.
Instead, patients were assigned as having ‘high’ or ‘low’ values
for each clinical parameter of interest, based either on
thresholds defined in the literature, or using the median
measured value (see SI for details). The thresholds employed
for each clinical variable are shown in Table 2. Having defined
these thresholds, we were then able to investigate the extent to
which machine learning classification algorithms could assign
patients correctly to each group based on the mass spectra for
their respective plasma samples.

To ensure that the machine learning algorithms use features
of the mass spectra, i.e. mass-to-charge (m/z) peaks, to perform
the classification, rather than ‘learning’ based on the balance of
probabilities, it is important to ensure that the data set used to
train the algorithm contains a similar number of mass spectra
for each group in the classification. As a consequence, the mass
spectra used to train the algorithms were generally a subset of
the total available number of mass spectra. For example, our
data set contained samples from 25 patients diagnosed with
heart failure and 200 with no heart-failure diagnosis, as well as
58 patients for whom this diagnosis was not recorded. When
constructing a classifier to distinguish between ‘heart failure’
and ‘no heart failure’ groups, we should include mass spectra for
samples from 25 patients in each group, rather than using all
200 mass spectra available for the ‘no heart failure’ patients.
This way the algorithms are forced to use features of the mass
spectra to predict heart-failure status, rather than ‘learning’ that
simply guessing ‘no heart failure’ will give a correct result over
85% of the time.

The number of patients per class is shown in Table 2 for
each of the clinical parameters investigated. The available
mass spectra were partitioned into training and test data in an
80 : 20 ratio, with the training data used to train the machine
learning models, and the test data used to evaluate the per-
formance of the models. The specific choice of training and
test data from the overall data set can sometimes result in
rather misleading overperformance or underperformance of a

Table 2 Categories used for the binary classification of mass spectra according to the clinical variables of interest in the OxAMI study. Columns 2
and 3 give the criteria by which patients are assigned to each category. Column 4 gives the number n of patient samples available for each category
(the total number of patients for each clinical variable is 2n). Where relevant, column 5 gives the names of the reduced data sets containing sample
data for patients with extreme values of the corresponding clinical variable

Clinical parameter
‘Low’
(class label 0)

‘High’
(class label 1)

n patients per class for
‘all patients’ models

Data set names for
‘extreme patients’ models

Patient died No Yes 23 N/A
Heart failure diagnosis (HFD) No HFD HFD 25 N/A
Microvascular obstruction(MVO) MVO = 0 MVO > 0 64 MVO-20, MVO-30
Index of microcirculatory resistance (IMR) IMR < 40 IMR > 40 63 IMR-20, IMR-30
Thrombus score (TScore) TScore 1–3 TScore 4–5 45 TScore-20, TScore-30
Ischemic time (ITime) <6 hours >6 hours 46 ITime-20, ITime-30
Peak troponin <50 >50 110 Troponin-20, troponin-30
Creatinine on admission <75 >75 121 Creatinine-20, creatinine-30
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model. To avoid this, a cross-validation procedure was
employed, in which the training and evaluation process was
repeated multiple times with different selections of mass
spectra allocated to the training and test sets on each run (see
SI for further details).

For a clinical parameter that can take continuous values,
setting a somewhat arbitrary threshold between ‘high’ and
‘low’ is unlikely to result in clearly separated groups: while we
expect samples from patients at the extreme ends of the distri-
bution to exhibit significant differences, the same is not true
in the region of the threshold. To explore this, in addition to
the complete mass spectral data set (referred to as ‘all patient
data’ in the remainder of the paper), we also prepared ‘extreme
patient’ data sets. These comprised subsets of mass spectra for
patients with extreme high and low values for each variable. In
the context of this early pilot study, this approach offers the
best chance of identifying mass spectral differences correlating
with the clinical variable of interest. If successful, further
investigation with larger data sets, broader distributions, and
potentially more sophisticated machine-learning approaches
may be warranted. However, if classification is unsuccessful
for ‘extreme’ patient groups, then we should accept that we
have reached a ‘dead end’ and that further investigation is
probably not warranted.

To perform the ‘extreme patient’ analysis, for each variable
we prepared data sets (summarised in the final column of
Table 2) comprising mass spectra for patients with the 20 and
30 highest and lowest values for each clinical variable of inter-
est, yielding data sets containing 40 and 60 mass spectra,
respectively. We note that the smaller data set provides better
separation of the groups, but at the expense of containing
fewer mass spectra for training. The population distributions
for each clinical variable can be found in the SI.

