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Characterizing ssRNA and dsRNA electrophoretic
behavior: empirical insights with neural
network-aided predictions†
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RNA-based therapeutics are currently at the forefront of the biopharmaceutical industry because of their

safety, efficacy, and shortened time from disease discovery to therapy development. Microfluidic electro-

phoresis provides a great analytical platform to analyze nucleic acids in unprecedented detail. However,

while DNA has been studied extensively within microfluidic systems, there is limited data available for

RNA, particularly of chemically modified molecules, such as those used in the COVID-19 mRNA vaccines,

and for long double-stranded RNA molecules, which may accompany, intentionally or as a by-product,

RNA therapeutics. To this end, this study focused on the empirical microfluidic electrophoretic analysis of

double- and single-stranded RNA, non-modified and pseudouridine-modified, at varying gel concen-

trations. It then compared the findings to the electrophoretic mobility models in the literature. This work

was then complemented with data-driven and physics-informed neural networks that successfully pre-

dicted the migration time and length of different RNA molecules with an average error of 12.34% for the

data-driven model and 0.77% for the physics-informed model. The low error in the physics-informed

neural networks opens the doors to the electrophoretic characterization of molecules, even beyond RNA,

without the need for extensive experimental data.

Introduction

The advent of microfluidic electrophoresis as a nucleic acid
analytical tool has allowed scientists to study the migration of
DNA and RNA at an unprecedented level of detail. Despite the
promise this platform brings due to its characteristic short
runtime, high resolution, and increased sample throughput,1,2

the migration patterns of these molecules in microfluidic con-
ditions have not been extensively studied. Furthermore, ideal
experimental conditions for nucleic acids of various lengths
have not been clearly defined. Studying the biophysical inter-
actions between migratory nucleic acids and their medium is
vital for developing nucleic acid purity and integrity analysis
assays, such as mRNA vaccine quality assessment.3,4 It is also

crucial for developing more complex assays to resolve similar
molecules. Such advancements may improve the characteriz-
ation and quality control assays of exosome genomes5–8 and
samples of nucleic acids mixtures (e.g. multivalent nucleic
acid-based vaccines), which has proven to be more
difficult.9–11 Understanding the mechanisms behind nucleic
acid migration is also crucial for troubleshooting assays, allow-
ing researchers to identify experimental conditions that better
suit their parameters and desired outcomes.

The current models describing nucleic acid electrophoretic
mobility are differentiated according to the relative sizing
between the pore size of the semi-dilute polymeric network
and the nucleic acid size, as defined by the radius of gyration
(Rg).

12 The main models include the Ogston model, describing
DNA molecules with Rg smaller than the pore size, and the
Biased Reptation with Fluctuation (BRF), describing DNA
molecules with Rg greater than the pore size. The BRF model
is further differentiated into two scenarios: reptation without
orientation and reptation with orientation. The Ogston model
assumes the DNA is a spherical object moving through a sieve
driven by the electric field.12,13 In this model, mobility is pro-
portional to the exponential of the negative concentration of
the polymer solution.12,13 According to the BRF, mobility
scales as 1/N for short chains and levels off for large sizes and/
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or high electric fields.12,14 Each model has respective limit-
ations and alternative modifications have also been made to
better describe nucleic acid movement in capillary
electrophoresis.15–18 While there has been abundant research
in the electrophoretic separation of DNA, much less work has
focused on the separation and mobility models of RNA,
especially long nucleoside-modified mRNA and double-
stranded RNA (dsRNA).19–21

This study aims to explain the electrophoretic mobility of
different RNA molecules in microfluidic systems and under-
stand the underlying physical principles that govern the
migratory patterns of differently sized RNA in varying concen-
trations of semi-dilute polymer solutions. Given their clinical
relevance in mRNA vaccines and therapies, a focus is placed
on the mobility of both single- and double-stranded RNA and
the potential impact of nucleoside modifications.22–24 To the
authors’ knowledge, this is the first time the electrokinetic of
dsRNA fragments, especially that of longer length and
nucleoside-modified RNA, has been studied in microfluidic
capillary electrophoresis. With the rise in RNA research, the
mobility of RNA with pseudouridine modifications, which
enhance RNA stability and decrease their immunogenic
response,23,25 will be important to characterize. Additionally,
immunogenic dsRNA, intentional or residual, will be a criti-
cal component in future vaccine and alternative therapy
research and development.

This paper also aims to provide predictive modeling of the
electrophoretic mobility of single- and double-stranded RNA of
varying lengths under different conditions using artificial
neural networks (ANNs), a class of machine learning tools,26–29

to provide guidelines for future assay development, diagnostic
protocols, quality control platforms, and genetic material
differentiation. Both data-driven30,31 and physics-driven32,33

ANNs obtaining low margins of error were trained. This work
highlights how ANNS, particularly physics-informed neural
networks (PINNs), can be used to increase the understanding
of physical behavior of biological samples, such as their elec-
trophoretic mobility, and to support the development of
analytical methods.

