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Overcoming the strong chlorophyll background poses a significant challenge for measuring and optimiz-

ing plant growth. This research investigates the novel application of specialized quantum light emitters

introduced into intact leaves of tobacco (Nicotiana tabacum), a well-characterized model plant system for

studies of plant health and productivity. Leaves were harvested from plants cultivated under two distinct

conditions: low light (LL), representing unhealthy leaves with reduced photosynthesis and high light (HL),

representing healthy leaves with highly active photosynthesis. Higher-order correlation data were col-

lected and analyzed using machine learning (ML) techniques, specifically a Convolutional Neural Network

(CNN), to classify the photon emitter states. This CNN efficiently identified unique patterns and created

distinct fingerprints for Nicotiana leaves grown under LL and HL, demonstrating significantly different

quantum profiles between the two conditions. These quantum fingerprints serve as a foundation for a

novel unified analysis of plant growth parameters associated with different photosynthetic states. By

employing CNN, the emitter profiles were able to reproducibly classify the leaves as healthy or unhealthy.

This model achieved high probability values for each classification, confirming its accuracy and reliability.

The findings of this study pave the way for broader applications, including the application of advanced

quantum and machine learning technologies in plant health monitoring systems.

1 Introduction

Autofluorescence, the natural light emission from plant
tissues, poses a significant obstacle in accurately studying
their fluorescent properties, sometimes leading to inaccurate
determinations of photosynthetic activity.1–3 This phenom-
enon, primarily driven by chlorophyll emissions and other
light gathering proteins,4 can be affected by multiple variable
factors, including quenching and overlapping signals, making
it difficult to quantify and standardize the multiple parameters
associated with overall photosynthetic health and productivity.
Quantum dots (QDs), with their unique property of emitting
only one photon at a time, help to overcome this strong chloro-
phyll fluorescence commonly found in plants.

Due to their distinctiveness of light, QDs as quantum light
emitters are highly specific and reflective of their surrounding
conditions. Therefore, quantum light from QD-transformed

species is reflective of the environmental and intracellular con-
ditions of the organism. This property has led to the use of
quantum dots in plant systems,5 primarily as enhancers of
productivity and biosensors for pathogen and pollutant detec-
tion.6 Furthermore, QDs have been utilized to monitor nutri-
ent levels in plants, providing critical insights into their nutri-
tional status and enabling nutrient management strategies.7–9

Most recent applications have focused on utilizing QDs to miti-
gate abiotic stressors and enhance plant growth.6,10–14 As
quantum light emitters, QDs have the ability to monitor plant
health and distinguish sub-optimal growth conditions. Yet,
minimal research has been conducted on the role of QDs as
evaluators of plant productivity.

Understanding how QDs are used as quantum light emit-
ters requires first recognizing how the concept of light as dis-
crete energy quanta has led to advancements in studying
photon number properties. These developments have estab-
lished a foundational concept central to our current quantum
optics experiments. In an early 1956 study, Hanbury Brown
and Twiss15 conducted a groundbreaking experiment that dis-
tinguished between thermal and Poissonian light, marking a
pivotal moment in the study of optical coherence. This foun-
dation was further established in a 1963 study by Glauber and
Sudarshan16,17 introduced the quantum theory of photon cor-
relations. Their work focused on higher-order factorial†These authors contributed equally to this work.
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moments of photon-number distributions, providing a frame-
work to analyze and understand the behavior of light at the
quantum level.5,16–18 Their findings set the stage for advance-
ments in understanding the properties of light sources, brid-
ging classical and quantum optics.

The exploration of higher-order photon correlations has
since led to numerous applications, particularly in quantum
light emitters.19,20 Furthermore, this technology can be used
in a range of biological applications.21,22 Most notably, photon
correlation techniques have been applied in cancer diagnos-
tics. Detecting and treating cancer remains a major challenge
in medicine. Optics and photonics technologies have applied
principles of physics to enhance diagnostic methods.23

Furthermore, photon correlation spectroscopy (PCS), a special-
ized technique within photon correlation that analyzes fluctu-
ations in scattered light to determine the size and motion of
particles in a sample, has been used to study proteins and
other biomacromolecules in aqueous solutions. PCS has been
widely applied to investigate conformational changes in pro-
teins, their aggregation, and interactions with other molecules.
These studies help to reveal important native functions of pro-
teins, DNA, RNA, and even microorganisms like Escherichia
coli, Pseudomonas putida, and Dunaliella viridis.24,25

