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The international society for clinical spectroscopy;
reflections on the first 10 years
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The article provides a perspective overview of the development and current status of the field of bio-

medical spectroscopy, on the occasion of the tenth anniversary of the foundation of the International

Society for Clinical Spectroscopy (CLIRSPEC). It provides a background into the prior evolution of the

field, and international community, and rationale for the foundation of the legal entity, CLIRSPEC. It

describes the continued dissemination and educational activities associated with the society, and maps

out key technical developments, as well as trends towards clinical translation, and future perspectives.

Background

2025 marks the 10th anniversary of the formal establishment
of the International Society for Clinical Spectroscopy
(CLIRSPEC)1 as a Private Company Limited by Guarantee on
the Registrar of Companies for England and Wales on 30th

June 2015. The venture was progressed through the UK
Engineering and Physical Science Research Council (EPSRC)
Clinical Infrared and Raman Spectroscopy for Medical
Diagnosis Network (also CLIRSPEC, 2014–2017). As an inter-
national society, CLIRSPEC is a non-profit organisation, with a
stated objective to act as a platform for those individuals,
teams and organisations wishing to promote the translation of
spectroscopy into the clinical environment, for the general
benefit of patients; for example, to improve patient diagnosis
and prognosis. The Memorandum of Association of the
society2 also includes aspirations to;

• Promote a broader representation (e.g. of gender and
nationality) of individuals working within the field of clinical
spectroscopy;

• Organise national and international public lectures,
meetings, debates and conferences;

• Engage in outreach activities of all sorts;
• Participate in, support, fund and disseminate research,

innovation and other activities relating to the objectives;
• Award scholarships and bursaries raised from third party

contributions to enable attendance at, and travel to, any
national or international congresses related to the (society)

In reality, the measure was deemed necessary to protect the
interests of the growing clinical spectroscopy community,
largely academic based, which had evolved through a series of
conference events, and national and international collabora-
tive networks, largely based on the drive of individuals, who
were subjected to increasing burden of workload and financial
commitment.

Historical perspectives

The historical development of vibrational spectroscopy, and
specifically biological applications, has been reviewed by
Henry Mantsch, one of the early pioneers of the field.3,4

Beginning in 1997, the so-called Berlin IR workshop,5 hosted
by Dieter Naumann and Peter Lasch at the Robert Koch
Institute, was initially targeted at IR spectroscopic analysis of
pathogens and microorganisms, but laterally expanding to
include vibrational spectroscopy, and clinical applications
more broadly, did much to crystallise and sustain a kernel of
the vibrational spectroscopy community, particularly in
Europe. The first SPEC Conference in Winnipeg (2000) has
also been flagged as a key milestone. Under the tagline of
“Shedding new light on disease”, the event precipitated the
biennial series of conferences which was continued through
similar events in Reims (2002), Newark (2004), Heidelberg
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(2006), São José dos Campos (2008), Manchester (2010),
Chiang Mai (2012), Kraków (2014), Montreal (2016), Glasgow
(2018), Monterey (2020 cancelled due to COVID-19), Dublin
(2022) and most recently in Ioannina (2024). Starting in 2010,
the proceedings of the conferences have been published
through special issues of Analyst.6–11

A significant impetus, particularly in Europe, was the EU
FP6 Special Support Action (SSA) Diagnostic Applications of
Synchrotron Infrared Microscopy (DASIM–2005–2008) which,
although targeted towards specific aspects of the field,
included, for example a Raman Working Group, and clinical
stakeholders and international advisors, and thus brought
together key players in biological applications of vibrational
spectroscopy through a targeted programme to identify key
challenges. Although the programme did not fund research
per se, the collaborative effort led to, for example significant
developments in understanding and alleviating artefacts in
both IR12–14 and Raman15–17 microspectroscopy. Above all,
DASIM provided a platform for the emerging biospectroscopy
community to begin to explore and establish consensus
options on aspects of sample processing and presentation,
instrument calibration, data preprocessing and analysis. As a
deliverable of the SSA, the multi-author DASIM Book sought to
provide a practical approach to biomedical applications of
spectroscopy, from a clinical perspective.18

Efforts to maintain the momentum of the community con-
solidated by DASIM in Europe through applications to Marie
Curie (now Marie Skłodowska-Curie) Training Networks and
COST Actions were unsuccessful, and any collaborations were
maintained largely on an informal, individual basis. In 2013,
the UK EPSRC funded the national network, CLIRSPEC
(2014–2017), bringing together expertise and stakeholders
from the academic, clinical and instrumental manufacturers
sectors across the UK, with international advisors. In addition
to facilitating short term interlaboratory research exchanges,
the network held two very successful conferences, in Exeter
(2015) and Manchester (2017), and coordinated the Faraday
Discussions meeting “Advanced Vibrational Spectroscopy for
Biomedical Applications” in Cambridge, 2016.19 As an integral
part of its mission in training and development of early stage
researchers, the Network instigated the CLIRSPEC
Windermere Summer School in 2015, which continues to run
annually, now under the umbrella of the CLIRSPEC
International Society.