Materials and methods
Samples and sample preparation

The ssRNA (catalog #N0364S) and dsRNA ladders (catalog
#N0363S) used in this study were purchased from New
England Biolabs (New England Biolabs, Ipswich, MA). The
ssRNA ladder contains fragments of 50 nt, 80 nt, 150 nt, 300
nt, 500 nt, and 1000 nt, while the dsRNA ladder contains frag-
ments of 21 bp, 30 bp, 50 bp, 80 bp, 150 bp, 300 bp and 500
bp. The non-chemically modified, 4001 bases long mRNA
and dsRNA samples were custom ordered from Genewiz
(Genewiz Genomics Headquarters, South Plainfield, NJ). The
pseudouridine chemically modified mRNA (818, 1198, 1913,
3406, and 4451 nt) and dsRNA (700 and 1800 bp) fragments,
and the 700 and 1800 bp non-chemically modified dsRNA

fragments were purchased from CATUG Biotechnology
(CatPure™; Cambridge, USA). Prior to use, the ssRNA and
dsRNA ladders were diluted 1 : 5 in 1× TE buffer, and the
custom mRNA and dsRNA fragments were diluted to 5 ng
µL−1 in 1× TE buffer.

Microfluidic measurements and analysis

For the microfluidic electrophoretic characterization of the
samples, the LabChip GXII Touch platform (Revvity, Waltham,
MA) was used to control the electric fields used to control the
migration of the samples for analysis. The platform was com-
bined with a custom RNA microfluidic chip, SYTO 61, poly(N,
N-dimethyl acrylamide) (PDMA) solution, and lower marker,
all provided by Revvity, as described in our previous study.4 To
analyze the electrophoretic behavior of the samples at
different gel concentrations, the stock PDMA solution was
diluted with a gel diluent (Revvity) that maintained the con-
ductivity constant while the gel concentration changed. After
diluting the gel to the desired concentration, it was mixed with
2.34% v/v of the fluorescent stain and spun down according to
the instructions from the provider. The chip was loaded with
the gel-dye mixture and the lower marker for electropherogram
alignment during analysis.

Once the samples were diluted to the desired concen-
tration, 10–15 µL were loaded onto a 384-well plate, and the
well plate and chip were loaded onto the platform.
Independent of gel concentration, a script containing the
same loading, injecting, and separation voltages, which have
been described in our previous study, was used for all experi-
ments.4 However, the separation time was increased depend-
ing on the gel concentration to ensure all peaks were captured.
After the script was run, the LabChip Reviewer software
(Revvity) was used to visualize the electropherograms.

Unless otherwise specified, all experiments were conducted
in 2–3 experimental repeats with 2–3 instrumental repeats,
yielding 6–9 data points per condition and sample tested. The
statistical analyses were conducted using GraphPad Prism
9.4.1 (681), and the significance was by a Tukey post hoc test
with a confidence interval of 95%; *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001. GraphPad Prism 9.4.1 was also used to
generate the non-linear regression fits reported across the
study.

Theoretical operating regime

Unlike traditional slab gel electrophoresis, where the cross-
linked polymers create fixed pores through which analytes can
migrate, capillary electrophoresis in entangled polymers relies
on transient pores created by entanglement points that
undergo a “random walk”. The pore size of various gel concen-
trations can be approximated by the blob size (ξb) and is calcu-
lated by:12

ξb ¼ 1:43Rg
c
c*

� ��ð1þaÞ=3a
; ð1Þ

where c is the polymer concentration, c* is the entanglement
threshold for the polymer, a is an exponent of the Mark–
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Houwink equation, and Rg is the radius of gyration of the
polymer calculated by:

Rg �
ffiffiffiffiffiffiffiffiffiffiffiffi
½η�Mr

6:2NA

3

s
; ð2Þ

where [η] is the intrinsic viscosity of the polymer solution at
the concentration, Mr is the polymer molecular mass, and NA

is Avogadro’s number. Using the Mark–Houwink coefficients
established previously for PDMA34 and intrinsic viscosity
found through linear interpolation of PDMA solutions of
various molecular weights,35 an operating effective pore size of
37 nm, 21 nm, 15 nm, 12 nm, and 10 nm were established for
1%, 2%, 3%, 4%, and 5%, respectively.

