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HIST-DIP: histogram thresholding and deep image
priors assisted smartphone-based fluorescence
microscopy imaging†
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Portable fluorescence microscopes coupled with smartphones offer accessible and cost-effective point-

of-care diagnostic solutions, but often produce noisy and blurry images with poor contrast. Here, we

introduce HIST-DIP (HIStogram Thresholding and Deep Image Prior), an unsupervised framework for flu-

orescence microscopy image restoration. Histogram thresholding isolates fluorescence signals by remov-

ing background noise, while DIP refines structural details and enhances resolution without large labeled

datasets. Validation results show substantial quality gains including the average Peak Signal-to-Noise

Ratio (PSNR) improved from 15.59 dB to 27.10 dB, and the Structural Similarity Index Measure (SSIM) rose

from 0.035 to 0.82. Contrast-to-noise ratio (CNR) and signal difference-to-noise ratio (SDNR) also

increased significantly, indicating sharper bead outlines and reduced background interference. Unlike

conventional deep learning methods, HIST-DIP needs no external training data, making it well-suited for

real-time, low-cost, and point-of-care diagnostic imaging. These findings highlight the potential of

HIST-DIP in enhancing the quality of smartphone-based microscopy images, while also motivating future

research towards optimizing the methods for real-time on-device computations.

1. Introduction

The field of point-of-care testing (POCT) has evolved signifi-
cantly over the past decade, driven by its affordability, rapid
diagnostic capabilities, high sensitivity, and specificity. These
systems enable non-experts to monitor health conditions
without requiring bulky laboratory equipment or specialized
technical skills, making them particularly valuable in
resource-limited settings. Their importance was underscored
during the COVID-19 pandemic, where the surge in demand
for decentralized diagnostics highlighted the need for accessi-
ble, reliable, and efficient testing solutions. By reducing
reliance on centralized laboratories, POCT minimizes delays,
lowers the risk of misdiagnosis, and enhances clinical out-
comes, ultimately strengthening healthcare resilience in times
of crisis.1–3 Among various POCT modalities, smartphone-
based diagnostics have attracted particular attention because
of the global proliferation of smartphones, their built-in high-
resolution complementary metal–oxide–semiconductor
(CMOS) cameras and their capacity for wireless data transfer
and on-device analytics.4–6

Within this domain, smartphone-based fluorescence micro-
scopes (SBFMs)7 have emerged as vital tools for diverse appli-
cations spanning microbiology, pathology, and environmental
monitoring. Their compact design and reduced cost facilitate
decentralized diagnostics, enabling clinicians and researchers
to conduct tests in resource-limited regions. However, the
broader adoption of SBFMs is hampered by fundamental
image quality challenges–motion blur, poor focus, low resolu-
tion, and color inconsistencies–stemming from the optical
constraints of smartphone cameras, variations in illumination,
sensor spectral responses, and disparate post-processing
pipelines.8,9 These hardware and software limitations can sub-
stantially undermine diagnostic accuracy, necessitating robust
computational strategies to enhance image clarity and
consistency.

Traditional laboratory-grade microscopes circumvent these
obstacles through sophisticated optical components and
advanced image-processing algorithms, but such solutions are
impractical for mobile microscopy due to cost, portability, and
real-time usability requirements. While deep learning has
unlocked powerful image enhancement methods–ranging
from denoising and deblurring to super-resolution10,11–

these approaches typically rely on large-scale, labeled training
datasets that are often unavailable for smartphone-based
systems. The Deep Image Prior (DIP) framework12 offers a
compelling alternative by exploiting the inherent structure of
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convolutional neural networks (CNNs) to restore degraded
images without explicit external training data. Despite its
promise, DIP remains underexplored for mobile microscopy,
where constraints on hardware, illumination consistency, and
color fidelity introduce unique obstacles.