In addition to the ‘all patient’ and ‘extreme patient’ data
sets described above, two modifications were employed to
investigate whether the performance of the machine learning
models could be improved any further. In the first, we
included clinically relevant demographic details that would be
known at the point of treatment (the continuous parameters
age, weight, height, body mass index (BMI), and body surface
area (BSA), and categorical parameters of present/past
smoking status, and presence of hypertension, diabetes, or
previous cardiological history) in the training data set. Only
patients for which a complete set of these parameters was
available were included in this analysis, which reduced the
data set sizes somewhat further. We chose not to include
patient sex as a parameter when constructing the ‘extreme
patient’ data sets due to the low number of female patients
enrolled in the OxAMI study. The range for each continous
clinical parameter was rescaled to the median intensity of the
mass spectra before integration into the data set in order to
avoid demographic parameters from dominating the machine
learning process.

Finally, we employed feature reduction methods52,53 to con-
struct data sets comprising a smaller number of m/z peaks.
The feature reduction process identifies mass spectral peaks

that correlate significantly with the clinical variables of inter-
est. By training the machine learning algorithms using only
these ‘most significant’ m/z peaks, we can potentially focus the
machine learning process on the most relevant parts of the
molecular fingerprints. The feature reduction process also
reveals potential mass spectrometric biomarkers for clinical
parameters of interest. Feature reduction was conducted on
the training data within each 80 : 20 data partition prior to
machine learning analysis. Three different approaches to
feature reduction were explored:

(1) Statistical tests: the correlation coefficent between each
peak and the clinical variable of interest was calculated. A
parametric Pearson correlation coefficient test was used, as
98.9% of mass peaks were determined to be normally distribu-
ted by the Sharpio-Wilkes test with P < 0.05. Significant peaks
(with P < 0.05) within the training data were then used as the
input features, as opposed to the 990 m/z peaks used initially.

(2). Analysis of overlap integrals for m/z peak intensity distri-
butions: for each clinical parameter, the normalised intensity
distributions for each m/z peak were determined for the mass
spectra assigned to the two defined patient groups. This yields
two intensity distributions per m/z peak, corresponding to the
‘low’/‘high’ or ‘yes’/‘no’ patient groups for that parameter. If
one calculates the overlap integral between these two intensity
distributions, m/z for which there is little or no intensity vari-
ation between the two groups will return an integral close to
one, and are likely to contain little information on the clinical
parameter of interest, while those for which there is a signifi-
cant intensity difference will return a significantly lower value,
and are more likely to correlate with the clinical parameter
under study. In this method of feature selection, the 40 peaks
with the smallest overlap integrals were used to generate train-
ing data sets for the machine learning models.

(3) Machine-learning-based feature ranking: feature ranking
analysis was conducted using the χ2 classification feature
ranking method.54 The 40 features that were determined to
have the highest ‘importance’ were used to generate training
sets for the machine learning models.

The ability of each model to predict patient categories accu-
rately was assessed though comparison of the % accuracy,

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

� 100% ð1Þ

and Cohen’s kappa score (κ score).55

κ ¼ 2� ðTP� TN� FN� FPÞ
ðTPþ FPÞ � ðFPþ TNÞ þ ðTPþ FNÞ � ðFNþ TNÞ ð2Þ

where TP, TN, FP, and FN are the number of true positives,
true negatives, false positives, and false negatives, predicted by
the model, respectively. The κ score varies between −1 and 1,
and is interpreted in this study using the ‘levels of agreement’
as defined by McHugh and reproduced in Table 3.55 The mean
and standard deviation of the values for the accuracy and κ

score obtained across 200 partitionings of the data into test
and training sets are reported. The values of κ that should be
considered statistically sigificant (p < 0.05) depend on the
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number of samples.56,57 As a consequence, for small data
sets, such as that used in the heart-failure analysis, and the
‘extreme patient’ data sets with n = 20 and n = 30, only scores
of κ ≥ 0.6 and κ ≥ 0.5, respectively, are considered statistically
significant.

3 Results and discussion
3.1 Prediction of clinical parameters

Tables 4 and 5 show the highest κ scores obtained for predic-
tion of each of the clinical parameters (patient mortality, heart
failure diagnosis, ischemic time, thrombus score, MVO, IMR,
and troponin and creatinine levels) by the various trained
machine learning models described in section 2.4. Table 4
shows the results for models trained on mass spectra from all
available patients, while Table 5 shows results for models
trained using mass spectra only for patients with the 20 or
30 highest and lowest values for each clinical variable. Full
results tables for each model can be found in the SI.