The legal foundation of the International Society CLIRSPEC
was funded as an exit strategy of the UK EPSRC Network, and,
as it was officially founded in June 2015, the two versions of
CLIRSPEC overlapped until 2017, providing continuity. During
this time, the activities also interacted strongly with those of
the EU COST Action Raman4Clinics (2015–2018), which,
amongst other outputs, produced two large-scale interlabora-
tory trials assessing the reproducibility of Raman20 and
surface enhanced21 Raman.

The International Society adopted the SPEC series of con-
ferences as its flagship, and, although the initial announce-
ment of the impending foundation of the society was made at

SPEC 2014 (Krakow), official association of the SPEC began
with SPEC 2016 (Montreal), continuing with SPEC 2018
(Glasgow), SPEC 2020 (Monterey – cancelled due to COVID),
SPEC 2022 (Dublin) and SPEC 2024 (Ioannina). Over the past
ten years, the society has also expanded its dissemination brief
to encompass association with a range of other conference
and workshop series;

In November of 2017, CLIRSPEC became a member of the
Federation of Applied Chemical and Spectroscopy Societies
(FACSS – https://facss.org/), and thus has been formally rep-
resented in the annual SciX (https://facss.org/scix-annual-con-
ference) programme since then.

In August 2019, CLIRSPEC teamed up with the Japan
Association of Medical Spectroscopy (https://medical-spec-
troscopy.jp/) to support the CLIRSPEC Summer School in
ASIA, in Kobe City (https://sci-tech.ksc.kwansei.ac.jp/clir-
specss/).

In October 2019, CLIRSPEC became co-organiser of the 12th

annual Workshop on “FT-IR Spectroscopy in Microbiological
and Medical Diagnostics” hosted by the Robert Koch-Institute,
Berlin, Germany.

CLIRSPEC was also an official organiser of the 11th (online-
2021) and 12th (Kraków-2023) editions of the International
Conference on Advanced Vibrational Spectroscopy (ICAVS).

In April 2021, the UK EPSRC accepted the proposal for the
Grand Challenges in Healthcare Network, “Integrating Clinical
Infrared and Raman Spectroscopy with digital pathology and
AI: CLIRPath-AI” (https://clirpath-ai.org/). In terms of spectro-
scopic expertise, the network is an evolution of the UK EPSRC
CLIRSPEC network, and has integrated the CLIRSPEC
Windermere Summer School with a series of sandpit events
exploring topics for short pump-prime projects, over the
period 2021–2025, culminating in the final Network confer-
ence in May 2025.

Developments of state of the art

The evolution of the state of the art of clinical spectroscopy
has previously been mapped out according to realms of clini-
cal applications;22,23

1. In vivo;
a. Intraoperative characterisation of tumour resection

margins
b. Endoscopic probes for disease detection
In both areas, the availability of near infrared optical fibre

probes has favoured the use of Raman spectroscopy for in vivo
applications, 1.a. having been demonstrated as early as
2010,24–26 1.b. in 2015.27,28 The dominance of Raman in such
applications has persisted, such that Raman probes for oeso-
phageal cancer diagnosis are entering the stage of clinical
trials,29 and coherent Raman techniques have been increas-
ingly explored.30 A marked indication of progress towards clini-
cal translation is the commercial development of both incoher-
ent and coherent modalities for intra operative and endoscopic
applications.31–33
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2. Ex vivo;
a. Spectroscopic histopathology
The emergence of focal plane array technology meant that, by

2013, large scale (cm2) biopsies could be screened using FTIR
microscopy, albeit on timescales of >10 hours.34 Progress was
also made in the use of glass substrates which, although it limits
the infrared spectral range, shows promise for simple tissue
characterisation35,36 and cellular analysis.37,38 It has been demon-
strated, however, that the full spectrum is not required to main-
tain diagnostic accuracy,39 and the emergence of mid infrared
tuneable quantum cascade laser systems prompted the explora-
tion of discrete frequency IR imaging.40,41 Further significant
advances have been made through the use of deep learning
methods, for example to reconstruct incomplete spatial domain
IR data recording, which enables more rapid sample scanning.42

Coherent Raman techniques have also been used for rapid histo-
pathological screening, albeit also at discrete frequencies.43