When analyzing mobility, it is important to examine the
relationship between the pore size of the sieving matrix and
the radius of gyration of the nucleic acid. Defined as the
average distance squared between different parts of the object
and its center of mass, this measurement provides information
regarding the average shape of the nucleic acid that end-to-end
distance does not, which is essential to characterize as electric
fields can induce different molecular conformations.36 The
radius of gyration of nucleic acids can be approximated by:37

Rg
2 ¼ 1

3
pL 1� p

L
þ p
L
e�L=p

h i
; ð3Þ

where p is the persistence length, a measurement of polymer
chain stiffness, and L is the length of the polymer fragment.
Values of 64 nm and 2 nm for the persistence length of dsRNA
and ssRNA were used for calculations based on respective
averages of current literature reporting.38–40 Approximating the
transition from Ogston-like motion to BRF as the size where
the Rg of the nucleic acid is equal to the effective pore size, we
predicted that all dsRNA samples would operate under repta-
tion with the possible exception of 80 bp under 1% gel. For
ssRNA, this transition point is expected to occur from approxi-
mately 54–2150 nucleotides for 1–5% gel. However, we
acknowledge the true transitions may vary due to the heavy
reliance of the formula on persistence length, which has been
reported with large ranges, and the approximations made in
formulaic calculations of pore size.

Artificial neural network development

In this study, our goal is to employ ANNs to distinctly solve the
following two tasks:

• Task 1: to predict length of the base sequence/number of
base pairs (nb), given the migration time (mt), gel concen-
tration (gc), information about the type of RNA (ssRNA or
dsRNA) (tp), and the corresponding persistence length (lp).

• Task 2: to predict the migration time (mt), given the
length of the base sequence/number of base pairs (nb), gel con-
centration (gc), information about the type of RNA (ssRNA or
dsRNA) (tp), its persistence length (lp), and the molecular
weight of the sequence (Mw).

In these two tasks, all the variables except tp have multiple
discrete values as tp is used as an identifier with a value of 1

(for ssRNA) or 2 (for dsRNA). The additional parameter of
sequence molecular weight (Mw) was included in task 2 to
improve model robustness and allow for the model to capture
trends that may deviate from theoretical expectations.
Additionally, due to varying base composition, modifications,
sequence-specific variations, the inclusion of (Mw) may help in
capturing additional variability not stated by the other input
parameters. Mw is directly tied to the unknown output of task
1 and therefore was not included as an input parameter. To
efficiently solve the tasks, we developed a data-driven and
physics-informed neural network frameworks, employing deep
neural networks. More information regarding deep neural net-
works as well as basis of both data-driven and physics-driven
neural networks can be found in our ESI.†

One primary bottleneck of data-driven neural networks
(both deep and shallow) rests in the fact that a considerable
amount of training data is required. In this work, we employ
data-augmentation schemes to generate additional labeled
datasets given the datasets obtained from the experiments. To
that end, we plot the curves nb vs. mt for every gc obtained from
the experimental data and obtain the equation of the curve
using logarithmic regression. For every gc, we generate an
additional 20 sample points considering sample nb points uni-
formly distributed between 100 and 4000 bases. The original
experimental data as well as the obtained data from the data-
augmentation schemes were using for training of the ANNs.
We describe the anatomy of the deep neural networks and
components of the physics-driven approach below.

Deep neural networks. For task 1, we aim to learn
Nð�; θÞ : ½gc; mt; tp; lp� ! nb, where Y ¼ Nðx; θÞ, represents a
compressed form of a feed-forward neural network (see ESI†).
In this scenario, we have one network, taking all the varying
parameters as input to the network and outputs the solution,
nb. The network consists of two hidden layers with 64 neurons
each. To introduce non-linearity in the network, we have
employed a leaky ReLU activation function between the two
hidden layers. The connection between the input layer and the
first hidden layer as well as the connection between the
second hidden layer and the output layer considers linear acti-
vation function.

For task 1, we have considered the migration time as
an input parameter. However, these details might not be
available a priori for an unseen case. Therefore, in task 2,
we aim to learn the migration time given the other
parameters. Hence, we design the network such that
N �; θð Þ : gc; nb; Mw; tp; lp

� � ! mt. Similar to the previous task,
we design a framework with one deep neural network consist-
ing of two hidden layers with 64 neurons each. The network
takes as input one of the five quantities in the input space and
output a scalar quantity denoting the solution, mt. A schematic
representation of the framework is shown in Fig. 1. In this con-
figuration, a single network takes the varying conditions as
inputs and predicts the desired solution field, with the loss
function consisting solely of the data loss. Notably, the data-
driven architecture does not include the second network that
outputs α or incorporates a residual loss.
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The network parameters are optimized for both tasks using
the – loss function and Adam optimizer. The learning rate for
the optimizer is 1 × 10−4. The primary goal for developing
ANN-based surrogate models is to generalize well-known to
new and unseen data. However, this is a challenging problem.
An under-parametrized model with too little capacity cannot
learn the problem. In contrast, an over-parametrized model
with too much capacity can learn it too well and overfit the
training dataset. For our work, we experience overfitting due to
the sparse representation of the input space because of the
limited availability of labeled data. One popular approach to
improve the generalization of deep neural networks is to use
regularization during training that keeps the weights of the
model small. These techniques not only reduce overfitting, but
they can also lead to faster optimization of the model and
better overall performance. In the end, we employed L2 weights
regularization with a regularization coefficient of 9 × 10−3.