Before considering the results for each clinical parameter,
we can make some general observations.

(1) For a given clinical parameter, the κ score, and therefore
predictive power of the model, is reasonably consistent across
all machine learning methods and feature reduction methods
explored.

(2) Interestingly, reducing the data set so that only patients
with the 20 or 30 highest and lowest values for the clinical
parameter of interest were included led to a significant
improvement in performance for prediction of MVO, creati-
nine, and troponin, but worse performance for prediction of
IMR, ischemic time, and thrombus score.

(3) When comparing the performance of different feature
reduction methods, we note that in the models trained on all
patient data, the highest scores were isolated to data sets for
which no feature reduction had been performed (for patient
mortality, heart failure diagnosis, thrombus score, and creati-
nine), or for which feature reduction had been achieved via stat-
istical analysis (for ischemic time, MVO, IMR, and troponin).

(4) Inclusion of clinical and demographic parameters within
the training data did not improve the results in most cases.

(5) The uncertainties returned from the models were found
to be largest in the prediction of patient mortality and heart
failure diagnosis, consistent with the very small available data
sets for these parameters. While κ scores for these analyses
were statistically significant (κ > 0.6) in many cases, further
studies with a larger number of samples are certainly required.

The best results achieved for each clinical variable across all
models explored are summarised in Table 6. Despite the small
data set, the most successful prediction was achieved for
patient mortality (85% accuracy, κ 0.71), with classification of
‘high’ and ‘low’ MVO in extreme patient groups also predicted
with a high accuracy of 83%, κ 0.66. Accuracies ranging from
70–80% were achieved for the remaining clinical parameters
under investigation. The most successful machine learning
models out of the five considered were LDA and SVM, which
between them accounted for all of the best-performing
models. LDA tends to perform well when the two classes are
well represented by normal distributions, while SVM can cope
more easily with outliers. Both models deal better with noisy
and high-dimensionality data sets than the KNN and NBC
models.

Table 3 Interpretation of κ score in terms of levels of agreement,
adapted from55

κ value Level of agreement Estimated equivalent % accuracy

<0.2 None <60%
0.2–0.4 Weak 60–70%
0.4–0.6 Fair 70–80%
0.6–0.8 Moderate 80–90%
0.8–0.9 Strong 90–95%
>0.9 Very strong >95%

Table 4 The highest κ scores achieved across all machine learning models when training the models on the complete set of patient data for each
of the clinical variables of interest. The first three rows of the table define the training model setup (data set, clinical variables included or not
included in the training input, and feature reduction method used), and the remaining rows report κ scores and their associated uncertainties for pre-
dictions of each clinical parameter. The highest score obtained for each variable is highlighted in green
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The high accuracies achieved for prediction of patient mor-
tality and heart failure diagnosis after treatment for STEMI
come with the caveat that since the number of patients avail-
able for the analysis was small (n = 46 and 50, with 23 and 25
patients per class, respectively), the accuracy may be somewhat
exaggerated due to over-fitting. However, given the clinical
importance of these predictions – the ability to identify
patients at risk of fatality or serious complications post-STEMI
at the point of presentation may enable such patients to be tar-
geted with more aggressive treatments earlier on in the treat-
ment pathway, potentially saving or prolonging life – further
exploration is certainly warranted should samples become
available.

Microvascular obstruction (MVO) is a known complication
of pPCI in which the myocardial microcirculation remains
obstructed despite reestablishment of blood flow through the
affected coronary artery.58 In the OxAMI study, the extent of
MVO is measured via a cardiac MRI scan at two days and six
months after the STEMI. The majority of patients are
measured to have either zero or very low MVO, reflecting suc-

cessful treatment, and only a relatively small number have
high values, reflecting a poor cardiac outcome. Given the
threshold of zero for distinguishing between the ‘high MVO’
and ‘low MVO’ patient groups, and the fact that the patient
distribution is highly skewed towards very low, near-zero, MVO
values (see Fig. 1 of the SI), it is perhaps not surprising that
machine learning models trained on the ‘all patient’ (n = 128)
data were unable to assign patients correctly to these groups,
even when feature reduction methods were employed.
However, a drastic improvement was found when the models
were trained on the ‘extreme patients’ data. A κ score of 0.66
and an accuracy of 83% was achieved with the smallest patient
selection of n = 20 per class, reducing to κ = 0.24 and an accu-
racy of 62% in the larger n = 30 ‘extreme patients’ data set.
These results imply that the machine learning models are
capable of identifying patients at most risk of poor outcomes,
opening up potential avenues for future investigation.