Despite noteworthy progress in fluorescence microscopy
image restoration, current methods still face significant
obstacles, especially for smartphone-based applications.
Classical approaches, including Gaussian filtering and aniso-
tropic diffusion,13 while straightforward, often oversmooth
images and obscure subtle biomarker details.14 Non-local
means (NLM) and BM3D can better preserve structural fea-
tures but demand high computational resources and often
underperform in low-SNR contexts.15 Wavelet-based denoising
(e.g., soft-thresholding) effectively retains fine structures, but
its reliance on precise parameter tuning reduces adaptability.16

Meanwhile, background subtraction methods—digital subtrac-
tion or adaptive thresholding—may inadvertently eliminate
faint yet important fluorescence signals.17,18

Deep learning-based methods offer state-of-the-art denois-
ing but typically require large, high-quality datasets, which is a
challenge at the point of care. For instance, Content-Aware
Image Restoration (CARE),19 Noise2Noise (N2N),20 and
Noise2Void (N2V)21 excel under controlled training environ-
ments, yet annotated data are rarely available in resource-
limited settings(see ESI section S2† for a detailed comparison
with CARE, N2N, N2V and other methods). By contrast, Deep
Image Prior (DIP)12 circumvents the need for large datasets
but is prone to overfitting if optimization runs too long.
Moreover, many existing pipelines do not fully account for the
varied noise distributions observed in fluorescence
microscopy.18

To address these limitations, we propose HIST-DIP, which
fuses histogram thresholding with DIP-based super-resolution.
This adaptive thresholding step attenuates background noise
prior to iterative refinement, mitigating overfitting and improv-
ing contrast without the need for labeled data.20 By leveraging
CNN structural priors and computationally efficient preproces-
sing, HIST-DIP demonstrates improved performance in SNR,
PSNR, and contrast-to-noise ratio (CNR),15,16 while preserving
crucial biological structures.17,18 Consequently, HIST-DIP con-
stitutes a robust, economical platform for smartphone-based
fluorescence imaging, enabling accurate point-of-care diagnos-
tic evaluations even in environments lacking advanced
microscopy resources.

2. Materials and methods
2.1. Deep image prior for super-resolution

Deep Image Prior (DIP)12 posits that the convolutional archi-
tecture of a randomly initialized neural network can itself
serve as a powerful image prior, even in the absence of external
training data. Originally introduced for tasks such as inpaint-
ing and denoising, DIP has also been successfully applied to
super-resolution.12,22,23 In super-resolution, the objective is to

learn a mapping that transforms a low-resolution (LR) image,
denoted by x0 R3×H×W, into a high-resolution (HR) image x
R3×tH×tW by an upsampling factor t. This transformation is
modeled by the following data-fidelity term:

Eðx; x0Þ ¼k dðxÞ � x0 k2 ð1Þ
where d(·) is a known downsampling operator that reduces the
dimensionality of x by the factor t. The challenge in super-
resolution arises because many plausible HR images could
yield the same LR observation x0, rendering the problem
severely ill-posed.

2.1.1. DIP formulation. To regularize this inverse problem,
DIP reparametrizes the sought image x as

x ¼ f θðzÞ ð2Þ
where z is a random (often Gaussian) input tensor, and fθ is a
deep convolutional network with parameters θ. The network is
then optimized to minimize energy in (1) with respect to θ:

θ* ¼ argmin
θ

d fθðzÞð Þ � x0k k2 ð3Þ

Due to the expressivity of deep networks, an unconstrained
minimization can overfit noise or aliases in super-resolution
tasks. As a remedy, various strategies have emerged, including
early stopping,12 additive noise regularization,23 and stochastic
gradient-based methods.24

2.1.2. Extensions of DIP. While DIP has demonstrated
remarkable flexibility, it often requires additional techniques to
maintain robustness: DIP-SURE25 employs Stein’s Unbiased Risk
Estimator to avoid access to ground-truth images; it mitigates
overfitting by estimating the risk of reconstruction directly from
noisy observations. DeepRED26 combines DIP with Regularization
by Denoising (RED), leveraging an external denoiser as a plug-
and-play prior to constrain the solution space. DIP-TV27 intro-
duces a total-variation-based regularization term alongside DIP to
better preserve edges and reduce artifacts. Self2Self28 merges
dropout and ensembling to improve DIP-like self-supervised
denoising for a single image, illustrating that uncertainty model-
ing can further stabilize DIP in ill-posed settings.