Physics-informed neural networks (PINNs). This section con-
siders the physics of a problem defined by a generic equation
(eqn (4)), where b is the pore size, l is the Kuhn length, Nk is
the number of Kuhn segments, a is the limiting ratio of free
mobility to in-gel mobility for large chains and large fields,
and εk is the “molecular” reduced field. The insights provided
later in this paper demonstrate why eqn (4), describing the
biased reptation model, was chosen as the basis of our
computation.

μ

μ0
¼

b
l

� �2

3Nk

2
6664

3
7775
2

þ
2εk

b
l

� �2

5þ 2αεk
b
l

� �2

2
6664

3
7775
28>>><

>>>:

9>>>=
>>>;

1
2

ð4Þ

For this work, our goal was to obtain the scalar parameter α
along with nb for task 1 and mt for task 2. For this task, we con-
sider the biased reptation model defined as:

μ

μ0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2lp

� �4

8
nb2

Nl
2

þ
4εk2

b
2lp

� �4

5þ 2αεk
b
2lp

� �2	 
2
vuuuuuut ; ð5Þ

where Nl is a constant which is 457 for dsRNA and 14 for
ssRNA, μ0 is the free solution mobility, b is pore size, and p,
persistence length, is 64 nm for dsRNA and 2 nm for ssRNA.
To that end, we have two deep neural networks consisting of
three hidden layers of 8 neurons each and a hyperbolic tan
activation function to introduce non-linearity in the PINNs
framework (Fig. 1). While both the networks take as inputs all
the input space parameters discussed above in the data-driven
framework, the first network outputs α, and the second
network outputs the task-specific quantity of interest (nb for
task 1 and mt for task 2). To construct the loss function, we
obtain the residual loss from the governing equation and the
data loss from the experimental data. The standard Adam opti-
mizer minimizes the loss to obtain the optimized network
parameters.

Results and discussion
Electrokinetic behavior of dsRNA and ssRNA

The electrokinetic behavior of migratory nucleic acids is
mainly affected by the relative sizing of the molecule and the
matrix pore size, the strength of the electric field, and the
interactions between the matrix and nucleic acid during elec-
trophoresis. This was demonstrated by the raw migration
trends of dsRNA and ssRNA, which were reflective of typical
manipulation of gel concentration and fragment size.
Fragments of the same size migrated slower as gel concen-
tration increased due to increased viscosity and decreased
pore size; however, resolution between longer fragments of
nucleic acids significantly decreased at lower gel concen-
trations (Fig. S1†). Additionally, the migration time of dsRNA
and ssRNA of small fragment lengths (<300 bases) were rela-
tively similar and within a 10% difference of each other for
respective gel concentrations. As fragment size increased, the
faster migration of dsRNA relative to ssRNA became more pro-
minent, especially at higher gel percentages, where there was
approximately a 3%, 12%, 51%, 53%, and 71% difference in
migration time between the 4001 base fragment size of the two
nucleic acids in 1 to 5% gel, respectively. It is also interesting
to note that in the observed size ranges, as gel concentration
increased from 1% to 5%, the migration difference between
the largest and smallest fragment (150 and 4001 fragment
length) of dsRNA was less pronounced, with a 28% to 43%
difference, than for ssRNA, which had a 28% to 100% differ-
ence. This can also be seen visually through how the overall
shape of the trend remains constant between the gel percen-

Fig. 1 Schematic representation of the PINNs frameworks, where θ*
denotes the collection of optimized parameters of all the networks. The
data-driven framework includes only the neural network that predicts
the target quantity and excludes the network responsible for predicting
α. Furthermore, the data-driven model is trained solely using data loss,
without incorporating a residual loss term.
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tages as fragment size increases for dsRNA, but the data
points span outwards as fragment size increases (Fig. S1a†). In
a previous comparison of RNA, ssDNA, and dsDNA, it was also
found that single-stranded nucleic acids had better separation
and higher resolution over a larger range of sizes compared to
dsDNA.41 This may be due to the greater flexibility of single-
stranded molecules and a tendency to form secondary and/or
tertiary structures that could cause interactions with the
sieving matrix.

The electrophoretic mobility of RNA of varying sizes and
type were calculated and demonstrated in Fig. 2. The overall
sigmoidal curve demonstrated by the double logarithmic
mobility vs. size plots agrees with previous DNA and RNA
capillary electrophoresis separation studies.34,42 However, this
shape is much less evident for ssRNA, especially at higher gel
concentrations (Fig. 2b). Transitions were demarked upon
visual inspection with solid gray lines between Ogston-like
sieving (regime I), reptation without orientation (regime III),
and reptation with orientation (regime IV) with patterns out-
lined by previous studies.43,44 Regime II, which was only pro-
minent in dsRNA, marks the regime described by Heller,34

where may be greater than pore size, but the dsRNA is still too
stiff to reptate.