The index of microcirculatory resistance (IMR), measured
via an invasive procedure while the patient is still catheterised,
provides an assessment of cardiac microvascular function

Table 5 As for Table 4, but for models trained on the ‘extreme patients’ data sets. The data set used in each case, named according to the relevant
clinical variable (see Table 2) is listed in column 1

Table 6 The best results obtained for each categorical clinical variable, and the training data structure (data set, feature reduction method, and
presence or absence of clinical and demographic input variables) required to achieve that result. Variables predicted with over 80% accuracy are
highlighted green, variables predicted with over 70% accuracy are highlighted yellow
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immediately post pPCI. IMR is often used as a marker for
MVO, with values higher than 40 known to be associated with
an adverse clinical outcome. However, in around a third of
cases the two parameters can be surprisingly dicordant,59

perhaps due to resolution of reversible symptoms associated
with edema relatively early on in the course of the patient’s
recovery.60 Given the success of our machine learning
approach at identifying patients with high MVO, it is perhaps
surprising that there was very little success in predicting IMR.
Using the ‘all patients’ data set (n = 126), the trained models
all performed equally poorly, achieving no-to-low agreement,
with only a slight improvement to a best accuracy of 67% (κ =
0.346, low agreement) when feature selection was
implemented. When using the ‘extreme patients’ data the per-
formance of the different models was more varied, with the
best result (70% accuracy, κ = 0.40) obtained for the SVM
model trained on the IMR-30 data set with overlap integral
feature selection.

Ischemic time was predicted with low accuracy using the
‘all patients’ (n = 92) data set, improving to fair agreement
(77% accuracy, κ = 0.54) when feature selection was
implemented. Limiting the data set to ‘extreme value’ patients
led to a drastic reduction in predictive power to no better than
a random guess, implying that a larger data set is beneficial
when characterising this parameter. Since ischemic time is
often relatively subjective, and usually known at the time of
patient admission, the ability to ‘predict’ this quantity is prob-
ably not useful in developing diagnostic or prognostic indi-
cators for heart health following STEMI. However, our results
do show that there are detectable metabolic changes in
plasma that correlate with ischemic time, which with further
investigation may be beneficial in understanding physiological
changes associated with coronary artery occlusion.

Thrombus score (TScore) or thrombus burden is measured
during pPCI by passage of a flow guide wire, and measures the
extent of occlusion to the culprit coronary artery. It is defined
on a scale from 0 to 5 in terms of partial/total radial blockage
of the artery and extent of the blockage along the vessel
length.13,61,62 The performance of the machine learning
models in relation to TScore was very similar to that for
ischemic time, showing fair (77%) agreement (κ = 0.54) when
trained on the ‘all patients’ data, and no predictive power
when trained only on the ‘extreme patients’ data. The ability to
predict thrombus score implies that thrombus size has a mea-
surable effect on the metabolic profile of the patient that
could potentially prove useful in making clinical decisions.

The final two clinical parameters, peak troponin and creati-
nine levels, are somewhat different from the other parameters
in that they relate to concentrations of specific identifiable
chemical species. Both are biomarkers for STEMI, with tropo-
nin being the more sensitive and specific, and therefore more
widely used in clinical practice.

Despite the fact that creatinine is a small molecule lying
within the m/z range of our mass spectrometer, none of the
machine learning models performed particularly well in classi-
fying patients to ‘high’ or ‘low’ groups. No model performed

significantly better than a random guess when presented with
the data set for all 242 patient samples, and only ‘low’ predic-
tive accuracy was obtained when the data set was limited to
the 20 patients with the highest and lowest values for creati-
nine. The best performance was found when feature reduction
was employed and demographic variables were included,
using the SVM model, but this only resulted in a κ score of
0.44 and an accuracy of 72%. Creatinine will be discussed
further in section 3.2 when considering the m/z peaks of inter-
est revealed through the feature reduction process.

Troponin is a protein with a molecular mass outside of the
range of our mass spectrometer; hence plasma troponin
cannot be measured directly in the present study, but we may
expect to be sensitive to changes in the plasma metabolome
resulting from alterations in biological pathways involving tro-
ponin. Using the ‘all patients’ (n = 220) data set the best result
was an accuracy of 66% (κ = 0.319), with similar results across
all machine learning models trained on the feature-selected
data. Using the data set comprising the patients with the
20 highest and lowest troponin values improved the accuracy
to 78% and κ to 0.58, with the best results for the SVM model.
Performance was fairly consistent across all models apart from
RFC, which performed poorly in all cases.