In this work, we adopt the DIP concept to enhance super-
resolution for smartphone-based fluorescence microscopy
images. By treating the downsampled microscope images as x0
and iteratively refining fθ(z), we aim to recover a higher resolu-
tion approximation x. To address overfitting to microscope
noise, we incorporate early stopping and additive regulariz-
ation approaches inspired by DIP-SURE and DIP-TV. Section
2.3 details the overall pipeline and specific loss functions
employed to stabilize training and improve the quality of
super-resolved fluorescence images.

2.2. Histogram-based image masking and contrast
refinement

Following insights from classical image contrast enhancement
and unsharp masking techniques,29 we integrate a histogram-
driven mask to focus on salient fluorescence signals while sup-
pressing noisy background pixels. This approach not only sep-
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arates true fluorescence from noise but also avoids common
pitfalls of direct histogram equalization (HE), such as over- or
under-enhancement of crucial image regions.30

2.2.1. Histogram computation. Given a grayscale fluo-
rescence image I, we first compute its histogram H(k) (eqn (4)):

HðkÞ ¼
XM
i¼1

XN
j¼1

1ðIði; jÞ ¼ kÞ ð4Þ

where 1(·) is the indicator function (outputting 1 if true, 0
otherwise), and k 0, 1, … L − 1 denotes an intensity bin in an
L-level image (e.g., L = 256 for 8-bit depth).

2.2.2. Threshold selection and mask generation. To isolate
the fluorescence signal from noise, a manually set threshold T
is chosen by inspecting the histogram’s tail region where back-
ground intensity values accumulate.29,30 Pixels above this
threshold are deemed noise and set to zero, while pixels below
or equal to T retain their original intensities. For each pixel (i,
j ), binary mask can be given as,

Mði; jÞ ¼ 1; Iði; jÞ � T
0; Iði; jÞ > T

;

�
ð5Þ

We then do element-wise multiplication of the binary mask
M(i, j ) with the original low-resolution fluorescence
microscopy image ILR(i, j ). This mask, defined through adap-
tive histogram thresholding, assigns a value of 1 to pixels
corresponding to significant fluorescence signals and 0 to
background pixels. Multiplying this mask element-wise with
the original image yields the masked target image Itarget(i, j ):

Itargetði; jÞ ¼ ILR ði; jÞ �Mði; jÞ ð6Þ

This masked image, Itarget, subsequently serves as the refer-
ence for training the Deep Image Prior (DIP) network, enabling
effective denoising and enhancement of structural details
without external labeled data. Fig. 1 demonstrates the histo-
gram thresholding applied to a fluorescence microscopy image
(left). The histogram (center) shows a tail region (red box)

corresponding to noise-like intensities. A chosen threshold of
143 (green arrow) segments the significant signal from noise,
yielding the binary mask (right).

2.2.2.1. Why manual thresholding?. Although various auto-
mated thresholding algorithms exist (e.g., Otsu’s method,31 or
more advanced techniques surveyed in ref. 32), heavily blurred
images and the absence of gold-standard reference images
complicate their application in our study. Because we collect
beads of different sizes and intensities for biomarker quantifi-
cation, a universal automated threshold often fails to robustly
isolate critical fluorescence signals. By manually inspecting
each image histogram, we can adaptively suppress background
noise while preserving essential biomarker information.
Furthermore, once the model parameters are learned on train-
ing data, applying HIST-DIP to unseen images does not
require re-tuning the threshold, since the DIP component can
accommodate local intensity variations.

2.2.3. Contrast and brightness considerations. Although
histogram-based thresholding effectively eliminates large por-
tions of noise, naive HE on the masked image can cause over-
amplification of the remaining intensities, leading to “overen-
hancement” artifacts.29 In classical image processing, unsharp
masking is often introduced before or after histogram operations
to moderate excessive contrast changes.29 In our scenario, apply-
ing thresholding first allows the network to focus on salient
structures while avoiding strong amplification of empty
(masked-out) regions. This workflow mitigates brightness shifts
and artifacts observed in more conventional HE-based methods.