Furthermore, time correlated single photon counting (TCSPC)
is a technique that detects single photons from a periodic
light signal, records their detection times, and creates a distri-
bution of photons over the signal’s time period. This tech-
nique has numerous biomedical applications, such as time-
domain optical tomography, studying transient phenomena in
biological systems, spectrally resolved fluorescence lifetime
imaging, fluorescence resonance energy transfer (FRET) experi-
ments in live cells, and analyzing dye-protein complexes using
fluorescence correlation spectroscopy.26–28 However, there has
been limited research exploring photon correlation in plants.

In the past decade, data-driven approaches like Machine
Learning (ML) have opened up new opportunities for quantum
photonics experiments.29–32 ML models, known for handling
large and sparse datasets, have achieved significant speedups
in certain quantum measurements29,33–35 and offer a way to
overcome the limitations of traditional fitting methods,
especially in the low-photon flux regime.36–39 One notable
advancement is the development of a Convolutional Neural
Network (CNN)-based algorithm tailored for the rapid classifi-
cation of single-photon emitters within the nitrogen-vacancy
(NV) center of nanodiamonds.40–43 The CNN model improves
accuracy by identifying subtle features extracted from sparse
correlation data.

Logistic regression is a machine learning classifier used
when the outcome is categorical, most commonly binary (for
example, “success” vs. “failure”). It fits a sigmoid function to a
linear combination of input features to estimate class probabil-
ities, with parameters chosen to maximize the likelihood of
the data. In contrast, t-tests are a family of statistical hypoth-
esis tests used to compare the means of continuous data. A
one sample t-test determines whether a sample mean differs
from a known value. An independent (two-sample) t-test com-

pares the means of two separate groups, while a paired t-test
looks at the means from the same group under two different
conditions. Logistic regression and t-tests are limited to
simple, linear, or single variable comparisons, while CNN can
automatically learn complex, multi-level feature patterns.44,45

In this study, we aim to develop an innovative technique to
optimize plant productivity using a novel quantum-based fin-
gerprinting concept. The approach involves introducing bio-
compatible quantum dots (QDs) as quantum light emitters
into the leaf cells of tobacco plants. Plants were grown under
two distinct environmental conditions, low light (LL) and high
light (HL), to assess the technique’s applicability across
different growth scenarios. We hypothesize that QDs as
quantum light emitters provide a significant advantage over
methods using classical chlorophyll fluorescence detection,
which are often masked by plant pigments and light-absorb-
ing/quenching components in photosynthetically-active plant
tissues.2–4,46 Quantum light sources emit single photons with
unique quantum properties, allowing them to be optically dis-
tinguished from classical multiphoton light sources. This
optical quantum differentiation is achieved by leveraging
higher-order correlation functions to analyze and confirm the
quantum nature of the emitted light. To interpret the data, we
classify the quantum signals based on time resolved corre-
lation patterns using a Convolutional Neural Network (CNN)
model. The CNN is trained to extract subtle and complex fea-
tures from the data, enabling it to accurately differentiate
between the quantum properties of light that are emitted from
healthy and unhealthy leaves. This is done without inter-
ference from any other non-quantum light emissions within
the experimental leaf samples. This approach results in the
creation of distinct quantum fingerprints for each leaf, repre-
senting their unique quantum fluorescence characteristics.
Furthermore, we show that our pre-trained machine learning
model can classify the probabilities of emissions from experi-
mental categories, thereby predicting the derived quantum fin-
gerprints as being from healthy or unhealthy leaves. The
results show that quantum-based fingerprinting provides a
novel and effective way to characterize optimal plant growth
and monitor plant health under different conditions.