According to the Ogston model,

μ

μ0
¼ e�KR�C ð6Þ

where µ0 is free solution mobility, KR represents the retar-
dation coefficient, and c is gel concentration, linear Ferguson
plots (logarithm of mobility as a function of gel concentration)
would indicate RNA separation within the Ogston sieving
regime. RNA is presumed to migrate through the gel matrix in
a globular confirmation in a random array of cylindrical
obstacles in this region. Interestingly, for dsRNA, none of the
fragment lengths demonstrated a strong linear relationship
(Fig. 2c). Comparing the straight line fit for 80 bp (Y =
2.025e−0.1024c; R2 = 0.96) and 4001 bp (Y = 1.523e−0.1524; R2 =
0.96), it appears the Ogston model does not fit the smaller
strands any better than the longer fragment, where mobility
seems to fail, confirming that dsRNA fragment lengths as
small as 80 bp may be too large to sieve through the pores
without stretching. For ssRNA, the data points noticeably
deviated from a straight line fit of negative slope, with the
possible exception of ssRNA of 150 bases (Fig. 2d). These
inconsistencies demonstrate that the Ogston mobility model
may not be an accurate method of describing the mobility of
RNA. It may also indicate that more of the regime I indicated
in Fig. 2b may fall under reptation motion. However, definitive
delineations cannot be made due to model limitations and
without larger magnitude of data points, which is often not
possible due to sample and device constraints. Previous
studies have also found the Ogston-like sieving mechanism to
not accurately describe the mobility of ssRNA, but instead be
better for dsDNA and ssDNA.41 Our study demonstrates that

Fig. 2 Double-logarithmic mobility vs. size plots for (a) dsRNA and (b) ssRNA at polymer concentrations of 1%, 2%, 3%, 4%, and 5%, at an electric
field strength of 417.4 V cm−1 where the lines are used to semi-qualitative define the different regimes. The same data is visualized as Ferguson plots
for (c) dsRNA and (d) ssRNA and are exponentially fitted to demonstrate potential Ogston motion.
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this model limitation may also apply to dsRNA of short
lengths in tested condition. This may be due to the many con-
formations RNA can take on, which may not necessarily be
spherical and instead consist of loops, overhangs, and/or other
secondary/tertiary structure that are further complicated by the
effect of the electric field on stretching and mobility.

Three distinct regions can be seen for dsRNA in Fig. 2a,
and with our pore size analysis and the poor fitting of the
Ogston model, the first region of the data points may be better
described as what Heller concludes as a transition region
where is greater than pore size, but the molecules are too still
to reptate.34 As gel concentration increases, this distinction is
less prominent, and there seems to be a linear decrease in
mobility in Fig. 2a until a plateau in region IV is reached.

Unlike Ogston-like motion, the reptation model was devel-
oped for larger DNA due to the assumption that the spherical
coil would be too large to fit through the pores of the matrix
undeformed and would instead migrate head-first in a “snake-
like” motion through “tubes” formed by the polymeric pore
networks.45 Later improved by researchers such as Slater and
Viovy, the model, still challenging to utilize mathematically,
was modified to account for larger nucleic acid sizes, high
electric fields, and the dynamic nature of uncrosslinked
polymer networks (eqn (4)).46

Regime III can be correlated with regions of reptation
without orientation, as seen by the linear decrease on the
double logarithm of mobility as a function of fragment length
(Fig. 2a and b). Another representation of this delineated
region can be found in ESI (Fig. S3†). As eqn (4) demonstrates,
the first term dominates for molecules below a critical size (N*
= Nk), and mobility is inversely proportional to fragment size.
However, as the Nk becomes larger than N*, a plateau mobility
is reached. The “reptation with orientation” regime that
describes separation failure is thought to be partly due to the
electric forces leading long fragments to choose a tube of con-
secutive pores that do not follow a random walk-in space, and
therefore resulting mobility is independent of size.37 The
reptation regime has also been explained by other authors as
countering the effects of increased charged residues against
increased solvent friction due to large nucleic acid size, the
latter of which can also be attributed to collisions and sub-
sequent transient dragging of polymer chains.15,16 This
plateau can be seen around 1000 bp for dsRNA (Fig. 2a) and
seems to be reached a little later for ssRNA/mRNA in the same
condition as shown in the region demarked regime IV in
Fig. 2b. The higher critical sizes of single-stranded nucleic
acids agree with previous findings.41 Similar to what was pre-
viously noted for ssDNA and dsDNA, this critical size seems to
increase with decreasing polymer concentration for ssRNA but
remained constant for dsRNA,34,42 but this is hard to confirm
due to gaps in data from sample limitations. However, other
studies have found the transition between regimes to be
dependent on solution concentration only for RNA and not for
ssDNA, which is a potential explanation for the short-lived sec-
ondary structures that ssRNA can make, resulting in increased
stiffness.41 As expected, the resolving power for larger frag-

ment sizes is poor in very low gel concentrations, but separ-
ation also fails earlier as gel concentration is increased, shown
mainly by ssRNA. However, there was a consistent increase in
peak width as gel concentration increased for both dsRNA and
ssRNA.