2.2.4. DIP integration. Next, we feed the masked target
image from 6 as the target tensor for our DIP-based reconstruc-
tion, as depicted in Fig. 2. The DIP network then iteratively
refines an estimate of the denoised image by minimizing the
pixel-wise mean squared error:

‘MSE ¼k f θðzÞ � Itarget k2 : ð7Þ
Here, θ denotes the DIP network parameters, and z is a

fixed random tensor serving as input to the network.12 By

Fig. 1 Histogram-based thresholding for fluorescence signal segmentation. Left: Raw grayscale fluorescence microscopy image. Second from Left:
Intensity histogram illustrating the distribution of pixel values, with a selected threshold (green arrow) separating meaningful signals from back-
ground noise (red box). Middle: Binary mask generated using the threshold, isolating the prominent fluorescent beads. Second from Right: Overlay
of the binary mask on the original image, highlighting segmented fluorescence bead regions. Right: Extracted fluorescence bead, enhancing bio-
marker visualization for further analysis. This adaptive thresholding approach refines segmentation accuracy by suppressing background noise while
preserving biologically relevant fluorescence signals. (Scale bar = 100 μm applies to all the images in the row.).
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training against a masked target, the DIP naturally learns to
prioritize relevant fluorescence signals and ignore predomi-
nantly noisy or saturated regions. The final output is thus a
denoised image with improved contrast and reduced back-
ground interference. In summary, applying a histogram-based
threshold to remove outlier intensities, then feeding the
masked data into a DIP network, yields a robust framework for
fluorescence microscopy image denoising. This hybrid solu-
tion takes advantage of classical contrast enhancement
insights29 while leveraging the powerful inductive bias of DIP
to focus on relevant signals, reduce background noise, and
minimize over-enhancement or brightness drift.

2.3. Training and validation

A central challenge in this work is to establish a suitable refer-
ence for training without relying on traditional ground truth
images. We address this by leveraging the histogram-thre-
sholded mask described in section 2.2. Specifically, each pixel
in the raw low-resolution (LR) image is multiplied by a binary
mask that selects high-intensity fluorescence signals while
suppressing background noise. Formally:

Itarget ði; jÞ ¼ ILR ði; jÞ �Mask ði; jÞ ð8Þ
where Mask(i, j ) {0, 1} is derived via histogram thresholding.
The resulting “masked image” effectively isolates regions of
interest (fluorescent beads), thereby reducing the risk of
super-resolving or amplifying noisy background pixels.

The shaky image shown in Fig. 1 (“Compressed Noisy
Image”) serves as the initial input to our Deep Image Prior
(DIP) model. Typically produced by our 3D-printed smart-
phone microscope, these images exhibit significant motion
blur that obscures key biomarker details. We then train the

DIP model for 2000 iterations using the Adam optimizer with α

= 0.001 (see ESI Fig. S2† for PSNR and loss curves validating
these training choices). During early iterations, the network
rapidly smooths out coarse artifacts and high-frequency noise
in the LR image. As training progresses, the DIP architecture
adapts to local texture cues, refining the fluorescent bead
boundaries and enhancing contrast. Empirically, 2000 iterations
adequately balance image sharpness with noise reduction, miti-
gating overfitting issues often observed when DIP is run for too
many epochs23 (ESI Fig. S2† illustrates the PSNR/loss trends and
early-stopping experiments). We evaluate reconstruction fidelity
in two main ways. First, the Peak Signal-to-Noise Ratio (PSNR) is
tracked against Itarget (the masked LR image), providing a quan-
tifiable sense of how closely the network output aligns with the
intended fluorescence regions. Second, we track the MSE loss
curve to monitor convergence behavior.

Both curves are plotted in Fig. 3(a), illustrating that the DIP-
based method steadily improves reconstruction fidelity over
iterations. Fig. 2 summarizes the overall pipeline. Beginning
with the “Compressed Noisy Image”, we apply histogram
thresholding to create a binary mask, yielding Itarget. DIP then
takes a fixed random tensor z as input at each iteration, produ-
cing successively refined outputs as θ is optimized (7). Since
no conventional ground truth is available, the mask-based
target serves as a practical reference, ensuring that critical
structures (fluorescent beads) are preserved and extraneous
backgrounds remain suppressed.