2 Method
2.1 Preparation of leaves and analysis of photosynthesis

Tobacco (Nicotiana tabacum var. SR1) leaves were prepared
under low-light (LL) conditions and high-light (HL) con-
ditions. All growing conditions were standardized in growth
chambers (24 °C, 12 h light/dark cycle, daily watering) except
for light intensity, which differed by 30 Å between groups. The
high-light group was exposed to 430 μmol photons per m2 per
s (430 × 10−6 Einstein per m2 per s), and the low-light group
received only 15 μmol photons per m2 per s (15 × 10−6 Einstein
per m2 per s) of light. Normal growth light conditions for
tobacco plants are between 400–450 μmol m−2 s−1 (400–450 ×
10−6 Einstein per m2 per s).47 LL conditions significantly
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decrease rates of photosynthesis, leading to reductions in
growth, stomatal conductance, intercellular carbon dioxide
levels, and transpiration rates.48,49 As a result, the LL group is
considered unhealthy compared to the HL group, which is
expected to affect quantum measurements.

To determine the photosynthetic efficiency of each experi-
mental group, we used the PhotosynQ MultispeQ V 2.0 fluori-
meter device (Photosynq Inc. East Lansing, MI 48823 USA).
The following parameters were analyzed for each tobacco leaf:
photosynthetically active radiation (PAR), non-photochemical
quenching, relative chlorophyll, and photosystem I active
centers. PAR was calculated by measuring the fraction of
incoming light that is active in promoting photosynthesis.50

Non-photochemical quenching infers plant health by measur-
ing the plant’s ability to dissipate excess light energy harm-
lessly as heat and is calculated by providing pulse-amplitude
modulation fluorescence. The chlorophyll content of each leaf
was calculated by measuring the ratio between the absorbance
of red (650 nm) and infrared (940 nm) light. Finally, the
number of active Photosystem I centers was determined by
absorbance-based measurements (810–940 nm).

These parameters provide a quantitative measurement of
the overall photosynthetic efficiency of each experimental group
of tobacco leaves. A total of sixteen leaves, eight from each
experimental group, were measured for this study. For each of
the 16 leaves, four separate photosynthesis parameters (PAR,
chlorophyll content, quenching, and Ps1 activity) were
measured, with all parameters indicating a reduction in photo-
synthetic activity under reduced lighting. For each of the two
growing conditions, there are 32 total photosynthesis measure-
ments, which clearly confirm a reduction in photosynthesis in
the LL experimental group. All measurements were collected
using the PhotosynQ 2.0 MultispeQ device, a handheld pulse
amplitude modulated chlorophyll fluorometer and multispec-
tral sensor. Each photosynthetic parameter was measured twice,
providing two technical replicates for each leaf (biological repli-
cate). This provided an optimal framework for assessing photo-
synthetic function under the two growth conditions.51

2.2 Biolistic transforation of leaves

Tobacco leaves were transformed using the Biolistic PDS-1000/
He Particle Delivery System, commonly known as the “Gene
Gun” (Bio-Rad PDS-1000/He). This system was used to deliver
custom gold microprojectiles coated with DNA and quantum
dots onto the abaxial surface of each tobacco leaf. We modified
previously published protocols for transformation of tobacco
plants.52,53 To prepare the microprojectiles, we added 0.1 M
Biotin-PEG-SH-Thiol (Nanocs MW 5000) to 20 μl of 66 nm gold
particles (Bio-Rad), creating a conjugated gold-biotin particle.
Green fluorescent protein (GFP) report gene was delivered via
the pBI121-GFP vector of a constitutive CaMV35S promoter.54

The GFP plasmid was added in a ratio of 10 μg DNA to 1.2 mg
of gold-biotin particles. The particles were combined with
25 μl of 2.5 M CaCl2, 10 μl of 0.1 M spermidine free base, then
vortexed for 15 seconds. The DNA-coated microprojectiles were
centrifuged at maximum speed for 5 seconds, washed with

100% EtOH, and resuspended in 24 μl 100% EtOH. Finally,
5 μl of Streptavidin Conjugate CdSe/ZnS core/shell Quantum
Dots (585 nm, Invitrogen Thermo Fisher Scientific) were
added to the particle solution. This linked the quantum dots
to the gold microprojectile via the Biotin-PEG-SH-Thiol linker
as shown Fig. 1.

After being detached from their host plant, each tobacco
leaf was bombarded twice at 900 psi by 8 μl of microprojectiles.
Stopping screens were placed 6 cm away from the Petri dish
containing the leaf. After bombardment, leaves recovered in
the dark for 24 hours, then were moved back to their initial
growth chambers prior to examining for GFP expression and
quantum fluorescence.