3.2 Identification of potential biomarkers by feature
reduction

Interrogating the results of the various feature reduction
methods allows us to identify which m/z peaks are most impor-
tant in distinguishing between the patient groups of interest.
There was generally found to be some overlap between the
peaks identified by the three different feature reduction
methods, but there were also substantial differences. In a first
attempt to identify potential mass spectrometric biomarkers
associated with each clinical variable, we applied the (admit-
tedly somewhat arbitrary) criterion that qualifying m/z peaks
should be identified in more than 75% of the data training
partitions for all three feature reduction methods employed.
Table 7 shows the results of this analysis, which returned
between one and six m/z peaks of interest for each clinical vari-
able. Fig. 3 shows the intensity distributions for these peaks
within the different patient groups associated with each clini-
cal parameter, in the form of box and whisker plots. The t stat-

Table 7 The m/z ion peaks identified as being important for classifi-
cation of patients according to each clinical parameter by all three of
the feature reduction methods employed

Clinical
variable

m/z peaks (all
patients)

m/z peaks (extreme patient
groups)

Mortality 129, 169, 156, 197 NA
HFD 208, 219, 532, 189 NA
MVO None 355, 387, 531, 532, 533
IMR 45, 46 538
TScore 45, 46 115
ITime 45, 46, 387 None
Troponin 45, 46, 370, 371 45, 46, 49, 576
Creatinine 114 62, 114
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istic and p score determined for each m/z peak can be found in
Table 20 of the SI.

The present study is focused on a pattern recognition
approach, and the resolution of our ASAP-MS instrument is
not high enough for us to provide a definitive identification of
the molecules giving rise to these peaks. While metabolite
databases such as the Human Metabolome Database
(HMDB)63,64 can identify some potential candidates, more
sophisticated methods such as LC-MS will be needed in order
to progress work on identifying molecules of interest.
However, with this caveat in place, there are a few masses
worth commenting on.

The pair of m/z values 45 and 46 were found to be impor-
tant for four of the clinical parameters – ischemic time, IMR,
thrombus score, and troponin – always as a pair. The ASAP-MS
instrument tends to generate protonated positive ions, so
assuming a protonated parent ion, potential molecular candi-
dates are CO2 (carbon dioxide), C2H4O (acetaldehyde), and
C2H7N (dimethylamine or ethylamine). All of these molecules
are common metabolites relevant to numerous anabolic and
catabolic pathways that are relevant in many disease states.
Alternatively, the m/z 45 and 46 peaks may be fragment ions
generated from larger metabolites.

Two peaks were found to be important for successful classi-
fication of creatinine, one of which was at m/z 114. As creati-
nine has a molecular mass of 113.12 g mol−1, it is highly likely
that this peak corresponds to the protonated parent ion.

However, the accuracy with which creatinine is predicted from
the mass spectra is low, and the intensity of this peak shows
no correlation with the clinically reported value for creatinine.
There are a number of possible reasons for this discrepancy.
The peak creatinine level measured in the clinic is recorded at
a different time from the plasma sample collected from the
coronary artery during pPCI. The rate of creatinine excretion
via the kidneys differs significantly between patients,65,66

leading to considerable inter-patient variability in the corre-
lation between the two creatinine levels. It is also possible that
blood plasma that has been stagnating in the region occluded
by the coronary thrombus is not representative of the systemic
blood creatinine levels. Finally, mass spectrometric analysis is
only semi-quantitative, in comparison with the highly quanti-
tative clinical measurement of creatinine.67,68

Table 8 shows the results of training the machine learning
models using only the very small number of mass peaks
identified in Table 7, compared against the best results
obtained using all m/z peaks. We see that for the most part the
accuracies are similar in the two analyses, implying that the
peaks found by the feature reduction algorithms account for
much of the variation between the patient groups of interest.
For creatinine, HFD, troponin, and IMR, the κ scores obtained
using the feature-selected m/z peaks were slightly higher than
those obtained using all peaks, while for mortality, thrombus
score, ischemic time, and MVO the κ score was lower, though
still in the ‘fair agreement’ range. The fact that a very small