2.4. Experimental evaluation

To validate our proposed method, we conducted experiments
using images captured from a 3D-printed smartphone-based
microscope,7 specially designed for the detection of fluo-
rescent beads ranging from 1 μm to 8 μm (see ESI Fig S1†).
These beads act as proxies for proteins and other biomarkers
in biological assays. Despite their utility, the raw images often
exhibit substantial motion blur and noise, complicating direct
quantification of these signals.

2.4.1. Evaluation dataset and protocol. We trained a Deep
Image Prior (DIP) model to perform super-resolution on one of
blurry, low-resolution images from the microscope. To evaluate
the model’s generalizability, we tested it on 10 additional, pre-
viously unseen images labeled a–j, each containing fluorescent
beads from Bangs Laboratories. Specifically, images a, b, d, g, j
included 8.3 μm beads (Bangs Laboratories, product
#UMDG003), c, f contained 2.0 μm beads (Bangs Laboratories,
product #FSDG005), and e, h, i featured 1.0 μm beads (Bangs
Laboratories, product #FSDG004). Note that image d is the
same one used for training, so it is not strictly an unseen
sample. Its inclusion here checks whether the model remains
consistent on the training data–useful for detecting overfit-
ting–though it does not represent a truly independent test.
Consequently, the results on the other images better reflect
real-world performance, and all averages throughout the paper
exclude image d to provide an unbiased measure.

2.4.2. Baselines and methods. We compared our HIST-DIP
approach to both the unprocessed (raw) images and classical

Fig. 2 Overview of DIP-based denoising with histogram thresholding
algorithm. Masked image serves as the target tensor; a deep network is
iteratively optimized via MSE loss until the desired iteration count (e.g.,
2000). The final output is the denoised fluorescence image with con-
trolled contrast.
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Gaussian filtering with a kernel size of 11 × 11, zero mean, and
variance set to 5. Gaussian filtering is commonly used in fluo-
rescence imaging to mitigate noise, yet it can blur small, high-
frequency details, making it an informative contrast to our
method’s performance.

2.4.3. Metrics. We evaluated the denoising and super-
resolution quality using the following measures:

2.4.3.1. Contrast-to-noise ratio (CNR) and signal difference-to-
noise ratio (SDNR). Using the automated KPI quantification
tool described in ref. 33, each fluorescent bead’s intensity, sur-
rounding vicinity intensity, and background noise level are cal-
culated. The algorithm then computes:

SDNR ¼ ðBead Intensity � Vicinity IntensityÞ
BackgroundNoise

CNR ¼ ðBead Intensity � Vicinity IntensityÞ
Vicinity Intensity � BackgroundNoise

ð9Þ

providing insights on whether fluorescence signals are ampli-
fied while background remains relatively suppressed.

2.4.3.2. Peak signal-to-noise ratio (PSNR). It is a quantitative
based assessment and widely used metric that measures the
fidelity of a processed image relative to a reference image. It
is expressed in decibels (dB) and is calculated based on the
mean squared error (MSE) between the original and
enhanced images. A higher PSNR value indicates lower dis-
tortion and better preservation of image details. However,
PSNR alone does not always correlate well with perceived
image quality, as it primarily evaluates pixel-wise differences
and does not account for structural or perceptual
similarities.

2.4.3.3. Structural similarity index measure (SSIM). It evalu-
ates image quality by considering structural information, lumi-
nance, and contrast. SSIM ranges from 0 to 1, where a value
closer to 1 indicates high similarity between the reference and
processed images. Unlike PSNR, SSIM aligns more closely with
human visual perception, making it particularly relevant for
biomedical images wherein the preservation of morphological
features is critical.