Comparison and differentiation of dsRNA and ssRNA

Given that new developments in RNA therapeutics involve a
combination of dsRNA and ssRNA/mRNA, it is essential to
analyze potential differences in mobility patterns for identifi-
cation. Given that the unique mix results in a preference for
not denaturing the ssRNA due to the possible unraveling of
the double-stranded helix of dsRNA, our findings will provide
insights into mobility that may be complicated by secondary
structures that are typically linearized and subsequently
reported in the literature.

Fig. 2a and b demonstrates that the difference in mobility
for a single fragment between different gel % is relatively con-
stant for dsRNA but not for single-stranded RNA, which is con-
sistent with the finding of Heller in terms of dsDNA and
ssDNA.34 With extraction and transformation of some data
points, a semilogarithmic plot (Fig. 3) was graphed to directly
assess the dependence of mobility on pore size for fragment
sizes 500 and 4001, which should respectively fall under repta-
tion without orientation and reptation with orientation. The
dependence of dsRNA mobility on pore size was similar for
both fragment sizes, with slopes of approximately 0.47.
However, a considerable difference was seen for the RNA
counterpart, suggesting that future developed models or
analytical methods may be able to utilize a similar mobility
dependence for dsRNA fragments of this size range but not for
ssRNA to predict elution time or design experiment
parameters.

To analyze the potential difference in mobility between
dsRNA and ssRNA in terms of gel concentration, the mobility
of both RNA types was plotted against fragment size for each
gel condition (Fig. 4). Fig. 4a demonstrates that at low gel con-
centrations (1% and 2%), the mobility of ssRNA and dsRNA
are very similar across all fragment sizes (Fig. 4a), but as gel

Fig. 3 Dependence of RNA electrophoretic mobility on pore size.
dsRNA of 500 bp and 4001 bp, in blue and pink, respectively. ssRNA of
500 nt and 4001 nt, in purple and green, respectively.
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percentages increase, there is a clear increase in dsRNA mobi-
lity compared to that of ssRNA (Fig. 4b). This difference
becomes more pronounced as fragment size increases. The
mobility of dsRNA and ssRNA in 1% gel is approximately equal
(<5% difference). For gel concentrations greater than 2%, the
difference in mobility increases between dsRNA and ssRNA as
fragment size increases above ∼500 bases for each gel percen-
tage (Fig. 4b), before which the mobility difference is less than
10%. Additionally, as gel percentages increase from 1% to 5%,
the difference in mobility for the largest recorded fragment
also increases from 2.2% to 60.5%. This trend was also seen
when analyzing raw migration time, demonstrating the poten-
tial manipulation of higher gel percentages to increase the sep-

aration between dsRNA and ssRNA. This manipulation of gel
concentration, and therefore pore size, may be a simple target
for high throughput separation of RNA mixture products that
then allow for identification, such as in the context of quality
control operations.

Impact of chemical modifications on RNA mobility

Using pseudouridine (Ψ) instead of uridine in the IVT mRNA
has been critical to therapeutic mRNA efficacy and
stability.22,23 With the reliance on modified mRNA for future
therapeutics, it will be essential to characterize if these modifi-
cations create a significant impact on the mobility and sub-
sequent characterization of RNA as structurally, Ψ can alter

Fig. 4 Mobility vs. fragment size of dsRNA and ssRNA in (a) 1–2% gel and (b) 3–5% gel.

Fig. 5 Mobility comparison between the non-chemically modified and chemically modified fragments at 1, 2, 3, 4, and 5% pDMA concentrations.
(a) Double logarithmic plot of mobility vs. size with the modified dsRNA fragments represented by markers overlayed onto the line of best fit formed
from the mobility of its non-modified counterpart. (b) Comparison of modified and non-modified dsRNA mobility of equal sizes in varying PDMA
concentrations. (c) Double logarithmic plot of mobility vs. size with the modified ssRNA fragments represented by markers overlayed onto the line of
best fit formed from the mobility of its non-modified counterpart.
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RNA structure by improving base-pairing, base stacking, and
contributing to making the backbone more rigid (through a
network of hydrogen bonding interactions).23

The migration (Fig. S1a and S2a†) and effective mobility
(Fig. 5a and b) of modified dsRNA are very similar to those of
its non-modified counterpart, and the difference between
mobility is not statistically significant (Fig. 5a and b).
Although a similar direct comparison cannot be made for
ssRNA due to sample constraints, the migration profiles
(Fig. S1b and S2b†) are similar, and the effective mobility of
modified RNA fits nicely into the trends seen by its non-modi-
fied counterpart (Fig. 5c). The type and extent of modification
RNA undergoes will vary depending on the desired application,
but these findings demonstrate that resulting electrophoretic
analysis may not be significantly impacted.