Fig. 3 Box and whisker plots showing the distribution of normalised peak intensities within the ‘all patients’ data set (except for MVO, which used
the MVO-20 data set) for m/z peaks identified by the feature reduction analysis as being of interest for each patient group and clinical parameter
investigated: (a) patient mortality; (b) heart failure diagnosis (inset shows the same data on a magnified scale); (c) MVO (MVO-20 data set); (d) IMR;
(e) thrombus score; (f ) ischemic time; (g) troponin; (h) creatinine. In each plot, the central line represents the data median, with the inner box repre-
senting the inter-quartile range between the first and third quartiles. The whiskers extend from the box to the farthest data point lying within 1.5 ×
the inter-quartile range from the box. Significance was measured by an independent t-test.
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number of m/z peaks seem to be of high importance when
classifying patients is a positive outcome for any future clinical
applications, since focusing on quantification of a small
number of molecules is likely to improve the efficiency of any
analysis considerably.

4 Conclusions and outlook

We have presented results from a proof-of-concept investi-
gation into the use of a combined ASAP-MS and machine
learning analysis of blood plasma for the prediction of clini-
cally relevant pathologies and outcomes for patients participat-
ing in the OxAMI study into ST-segment elevation myocardial
infarction.

Prediction of the nine clinical variables was completed
through analysis of ASAP-MS measurements of coronary aspi-
rate plasma, with patient mortality and MVO predicted with
over 80% accuracy; HFD, ITime, peak troponin and TScore pre-
dicted with over 76% accuracy; and creatinine and IMR pre-
dicted with over 70% accuracy. Feature reduction methods
were applied to try to improve the speed and accuracy of the
models used, but no single method was found to give large
improvements to model accuracy. It was found that the ana-
lysis set-up requirements were specific to the variable being
analysed. Using the feature reduction methods, peaks found to
be important for classification were identified. The bio-
molecules responsible for these peaks will be investigated in
further studies, with the aim of learning more about the path-
ology of STEMI patients and potentially developing clinical
tools for identifying high risk STEMI patients.

The patient numbers used in this analysis were low, which
may contribute to both over fitting by machine learning
models, or reduced accuracy due to sample representation.
Ideally, this study will now be repeated with larger patient
numbers, potentially from a number of studies similar in set-
up to the OxAMI study. Analysis of coronary aspirate plasma
was completed in this early investigation as this resource was
not deemed to be as valuable to the biological database as
other samples. As discussed previously, coronary aspirate
blood has been in some cases sat stagnant in the occluded cor-

onary artery for unknown periods of time, and will be contami-
nated to differing degrees with saline solution and medication
administered to aid the PPCI procedure. The reproducibility in
terms of composition, consistency, and representation of the
patient for coronary aspirate blood is likely to be low compared
to plasma samples taken from a standard blood draw. This
increased variation will have a large impact on the results
obtained using ASAP-MS. The authors have found in other
work that conducting ASAP-MS on venous blood plasma is
noticeably more reproducible within a similar dataset (results
to be published). The results of this study have determined
that this method can achieve impressive positive results that
may help to develop new clinical tools for the assessment of
patient risk. The analysis will now be repeated on a range of
biological samples that are likely more consistent that coron-
ary aspirate samples, such as venous blood samples and coron-
ary sinus plasma.
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Abbreviations

ASAP-MS Atmospheric solids analysis probe mass
spectrometry

BMI Body mass index
CPU Central processing unit
HFD Heart failure diagnosis
IMR Index of microcirculatory resistance
ITime Ischemic time
KNN K nearest neighbours

Table 8 The κ scores obtained when the machine learning models
were trained using only the m/z peaks found to be important for classifi-
cation (see Table 7) compared against the best result found using all m/z
peaks. Changes in κ score of less than or greater than 0.05 are high-
lighted in red and green respectively
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LDA Linear discriminant analysis
MI Myocardial infarction
MVO Microvascular obstruction
NBC Naïve Bayes classifier
NSTEMI Non-ST-segment-elevation myocardial infarction
OxAMI Oxford acute myocardial infarction study
pPCI Primary percutaneous coronary intervention
RFC Random forest classifier
STEMI ST-segment-elevation myocardial infarction
SVM Support vector machines
TScore Thrombus score

Data availability

Further data are available in the Supplementary Information
(SI). This contains patient population distributions in relation
to the clinical parameters of interest, further information
about the machine learning methods employed in the data
analysis, data tables summarising the full set of machine-
learning outcomes, summaries of the best performing
methods for each analysis, and a list of m/z peaks identified
using feature reduction methods. The Supplementary infor-
mation is available at DOI: https://doi.org/10.1039/d5an00565e.

Any data not included in the SI are available on request
from the corresponding author.
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