2.3 Development of quantum fingerprint

The photoluminescence (PL) of leaves was measured to
confirm the emission of QDs. A Hanbury-Brown and Twiss
(HBT) setup with four detectors is shown in Fig. 2. It was used
to measure second-order correlation that describes the prob-
ability of detecting two photons at different times, providing
information about the photon emission statistics. This work
expands upon previous findings,55 where an HBT setup is
employed to study photon correlation properties. Each path
leads to an Avalanche Photodiode (APD). Every photon that
arrives at the APD triggers a click recording the detection time.

Higher-order correlation data were collected and analyzed
using a machine learning model to classify the photon states.
Further details on the computational method can be found
in.56 The correlation data was compiled into a 3D matrix with
dimensions (4,4,2x + 1), where x is the bin number. Starting
with x = 6, the resulting matrix has dimensions (4,4,13), repre-
senting the g(2) correlation matrix. Each pairwise g(2) curve was
segmented into fixed length blocks of 13 delay bins, producing
input tensors of size 4 × 4 × 13 per sample. Before being pro-
cessed by CNN, each tensor was min-max normalized to the
interval [0, 1]. The 13 bin segmentation adheres to established

Fig. 1 Design of a multi-component gold projectile designed to carry
DNA and QDs into plant cells. Biotin PEG Thiol serves as a linker
between the gold microparticle and QDs. Green Fluorescent Protein
(GFP) serves as a visible genetic marker for successful cellular uptake,
which, when expressed, fluoresces green under ultraviolet light.
Streptavidin-conjugated QDs (emission spectrum of 585 nm) fluoresce
orange under ultraviolet light.
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quantum correlation measurement protocols, striking a
balance between finite duration normalization artifacts at
large bin widths which can produce unphysically low g(2)

values and overestimation due to photon bunching at very
short bin widths.57 Other segment lengths (n = 4, 5, 6, 7, 8)
were also evaluated, refer to Fig. S1 in the SI for more details.

Each sample in our experiment yields a 4 × 4 × 2001 corre-
lation tensor, based on second-order photon correlation func-
tions g(2)(τ) for all 4

2

� � ¼ 6 unique detector pairs (from four
APDs) over 2001 time bins. This produces 4 × 4 × 2001 = 12 006
correlation values per leaf, which encode rich temporal and
spatial information sensitive to plant health.

We then partition each full correlation tensor into multiple
segments of shape 4 × 4 × 13, resulting in hundreds of infor-
mative correlation blocks per leaf. These blocks serve as inde-
pendent inputs to our CNN. The sample size was determined
in accordance with established biological standards, yielding a
dataset of correlation fingerprints that is both significantly
larger and structurally rich.51

This matrix forms the foundation for creating a 2D
quantum fingerprint in tobacco leaf cells by normalizing the
matrix.

2.4 Classification of probabilities

The convolutional neural network (CNN) utilized in this study
was designed for binary classification based on quantum fin-

gerprint data. The model starts with a Conv2D layer that
includes 16 filters with a 3 Å3 kernel size and uses ReLU acti-
vation to help extract local spatial features from the input data.
Following this, a Flatten layer reshapes the 2D feature maps
into a 1D vector, making it suitable for the dense layers.

In the dense section of the network, there is a hidden layer
containing 32 neurons with ReLU activation, followed by a
final output layer with a single neuron using sigmoid acti-
vation to predict the binary class (e.g. HL vs. LL leaf). The
model was trained using the Adam optimizer and binary cross-
entropy as the loss function. Training was conducted for up to
20 epochs, with early stopping enabled to prevent overfitting.
A batch size of 1, appropriate for the dataset size was used,
and 20% of the data was reserved for validation during
training.

We validated CNN’s generalization using a strict leaf-level
hold-out instead of k-fold cross-validation or repeated runs.
This approach ensured that we did not mix data from the
same physical leaf between the training and testing sets.

After training, the model was used to classify leaves by pre-
dicting probabilities for each sample as either healthy or
unhealthy, providing a clear indication of its confidence in
each classification. To further validate its performance, the
trained model was tested on new, unseen data, where it suc-
cessfully assigned probabilities to each sample in the vali-
dation set, determining whether a leaf is healthy or unhealthy.
The model architecture and layer operations are illustrated in
Fig. 3.