Machine learning modeling for electrophoretic mobility
prediction

Following a thorough experimental study of RNA mobility in
microfluidic electrophoresis, there lacks a comprehensive
model that can provide clear prediction of the observed
phenomena. While applications of the pre-existing models
allowed for some insights and connections into biophysical
mechanisms of RNA traveling in semi-dilute polymer net-
works, they are insufficient to provide accurate predictions of
the characteristics of the nucleic acids such as size, type, and
potential detection time. These are parameters often essential

in creating analytical methods to provide adequate separation,
resolution, and identification of nucleic acid mixtures, causing
there to be significant experimental trial and error to find
optimal separation parameters.

While the BRF model allows for some descriptive character-
ization of mobilities, the actual mathematical equation is very
difficult to utilize in practice for the prediction of nucleic acid
migratory behavior. Therefore, the use of ANNs were employed,
including a PINNs,33 where the networks are trained using a
modified loss function, which includes the governing equation
and the training data. Table 1 demonstrates the results of the
developed PINN, where the predicted values of nb obtained for
ssRNA and dsRNA test samples are compared against the
ground truth, represented by the nb on the axes.

Similarly, in Table 2, we highlight the predicted migration
time of ssRNA and dsRNA test samples and contrast them to
the ground truth.

Results from Tables 1 and 2 demonstrate the feasibility of
utilizing artificial neural networks, specifically PINNs, to
predict nucleic acid characteristics such as migration time and
size based on other known parameters with decent accuracy.
These values could aid in method development in ways such
as guiding decisions on assay parameters to prevent signal
peaks overlap, differentiating nucleic acids of different types,
characterizing nucleic acid size with limited ladder sample,
automating devices, etc.

Table 3 summarizes the relative L2 error (%) computed for
five test samples (details provided in Table 4) for both the
frameworks of ANNs and both tasks. Test samples refer to the
cases that the network was not provided with during the train-
ing. The test samples were chosen randomly from the available
dataset. For both tasks, the PINNs model performs better than
the data-driven model, and both frameworks perform better at
task 1 than task 2.

As expected, given the relatively limited data set, the PINNs
model significantly outperforms the data-driven model, as it
can compensate for the limited data through the physical
equations that govern the experiments. This application of
PINNs highlights its potential for electrophoretic analysis,
which could far exceed the analysis of single- and double-
stranded RNA molecules. Finally, we computed the value of
from the PINNs framework, and report α = 192.77. This is
essentially an inverse problem, where the network can predict
the value given the minimization of the residual of the govern-

Table 1 Comparative results for the predicted lengths of test samples
of ssRNA and dsRNA for the PINNs framework for task 1

1 2 3 4 5
ssRNA

500 486.9 486.9 486.9 486.9 486.9
1000 988.7 988.7 988.7 988.7 988.7
2000 1992.3 1992.3 1992.3 1992.3 1992.3
3000 2995.8 2995.8 2995.8 2995.8 2995.8
4000 4002.1 4002.1 4002.1 4002.1 4002.1

dsRNA
500 521.4 521.4 521.4 521.4 521.4
1000 1008.6 1008.6 1008.6 1008.6 1008.6
2000 1984.3 1984.3 1984.3 1984.3 1984.3
3000 2996.8 2996.8 2996.8 2996.8 2996.8
4000 3996.8 3996.8 3996.8 3996.8 3996.8

The vertical axes labeled nb represents the ground truth.

Table 2 Comparative results for the migration time of test samples of ssRNA and dsRNA for the PINNs framework for task 2

ssRNA dsRNA

1 2 3 4 5 1 2 3 4 5

500 24.7 (24.3) 28.6 (27.0) 38.2 (37.0) 45.9 (42.5) 53.6 (49.1) 23.2 (25.2) 25.8 (28.6) 32.7 (33.2) 38.3 (38.5) 43.8 (41.3)
1000 27.1 (25.8) 32.6 (29.7) 46.3 (43.3) 57.3 (51.5) 68.2 (61.7) 23.8 (26.5) 27.1 (30.8) 35.3 (35.9) 41.8 (42.0) 48.3 (45.2)
2000 29.8 (27.9) 36.2 (34.3) 55.2 (55.4) 69.8 (67.6) 84.3 (86.5) 24.6 (28.1) 28.3 (32.9) 37.6 (38.5) 45.1 (45.5) 52.5 (49.1)
3000 31.2 (28.8) 39.4 (36.2) 60.0 (60.0) 76.5 (73.9) 93.0 (95.6) 24.9 (28.9) 28.9 (34.2) 38.9 (40.1) 46.8 (47.5) 54.8 (51.4)
4000 32.3 (29.4) 41.3 (37.5) 63.8 (63.2) 81.8 (78.3) 99.8 (102.1) 25.2 (29.5) 29.3 (35.1) 39.7 (41.2) 47.9 (49.0) 56.2 (53.0)

The value in brackets is the ground truth.
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ing equation. We have employed the data generated using the
data augmentation approach in the PINNs model. In engineer-
ing and biomedical problems, data collection using numerical
or physical experiments is often expensive and time-consum-
ing. This study demonstrates that ANNs can be a useful tool
for determining complex relationships where governing solu-
tions are not clearly known or when there is insufficient infor-
mation regarding the relationship between input and outputs,
as seen through our discussion on nucleic acid electrophoretic
mobility.