Ratios of Raman signals reflecting the relative lipid and protein
contents can provide H&E like images, and convert the
Stimulated Raman Scattering (SRS) signals into virtual H&E
slides.44 The Stimulated Raman Histology technique is now com-
mercially available to image fresh tissue specimen without sec-
tioning or staining, enabling near real-time histologic evaluation
in the treatment room.45

b. Spectroscopic cytology
Although much of the pioneering work in spectrocyto-

pathology was performed with IR absorption microscopy,46,47

Raman microspectroscopy has become the more prominent
choice for cytological applications in, for example cervical and
oral cancer screening.48–50 Hormonal effects,51 blood contami-
nation,52 viral infection53 and the influence of other confound-
ing factors have been addressed, and protocols standardised
to integrate as best as possible in the clinical workflow.54

Process automation has been explored for high throughput
screening,55 and broadband CARS has been demonstrated for
rapid classification based on individual cellular analysis.56

c. Liquid biopsies
An application which has seen particular growth over the

past decade is that of diagnostic screening of liquid biopsies.
The initial work, demonstrating the ability of ATR-FTIR spec-
troscopy of dried blood serum to distinguish between cancer
vs. non-cancer, metastatic cancer vs. organ confined, brain
cancer severity and organ of metastatic disease with high sen-
sitivities and specificities,57,58 has been progressed towards
commercialisation,59 as have the applications of Raman ana-
lysis of hydrated serum for colorectal cancers.60 Of note also is
the use of ATR-FTIR spectroscopy for the determination of
malaria parasitaemia in whole blood samples, demonstrated
in field trials in austere environments proving the robustness
and capability of serum biofluid diagnostics.61–63,64

3. In vitro;
a. Drug screening and companion diagnostics
Applications of vibrational spectroscopy for in vitro screen-

ing of toxicants, including nanoparticulate materials,65,66 che-
motherapeutic agents,67–69 radiation treatment,70–72 stem cell
differentiation73 and virology,74 have continued. Increasingly,

attention has been devoted to kinetic studies of the cellular
interactions, and subsequent cellular responses.75–78 As the
capabilities for analyses advance towards real-time, full spec-
tral, subcellular visualisation of the cellular metabolism, the
demands on the ability to data mine and interpret the
responses also increases.79–81

In terms of clinical applications of vibrational spectroscopy,
a somewhat overlooked area which has emerged over the past
decade is that of analytical quality control in pharmaceutical
dispensing,82–85 and blood storage and transfusion.86,87

Within the same time period, the world has seen an increas-
ingly prominent usage of IR and Raman spectroscopies in
security screening,88 a development which may have a knock-
on effect on clinical uptake.

b. Molecular diagnostics
Molecular diagnostics approaches are becoming increasingly

important, particularly in the drive towards personalised medi-
cine.89 Although deep learning methods such as convolutional
neural networks (CNN) are being increasingly used to analyse
infrared and Raman spectra of biopsy tissue, they are often
treated as a black box and it is difficult to associate specific spec-
tral features with disease state.90,91 This is a problem, since the
European Union Artificial intelligence act deems the use of AI in
medical diagnostics as high risk.92 As a consequence, the act
requires that the system must be sufficiently transparent to end
users such as clinicians to enable them to understand, (i) how
the AI works, (ii) what inputs it uses and most importantly in this
context, (iii) the basis for its recommendations. This means that
the AI has to be explainable, which, in most cases, means linking
the spectral features to specific known molecular biomarkers.
One example of this is the study by Goertzen et al. which showed
that QCL data from lung cancer tissue could be linked with
specific mutations (KRAS, EGFR, and TP53), with 95% sensitivity
and specificity.93 However, the concentration of most biomarkers
is low and the signals are convoluted with the vast array of other
constituent molecules, meaning that this is incredibly
challenging.

A second approach to delivering explainability is to cross
reference with other biological techniques. Linking IR spectral
profiles of tissue to gene expression data is an emerging direc-
tion of research, linking spectral pathology with molecular
biology. An example of this is the work by Tiwari et al., who
were able to link infrared data to a specific gene expression
profile, referred to as ECM3 (Extracellular Matrix Cluster 3).94

Another approach is to link spectral imaging data with mass
spectrometry data, either using secondary ion mass spec-
troscopy (SIMS), matrix-assisted laser desorption/ionisation
(MALDI) or proteomic analysis.95–97 Correlating IR signatures
with proteomic data has been shown to be particularly power-
ful and has led to the identification of a new biomarker for
bladder cancer, specifically to differentiate urocystitis with
reactive urothelial atypia and carcinoma in situ (CIS).98