By combining these metrics, we aim to obtain a holistic
understanding of denoising and super-resolution perform-
ance. Specifically, CNR and SDNR address whether our
approach effectively enhances the contrast of fluorescent
beads relative to background noise; PSNR measures overall
fidelity, and SSIM gauges structural consistency. The PSNR
and SSIM were measured against the ground truth images
obtained using the method delineated in section 2.2. As
such, the proposed HIST-DIP technique can be comprehen-
sively evaluated regarding its suitability for improved accu-
racy fluorescent biomarker analysis in smartphone-based
microscopy.

3. Results

The application of the Deep Image Prior (DIP) model for
super-resolution effectively enhanced the visual clarity of
images captured using the 3D-printed smartphone-based fluo-
rescence microscope. Initially, the raw images exhibited sig-
nificant blurring and noise, primarily due to the low-quality
optical components of the makeshift microscope and inherent
shaking during image capture. These issues were particularly
problematic as they obscured the fluorescence signals from
the beads, which are critical for accurate biomarker
identification.

3.1. Image quality improvement

Quantitative assessments on the 10 validation images showed
a marked improvement in image quality. Before training the
single image on the DIP model, the average PSNR of the image
was approximately 14 dB. After processing with HIST-DIP tech-
nique, the average PSNR increased to around 45 dB after 2000
iterations (Fig. 3(a)). This improvement indicates less noise
and higher clarity, allowing for better visualization of the fluo-

Fig. 3 (a) Training curves showing Peak Signal–to–Noise Ratio (PSNR,
dB) and mean–squared–error loss versus iteration for the original noisy
input. (b) Progressive frames from HIST–DIP demonstrating simul-
taneous denoising and super–resolution of smartphone fluorescence
images at selected iterations. Scale bar = 100 μm (applies to every
panel).
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rescent beads. Fig. 3(b) illustrates the iterative improvement of
image quality using the Histogram Thresholding and Deep
Image Prior (HIST-DIP) framework. Starting from i = 0, where
the image is dominated by noise, the reconstruction process
gradually enhances signal clarity and reduces background
noise. As iterations increase (i = 1 to i = 50), structural features
emerge, distinguishing fluorescent beads from the noisy back-
ground. By i = 100 to i = 2000, the denoised images exhibit
high contrast and well-defined fluorescence, facilitating
improved biomarker visualization.

The trained model was subsequently evaluated on ten
unseen fluorescence microscopy images, each containing
beads of varying sizes. To establish a consistent baseline, we
generated a pseudo-ground-truth by applying the same histo-
gram-based threshold to every raw image and multiplying
pixel-wise. Against this masked reference, the analysis shown
in Fig. 4 reveals average PSNR rose from approximately 15.59
dB (unprocessed “before”) to 27.10 dB (HIST-DIP), significantly

Fig. 4 Comparison of (a) PSNR (dB) heatmap and (b) SSIM heatmap, 0
→ completely dissimilar, 1 → identical images.

Fig. 5 Fluorescence microscopy and corresponding 3D intensity surface
plots. (a) Original fluorescence microscopy image of the validation image
‘a’ (left) and its 3D intensity distribution(right). (b) HIST-DIP model applied
on validation image ‘a’ (left) and its corresponding 3D intensity distri-
bution(right). (Scale bar = 50 μm applies to both the images).

Table 1 Comparison of image quality metrics, including bead intensity,
noise intensity, CNR, and SDNR for Gaussian filtering (AQAFI), CARE, and
HIST-DIP across images a–j

Image Method
Bead
intensity

Noise
intensity CNR SDNR

a Before 92.47 19.18 0.071 2.69
Gaussian 11.92 1.53 0.990 4.67
CARE 113.81 4.82 27.090 65.49
HIST-DIP 86.35 0.032 1421.68 2516.87

b Before 206.47 35.05 0.078 4.32
Gaussian 52.14 6.17 0.810 7.05
CARE 207.36 10.87 2.390 19.11
HIST-DIP 166.76 0.54 153.16 301.80

c Before 129.11 12.59 0.300 8.06
Gaussian 30.94 2.83 1.920 9.18
CARE 124.50 6.96 2.080 17.87
HIST-DIP 70.92 0.48 87.06 142.36