Conclusion

An in-depth study of the electrokinetic behavior and result-
ing mobility patterns of dsRNA and ssRNA was conducted,
with the desired application of informing future assay proto-
cols and diagnostics. Characterization of RNA will be crucial
given the recent advancements in RNA therapeutic develop-
ment and the subsequent need for quality assurance, pri-
marily due to the potential for RNA degradation during the
formulation and storage processes. While current microflui-
dic chip-based devices for capillary gel electrophoresis face
the limitations of providing high-resolution for large RNA,
our study was able to characterize RNA mobility for up to
around 4000 bp, which includes the average mRNA length of
the human genome as well as the majority of current non-
self-amplifying constructs.47,48 The Ogston-like sieving
motion did not describe our data well, indicating limited
applicability to RNA of both single-stranded and double-
stranded nature above 80 bases. Our resulting mobility vs.
size graphs may provide guidance for future RNA mobility
studies in semi-dilute polymer solution as well as references
for mobility of long RNA, dsRNA, and modified RNA, which
have not been well studied previously. Points of differen-
tiation between dsRNA and ssRNA mobility in entangled
polymer solution were identified and may be coupled with
other identification methods, as described by our previous

work, for complete characterization. The potential to exploit
increased gel concentrations to exacerbate mobility differ-
ences between dsRNA and ssRNA was presented. Chemically
modified pseudouridine constructs demonstrated no statisti-
cal mobility difference from the non-modified strands, indi-
cating that the developed mobility models could potentially
be applied to modified and non-modified RNA molecules
alike.

Following a thorough experimental study of RNA mobility
in microfluidic electrophoresis, it was clear that there lacks a
comprehensive model that can be utilized to provide clear pre-
diction and/or observation of RNA mobility under varying con-
ditions. Real experimental conditions often result in
additional complications that static equations are not able to
adapt or account for. Due to the limitations of current models
and the importance of the prediction of RNA size and
migration time for assay development, ANNs were developed
to with the intent of guiding future therapeutic develop and
analysis with decreased experimental trial and error for
method development. It was believed that with adaption of the
model through modulation of the parameter and hidden
layers of the neural network, adequate prediction may be
made. This was proven by the low margin of error of final pre-
dications of the PINN.

Limitations of the developed model include generalizability
only to the ranges and conditions used to train the model.
While the tested RNA lengths can account for the sizes of most
current RNA therapies, the rapidly developing field of RNA
therapeutics could soon include far greater sizes. The vali-
dation of the model was done with limited samples due to
sample constraints, but we believe that the developed model
proves such methodology is feasible for the prediction of
complex relationships seen in microfluidic electrophoresis and
with biopharmaceutical development. As with our discussion
on chemically modified RNA, we hope that future studies with
greater variety of RNA samples can better validate and
strengthen our discussion of predictive models and their
applicability.

The findings presented in this study serve as an example
of how ANNs, particularly PINNs, can be used to comp-
lement limited data sets for assessing the electrophoretic be-
havior of single- and double-stranded RNA molecules. In
this study, using PINNs improved the relative error from
9.56% using the data-driven model in task 1 to 0.44% and
from 15.12% to 1.1% in task 2. The developed PINN has
applications in streamlining development of RNA thera-
peutics analytical methods through its ability to determine
optimal run conditions for given mRNA constructs lengths,
preventing potential overlapping of RNA target strand with
potential impurities, determining contaminant (i.e., dsRNA
or truncated ssRNA) length given the run conditions and
migration time, etc. This added capability can have signifi-
cant implications for the biopharmaceutical industry, where
machine learning can help streamline the development
process, which can involve countless permutations within a
given product.

Table 4 Details of the test samples used to evaluate the accuracy of
the ML models

Samples nb gc Mw tp lp mt

1 1000 0.01 320 659 1 2 25.84166667
2 500 0.04 160 409 1 2 42.46833333
3 1800 0.03 1 154 118 2 64 38.9425
4 80 0.02 51 598 2 64 22.89
5 700 0.02 449 018 1 2 29.855

Table 3 Relative L2 error (%) computed for five test samples for both
frameworks of ANNs for both tasks

Task 1 Task 2

Data-driven 9.56 15.12
PINNs 0.44 1.1
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