An emerging area of research that could have an eventual
impact in diagnosis is the characterisation of spectral signa-
tures of kinetic processes at a cellular level. An example of this
approach is the study of Goffin et al., who applied a trajectory
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inference analysis of the evolution of Raman spectroscopic pro-
files of the differentiation of adipocyte cells.99 The application of
cluster analysis enabled the identification and differentiation of
the Raman spectral profiles of the different cell stages, which
were then arranged in the sequence of the trajectory inference
analysis. More recently, Kobayashi et al. demonstrated the predic-
tion of single-cell RNA expression profiles in live cells by Raman
spectroscopy.100 Using the example of mouse stem cell differen-
tiation, neural network prediction models were trained by corre-
lating the Raman spectroscopic subcellular analysis profiles with
corresponding single-molecule fluorescent in situ hybridisation
(smFISH) profiles of nine anchor genes. These profiles were then
correlated with those of the selected genes in single cell RNA
sequencing analysis, enabling the evolution of the genomic pro-
files to be tracked in real-time, in situ in live cells, as they under-
went the differentiation process. The analysis also yielded impor-
tance scores of the different features of the Raman spectra in pre-
dicting the cell-related marker genes, although the evolution of
these features along the trajectory was not resolved. The use of
deep learning techniques to associate label free spectroscopic
“spectralomic” signatures with cellular events and/or processes
may therefore open up avenues for a more holistic application of
the techniques.81

4. Data processing and analysis;
Multivariate statistical analysis, including by machine and

deep learning algorithms, continues to be the bedrock of clini-
cal spectroscopy, and AI protocols for, for example, de-noising,
and enhancing spatial resolution have emerged.42,101–103

Multiblock and data fusion techniques are becoming increas-
ingly explored, combining data from different techniques,104

or biological samples.105,106

Sharing of datasets and analysis protocols has been high
on the agenda of the society since its foundation. In addition
to making data downloading, preprocessing and analysis
scripts available through its Members’ website,1 the society
established an open access Zenodo community.107 Amongst
the stated goals are to;

• Develop a standard data transfer format to allow free and
easy dissemination of data between network members enhan-
cing collaboration and efficiency of research funding

• Investigate the technological, cultural, ethical and IP
issues in order to enable data sharing and reuse

In an effort to further embed the Findable, Accessible,
Interoperable, and Reusable (FAIR) guiding principles for data
management108 in the biospectroscopy community, the
FAIRSpectra initiative, launched in 2023 aims to; (i) develop an
open file format for hyperspectral data produced by vibrational
spectroscopies and mass spectrometries, and (ii) explore the
metadata requirements for sharing such data.109

State of play and future perspectives

The past decade has been a period of rapid instrumental devel-
opment, which continues to address limitations of spectro-
scopic sampling speed, spectral and spatial resolution, not

just for short term clinical applications, but for more funda-
mental research, exploring the limits of label-free spectro-
scopic imaging and analysis. Coherent Raman Imaging is
already integrated into established commercial optical micro-
scopic platforms,110 and commercial broadband systems are
emerging.111 QCL based IR microscopy is well
established,112,113 and the pulsed nature of the QCL systems
has opened up a new field of hybrid techniques which provide
IR absorption microspectroscopy with lateral resolution on the
scale of tens of nanometers.114,115 Of particular note are the
photothermal systems, in which the IR absorption and Raman
scattering spectra can be recorded from the same spot, with
optical resolution (<1 μm), the newer models of which also
integrate fluorescence microscopy.116

While the past decade has seen continued advancement of
the spectroscopic and data analytical techniques available to the
clinical spectroscopy community, a notable feature of that devel-
opment is the emergence of commercial enterprises, either custo-
mising existing instrumentation,59,60 or developing bespoke solu-
tions for clinical applications.31,33,45,117,118 These solutions are on
the brink of realisation of clinical translation.29,119,120

As the efforts of the community to translate biospectro-
scopy into real clinical applications, a marked evolution has
been that of the language used, which now includes aspects of
clinical workflow and health economics,121 patient perspec-
tives,122 and in turn reflects an increased awareness of the
demands of the clinical sector. This has been developed
through continued engagement with, and advocacy of, clinical
practitioners.123–125 In this context, the UK EPSRC Healthcare
Technologies Grand Challenges network CLIRPath-AI specifi-
cally aims to synergistically combine expertise in clinical spec-
troscopy with that of Digital Pathology and Artificial
Intelligence to progress and maximise the impact on health-
care. Accelerating the roll out of digital pathology for cancer
screening in the National Health Service is high on the agenda
of the UK Government,126 and among the investments are the
National Pathology Imaging Co-operative (NPIC), a centre of
excellence in digital pathology and AI,127 and the Pathology
Image Data Lake for Analytics, Knowledge & Education
(PathLake),128 aiming to address the demand for AI-driven
diagnostics to increase efficiency in pathology reporting and
improve patient outcomes. Concerted engagement with such
communities increases the visibility and profile of label free
spectroscopic imaging for diagnostic applications, towards
meaningful clinical translation.
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