3 Results

This study combines quantum technology and machine learn-
ing to analyze plant health productivity. Quantum dots (QDs)
were introduced into tobacco leaves to study their quantum
properties under different lighting conditions. The data
revealed clear differences between healthy and unhealthy
leaves, visualized as unique quantum fingerprints. The CNN
model accurately classified the leaves, achieving high probabil-

Fig. 2 Experimental layout for measuring higher-order correlation. (A)
The leaf under 365 nm UV light (B) the stereo microscope (C) the leaf
under stereo microscope (D) the Hanbury Brown and Twiss (HBT) set up
with 50 : 50 Beam Splitters : BS, and detected by Avalanche
Photodiodes : APDs connected to a Correlation Board : CB.

Fig. 3 Schematic of the CNN model for probability classification. The
architecture consists of a convolutional layer, followed by a Conv2D
layer with 16 filters and a (3 Å3) kernel, activated using ReLU. A flattening
layer converts the convolutional output into a 1D feature vector. The
model includes dense layers for binary classification: one with 32
neurons and ReLU activation to learn complex feature representations,
and a final dense layer with a single neuron and sigmoid activation for
classification.
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ities for both HL and LL categories, demonstrating the effec-
tiveness of this approach in plant health productivity.

To determine the productivity of tobacco leaves on a cellu-
lar level, we measured photosynthetic parameters based on
light-driven fluorescence and absorbance changes via LED
light. As expected, the tobacco plants used in this experiment,
which were grown under reduced light intensity, exhibited
lower rates of photosynthesis. Thus, the parameters for
tobacco grown under HL will have high photosynthetic activity
than plants grown under LL. Overall, we observed statistically
significant differences in all parameters between HL and LL
tobacco leaves (Fig. 4). Therefore, tobacco leaves from both
experimental groups have contrasting rates of photosynthesis,
which will be reflected in their quantum fingerprint.

The gold microprojectiles were specifically engineered to
serve as carriers for both DNA and QDs into the tobacco plant
cells. This design successfully allowed for the microcarrier and
its components to gain cellular entry through biolistic trans-
formation. Our constructed microprojectile links biocompati-
ble quantum dots and Green Fluorescent Protein (GFP) repor-
ter gene to gold nanoparticles as shown in Fig. 1. Therefore,
the GFP marker serves as a confirmation of delivery of the
microprojectile into tobacco leaf cells. When the GFP reporter
gene entered the cell nucleus, green fluorescence was observed
under ultraviolet light, indicating the entry of all components,
including streptavidin-conjugated quantum dots (Fig. 5).
Additionally, orange fluorescence was observed on both HL
and LL leaves, confirming the presence of quantum dots. Both
green and orange fluorescence was observed in HL and LL
leaves.

The successful emission of QDs was confirmed through a
photoluminescence spectrum, as illustrated in Fig. 6. The plot
highlights distinct emission peaks corresponding to the key
components introduced into the tobacco leaf cells.

Specifically, the GFP exhibited a strong peak around 500 nm,
indicating successful expression within the plant cells. The
QDs displayed a prominent emission peak at 585 nm, verifying
their presence and functionality as quantum light emitters.
Additionally, a characteristic chlorophyll fluorescence peak
was observed at approximately 680 nm, reflecting the natural
autofluorescence of the plant. These well-defined peaks
confirm the successful integration and activity of both GFP
and QDs within the leaf cells, alongside the expected chloro-
phyll fluorescence background.