d Before 240.14 21.15 0.140 8.46
Gaussian 78.49 2.33 4.300 30.55
CARE 210.99 10.22 4.370 27.38
HIST-DIP 220.45 0.089 1669.00 2436.62

e Before 97.43 14.31 0.160 4.74
Gaussian 24.92 3.12 1.150 6.20
CARE 88.89 10.07 1.160 15.29
HIST-DIP 41.93 0.15 207.56 265.99

f Before 150.80 18.17 0.200 6.45
Gaussian 25.32 3.58 1.010 5.51
CARE 131.99 7.98 2.340 17.69
HIST-DIP 75.64 0.14 341.18 502.03

g Before 250.72 21.74 0.150 8.83
Gaussian 83.37 3.18 3.480 23.94
CARE 206.10 11.42 4.020 28.31
HIST-DIP 245.52 0.09 563.69 2243.03

h Before 94.40 15.22 0.150 4.30
Gaussian 24.91 3.77 0.890 5.07
CARE 87.83 13.61 0.670 7.29
HIST-DIP 26.05 0.07 283.61 318.97

i Before 88.48 15.29 0.110 3.62
Gaussian 23.99 4.27 0.660 4.14
CARE 87.34 15.33 0.580 6.43
HIST-DIP 32.52 0.05 390.26 610.56

j Before 231.88 19.42 0.180 9.22
Gaussian 73.89 2.80 3.880 23.92
CARE 192.72 8.24 4.620 26.51
HIST-DIP 183.34 0.12 1212.94 1463.90
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outperforming Gaussian filtering at around 24.01 dB. A
similar trend emerged in SSIM: raw images exhibited poor
structural similarity (often below 0.06), Gaussian filtering
yielded modest improvements (0.08–0.20), and HIST-DIP con-
sistently exceeded 0.77. Fig. 4(a) illustrates the PSNR heatmap
for the three denoising techniques: raw (before), Gaussian fil-
tering (AQAIF), and HIST-DIP. Cooler (blue) shades represent
lower PSNR, while warmer (red) shades indicate higher PSNR
values.

As shown, HIST-DIP achieves the stronger performance
across all images, with especially large gains in images b, d,
and f, where it surpasses the Gaussian filter by more than 8
dB. This underscores the advantages of combining histogram-
based preprocessing and DIP for enhancing signal clarity, cru-
cially without the need for labeled datasets.7

Likewise, the SSIM heatmap in Fig. 4(b) confirms
HIST-DIP’s effectiveness in structural preservation. Whereas
raw images suffer from high noise, and Gaussian filtering
remains uneven, HIST-DIP consistently attains near-ideal SSIM
scores. Overall, these results affirm that HIST-DIP is a robust,
training-light approach for denoising fluorescent images in
smartphone-based microscopy, offering clearer biomarker
visualization than conventional filtering techniques.

The two 3D intensity surface plots in Fig. 5 compare pixel-
level distributions (X–Y in pixels, Z as intensity). Fig. 5(a), raw
image coming from the SBFM exhibits a broader intensity
spread with moderate peaks, indicating some noise and
smoother transitions between high- and low-intensity regions.

Fig. 5(b), raw image when HIST-DIP model is applied shows
sharper, more isolated peaks and clearer low-intensity areas,
suggesting enhanced contrast and reduced noise. Overall,
HIST-DIP model filtered image appears more structured,
implying an improvement in signal clarity relative to the raw
image.

3.2. Fluorescent signal clarity

Fluorescent markers play a central role in diagnosing protein
expression and other clinically relevant biomarkers, making
their clear visualization paramount in biomedical image ana-
lysis. Table 1 compares key performance indicators (KPIs)
including bead intensity, background noise, and the derived
signal difference-to-noise ratio (SDNR) and contrast-to-noise
ratio (CNR) using the AQAFI method.33 Representative images
demonstrating these improvements are shown in Fig. 6. These
measures collectively gauge how effectively different denoising
approaches isolate true fluorescent signals while minimizing
noise contributions. From the before rows, the raw images
display low SDNR and CNR, reflecting poor signal discernibil-
ity. Applying Gaussian filtering (Gaussian rows) yields moder-
ate improvements but often blurs finer bead structures due to
uniform smoothing. By contrast, the proposed HIST-DIP
method (highlighted rows) achieves an order-of-magnitude
increase in both SDNR and CNR. This substantial gain in
signal clarity–achieved without large, annotated datasets–
makes HIST-DIP a robust, low-cost solution for smartphone-
based fluorescence microscopy, particularly in scenarios where