We generated four quantum fingerprints for leaves under
LL and HL, as illustrated in Fig. 7. The data showed noticeable
differences between tobacco plants with low and high-light
conditions demonstrating the impact of photosynthetic activity
on the quantum properties of the emitted light. The finger-
print is visualized as a 4 × 4 2D plot, where each detector pair
correlation contributes 13 data points. These points appear as
small rectangles on the plot, resulting in 208 segments across
the entire plot. The diagonal elements always show zero as
they represent correlations between the same detectors, and

Fig. 4 Fluorescence and absorbance-based photosynthetic parameters
indicate higher photosynthetic activity in HL vs. LL tobacco leaves. (A)
Light intensity via photosynthetically active radiation (μmol photons per
m2 per s). (B) Non-photochemical Quenching measures each leaf’s
ability to dissipate excess absorbed light energy as heat. (C) Relative
chlorophyll content (μmol of chlorophyll per m2 of leaf ), calculated by
measuring the absorbance at 650 and 940 nm. (D) The fraction of
Photosystem I centers that are active is calculated via a ratio of Fo (fluor-
escence level of a dark-adapted leaf with all Photosystem acceptors
fully oxidized) to Fm (the maximum fluorescence achieved when all
acceptors are fully reduced). This ratio is typically between 0.75 and
0.85 for healthy/light-sufficient leaves. Statistical significance is deter-
mined by a two-sample equal variance t-test: (*p < 0.05), (**p < 0.01),
(***p < 0.001).

Fig. 5 Successful delivery of a multi-component microprojectile into
tobacco leaf cells facilitated introduction of quantum dots. (A)
Stereoscope image of a HL tobacco leaf under ultraviolet light (365 nm)
shows strong GFP and quantum dot fluorescence. (B) Stereoscope
image of a LL tobacco leaf under ultraviolet light (365 nm) also shows
GFP and quantum dot fluorescence, confirming successful microprojec-
tile penetration.

Fig. 6 Photoluminescence (PL) spectrum of the tobacco leaf showing
distinct emission peaks for Green Fluorescent Protein (GFP) at 500 nm,
quantum dots (QDs) at 585 nm, and chlorophyll at 680 nm.
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the off-diagonal elements represent the time correlation values
between different detector pairs.

These results suggest that quantum readings are affected by
differences in photosynthetic productivity and health status.
Using a novel quantum-based fingerprinting concept, we
developed a higher-order photon correlation to optimize plant
productivity.

The probabilities of the healthy and unhealthy validation
leaves are summarized in Table 1. The model predicted a 91%
probability of being HL and a 9% probability of being LL for
the healthy validation leaf. Similarly, it predicted an 84% prob-
ability of being unhealthy and a 16% probability of being
healthy for the unhealthy validation leaf.

Our results are based on the classification of correlation
blocks, with the final accuracy reflecting the model’s ability to
distinguish between different health states at the block level
rather than on a per-leaf basis. To prevent overfitting and
enhance generalization, we employed several regularization
strategies. First, we implemented early stopping to halt train-
ing once the validation loss stopped improving, ensuring that
the model did not learn from noise. We also used a batch size
of 1, which maximizes data diversity in each gradient update,
an approach that is particularly important given the limited
dataset. Additionally, we applied data normalization to ensure
that all input features are on a consistent scale, which sup-
ports stable and efficient model training.

This confirms the accurate identification of leaves as
healthy or unhealthy using the CNN model.

Ongoing experiments aim to explore further the link
between quantum profiles and the optimization of productivity
of tobacco plants.

4 Conclusions

Our study demonstrates the potential to link quantum data to
plant photosynthetic health under varying growth conditions,

revealing significant differences between high-light (HL) and
low-light (LL) environments. Light intensity, the critical
growth condition we altered, significantly affected several
photosynthetic parameters. The intensity of incoming light
was directly related to the amount of light used for photosyn-
thesis, and the ability to dissipate excess light energy as heat.
As expected, chlorophyll content was also directly related to
light intensity, since chlorophyll is the primary light-capturing
molecule in plants and the activity of Photosystem I was more
efficient in HL leaves. Photosystem I activity infers that HL
leaves are healthier since they have a higher fraction of mole-
cules converting light into chemical energy. Though the photo-
synthetic parameters we analyzed do not provide an overall
measurement of photosynthetic activity for a plant, they estab-
lish a baseline indication of plant photosynthetic state.
Incorporation of photosynthetic parameters such as stomatal
conductance, electron transport rate, and protein and enzyme
activity would create a more comprehensive measurement of
plant health.58,59 Correlating the combined, synergistic effects
of these parameters with quantum profiles will further train
our machine learning algorithm, and correlate plant responses
to environmental stressors.

QDs introduced into the tobacco showed different quantum
emissions under the two growth conditions, HL (more photo-
synthetically active) versus LL (less photosynthetically active),
reproducibly responding quantitively to overall levels of photo-
synthesis in leaves of plants grown under the two light con-
ditions. At this stage, we have not identified specific photosyn-
thetic pathways, components or cell compartments that are
affecting the overall quantum emissions. Photosynthesis is a
complex process, involving a number of biochemical reactions,
including the initial energy/redox-generating photosynthetic
electron transport (PET) and photosynthetic carbon reduction
(PCR, Calven-Benson), as well as downstream metabolic path-
ways.46 Together these involve multiple cell compartments and
structures (cytoplasmic, chloroplast, and mitochondria). Many
of these processes are membrane-bound, others are soluble.46

In cellular systems Quantum dot emissions are very dependent
on their physical location surrounding environment.60–64 Due
to the non-specific Biolistic delivery system into intact leaves,
it is likely that the overall QD emissions detected were a com-
bined effect generated from different cell compartments, bio-
chemical structures, and biochemical pathways associated
with reduced photosynthetic function under the two plants
growth conditions. Continuing experiments will involve
specific targeting of QDs to specific structures, such as mem-
branes, as well as linking the QDs to specific photosynthetic
proteins, such as ATPase, electron transport components,
redox-associated and carbon metabolism enzymes, using
methods incorporated into many other studies and
organisms.60,61 In this way, this first general assay can be
refined for analysis of specific photosynthetic processes
affected by biotic or abiotic effectors.

An important feature of our approach is that quantum dot
photon emissions are inherently stochastic and memoryless:
each emission event is independent of the previous one. This

Fig. 7 Quantum fingerprints for healthy leaf grown in HL conditions
(top), and an unhealthy leaf grown in LL conditions (bottom).

Table 1 Validation results for healthy and unhealthy leaves

Validation type Time/step
Healthy
probability

Unhealthy
probability

Healthy validation leaf 0 s 54 ms per step 0.91 0.09
Unhealthy validation
leaf

0 s 46 ms per step 0.16 0.84
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property has been widely exploited in the field of quantum
random number generation, where the independence of suc-
cessive photon detection events provides true physical random-
ness. Herrero-Collantes and Garcia-Escartin65 provided an
expansive review article covering the field. When constructing
second-order correlation functions g(2)(τ), we bin these inde-
pendent photon events into time delays. Segmenting the corre-
lation functions into shorter blocks therefore yields statistically
independent realizations of the emission process, rather than
correlated subdivisions of a continuous curve at very short
times, photon bunching can occur, a well-known feature in
quantum optics. This is one reason we chose to segment the
correlation curves, since short-time structure provides
additional quantum information, particularly for solid-state
emitters where environmental coupling and blinking can play
a role.66 In support of this perspective, we have also recently
demonstrated that machine learning models can analyze
higher-order Fock state statistics to categorize different types
of light including random, coherent, and quantum light pro-
viding a robust framework for extracting meaningful features
from quantum emission data.67 While the total number of bio-
logical replicates constrains the broader generalization of our
study, segmentation provides multiple statistically indepen-
dent realizations of the emission process, which serve as valu-
able inputs for CNN training without overstating the effective
biological sample size.

Our findings provide a new method for correlating
quantum light from quantum dots to photosynthesis in
tobacco plants, which offers a novel way for monitoring plant
health. Our results encourage further research on species with
significant applications in agriculture, due to the heightened
frequency and intensity of environmental conditions. As part
of our future plan, we aim to refine and expand the approach
to analyze a wider variety of plants and algae, including those
from different species and under diverse environments as well
as a range of abiotic and biotic stress conditions. These
include, but are not limited to, water-depletion, extreme heat,
chemical-contaminated soils, and pathogen-infection, all of
which can affect photosynthetic function.46 By advancing the
integration of quantum technology and machine learning, this
research lays the groundwork for innovative approaches to
monitoring and improving plant productivity. Furthermore, we
expect the Biolistic/QD analytical system described here will be
expandable from laboratory conditions to field work, using the
portable HeliosTM gene gun system.68,69 This portable biolistic
system does not require a vacuum and uses a hand-held deliv-
ery gun that can target coated microprojectiles into leaves and
other specific tissues on intact plants.70–72
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