Fig. 6 Denoising performance at three bead diameters. Columns (left → right) correspond to bead sizes of 1.0 μm (e, h, i), 2.0 μm (c, f ), and 8.3 μm
(a, b, d, g, j). Top row: Raw smartphone-acquired fluorescence frames dominated by shot noise and optical blur. Second row: Gaussian-filtered
images, where noise is attenuated but fine structure is visibly softened. Third row: Supervised baseline produced with CARE, which further sup-
presses noise yet leaves some residual blur and speckle. Bottom row: Output of the proposed HIST-DIP pipeline; noise is strongly suppressed while
bead contours are sharpened and local contrast enhanced, yielding the clearest visualization of bead-bound biomarkers. (Scale bar: 50 μm in every
panel.)
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photobleaching, temporal resolution, and live-cell viability
pose significant challenges. By better isolating and amplifying
key biomarkers, our approach reduces reliance on costly lab-
oratory equipment and potentially broadens the use of porta-
ble diagnostic imaging in resource-constrained settings.

4. Conclusions

This work developed HIST-DIP, a combined histogram thresh-
olding and Deep Image Prior (DIP) approach for denoising
and super-resolving fluorescence microscopy images captured
by low-cost, smartphone-based devices. Experimental vali-
dation across multiple test images (excluding the training
image d ) confirmed significant performance gains quantified
by several metrics (see ESI section S3† for extended experi-
mental validation and discussion of generalizability). In par-
ticular, our method boosted the average PSNR from approxi-
mately 15.6 dB (raw) and 24.0 dB (Gaussian) to 27.1 dB
(HIST-DIP), while the SSIM increased from 0.035 (raw) and
0.131 (Gaussian) to 0.82 (HIST-DIP). Moreover, the key bioana-
lytical metrics of signal difference-to-noise ratio (SDNR) and
contrast-to-noise ratio (CNR) demonstrated orders-of-magni-
tude gains; on average, CNR improved from ∼0.16 in the raw
images to ∼1.64 with Gaussian filtering, and then to ∼518.0
under HIST-DIP, while SDNR rose from ∼5.80 to ∼9.96 and
ultimately ∼929.5. These numerical gains indicate clearer bead
outlines and substantially reduced background interference,
making HIST-DIP a powerful solution for low-cost point-of-
care imaging. A live web deployment of the trained HIST-DIP
model for real-time denoising can be accessed at: https://
denoisedip.vercel.app/.

Our findings also point to the following challenges. First,
although the DIP architecture provides strong priors for self-
supervised denoising, it remains sensitive to iteration count,
masking thresholds, and hyperparameters–factors (as elabo-
rated in ESI section S1†) that may complicate clinical or field
deployment. Second, while histogram thresholding mitigates
over-enhancement, suboptimal thresholds can exclude faint
structures or retain undesired artifacts. Although the
approached method does not rely on large annotated datasets,
it is constrained by the quality of the mask generation step,
which, if improperly tuned, can lead to over/under-segmenta-
tion of the fluorescence signals. Third, extending HIST-DIP to
real-time applications will require accelerated optimization
schemes or integration with hardware.

Future research will focus on refining threshold-selection
procedures using adaptive and data-driven approaches, explor-
ing domain-specific priors to stabilize DIP in varying illumina-
tion conditions, and investigating the utility of advanced regu-
larizers such as physics-informed or learned from large
unlabeled image sets. Achieving these goals will broaden the
accessibility of smartphone-based imaging for diagnostics,
enabling effective quantitative analysis in resource-limited
environments without reliance on large-scale labeled datasets
or specialized equipment.
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