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The correct identification of different bacteria is a critical task in clinical applications and basic research

especially in the oral cavity which has a complex bacterial community. Complementary to a variety of

phenotyping and genotyping methods, we propose FTIR spectroscopy as a fast and non-destructive tech-

nique for accurate bacterial identification. This technique can be used to investigate the chemical makeup

of a given sample and also allows for bacterial classification at strain level. In this work, we investigate the

ability of ATR-FTIR spectroscopy to identify different oral bacteria from known laboratory stains as well as

strains from patient-derived samples. Using this technique, six measured species could be classified with

high accuracy (>97%) using chemometric models. Furthermore, the model which was only trained with

laboratory strains could still correctly identify the patient-derived strains at the genus level. These results

open the possibility of constructing a simplified tailored classification model based only on a target

species and few other representative species, while still being able to distinguish the target species from a

much larger number of other bacterial species for application to oral microbial communities.

Introduction

The bacterial community found in the human oral cavity is
extremely diverse, typically composed of more than 700
different species.1 These bacteria tend to form multispecies
biofilms on both soft and hard tissues within the oral cavity
including the oral mucosa, teeth as well as periodontal
pockets, potentially leading to severe dental diseases such as
caries or periodontitis.2,3 Inflammatory conditions have been
shown to be induced by specific bacterial species eliciting the
host’s immune response.4 In order to form biofilms, early
colonisers, mainly Streptococcus species, are equipped to

adhere to the salivary pellicle and other surfaces in the oral
cavity. Adherence of other bacterial species to these early colo-
nisers then promotes biofilm maturation.5 Soon after initial
adhesion, the bacteria embed themselves in a matrix of extra-
cellular polysaccharides (EPS) which promotes stronger
adhesion and shields them from anti-microbial agents, the
immune system and bacteriophages.6 Biofilm formation also
facilitates simplified gene transfer and fosters antibiotic
resistance.7

Due to the makeup of this biofilm, pathogenic oral multi-
species biofilms are often detected at a later stage and early
intervention remains challenging. Developing methods for
early detection of pathogenic disease-forming biofilms can
provide a means for targeted therapy, minimizing the loss of
healthy tissue and/or implants. Certain bacterial species, such
as Porphyromonas gingivalis are known to be prevalent for
disease-related biofilms.8–10 Hence, classification of the
patient specific bacteria can be used to identify the presence
of pathogens such as Porphyromonas gingivalis and allows for
tailored therapeutic interventions, especially in the critical
early stages of the disease.

There are currently several approaches for bacterial typing,
ranging from phenotyping techniques like serotyping or anti-
biogram to genotyping methods including PCR and whole
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genome sequencing (WGS) as well as indirect measures of
genetic sequences like pulsed-field gel electrophoresis.11 The
latter has been considered the gold standard of bacterial
typing and was used in many epidemiological studies.
However, it requires specific protocols for each bacterial
species and is difficult to standardize across different labora-
tory settings.12,13 In recent years, WGS and similar techniques
have become more important in bacterial typing due to
reduced cost and operation time.14 Although real-time sequen-
cing can provide comprehensive genetic information and
enable the analysis of mixed samples, the technique is labour-
intensive and rarely used in clinical settings due to time con-
straints especially in critical cases.14 But development in this
direction is ongoing.15 In the case of early detection of specific
pathogens in dental biofilms, a fast and cost-effective method
is needed, that can be used for routine examination and would
allow for early and targeted intervention.

Vibrational spectroscopy can be a useful tool in bacterial
classification. Both Fourier transform infrared spectroscopy
(FTIR) as well as Raman spectroscopy have been successfully
used to identify different bacteria at the strain-level.16–19 Both
methods are non-destructive and investigate the chemical
makeup of a sample by detecting the excitation of vibrational
modes within molecules. Since the selection criteria of the
excited modes are technique-specific, FTIR and Raman can be
viewed as complementary. Our work focuses on the use of
FTIR spectroscopy, however similar approaches using Raman
spectroscopy can be found elsewhere.20,21

FTIR spectroscopy relies on mid-IR light with wavelengths
ranging between 2.5 µm and 25 µm (wavenumber: 4000 cm−1–

400 cm−1). Vibrational modes of molecular bonds are excited
by the infrared light with resonant wavelengths.22 The result-
ing spectrum of a sample shows an overlay of certain peaks
which can exhibit a very complex structure. The specific spec-
tral pattern is unique to the chemical makeup of a bacteria
and as such, it can be used to accurately and consistently
identify and differentiate bacterial species and strains.
Attenuated total internal reflection (ATR) spectroscopy is often
employed for this purpose, since it requires little to no sample
preparation. Previous studies have shown the usefulness of
FTIR to identify pathogens of food born and clinical illnesses
such as Listeria monocytogenes,23 Staphylococcus aureus,24 and
Salmonella enterica.25 FTIR has also been applied to detect
antibiotic resistances in bacteria and distinguish between anti-
biotic resistant and susceptive strains.26–28

In combination with chemometric models, FTIR spec-
troscopy offers a non-destructive and fast alternative to
common techniques. The combined information on the peak
position, overall band-shape and the ratio of peak intensities
enables the classification of different spectra. Although the
increase in computational power over the last decades has
popularized the use of complex machine and deep learning
approaches, classical chemometric models and multivariate
analysis are still primarily employed for bacterial classification
yielding high accuracy. For accurate classification of unknown
bacterial species, however, the system must first be trained on

a spectrum of the species in question. This requires acqui-
sition of thousands of spectra from hundreds of bacterial
species and strains that especially present in the oral cavity. To
our knowledge, a comprehensive and publicly available spec-
tral data bank for bacterial species does not exist at the
moment. Although the establishment of a data bank has been
proposed, its implementation remains difficult to achieve in
practice because differences in sample preparation and instru-
mentation can yield altered spectra. An alternative approach
would be to have a reduced spectral library, including only a
few species with representative strains and evaluate if related
strains of the same genus can still be identified.

In this work, we cultivated and measured six different oral
bacteria species that play an important role in biofilm develop-
ment using ATR-FTIR spectroscopy. Chemometric models were
trained to classify these spectra and then used to distinguish
between the different species. In addition, 15 patient-derived
strains of oral bacteria were cultivated and measured. These
strains were also classified using the same chemometric
models. Lastly, we investigated the ability of the chemometric
models to identify the FTIR spectra of patient-derived bacterial
species that have been previously unknown to the model based
on the training data of six explementary species. This study
opens future applications of FTIR spectroscopy and chemo-
metric models for bacterial typing, as part of a workflow for
biobanking and clinical diagnosis.

Experimental methods
Sample preparation

Six bacterial species were used, in the following referred to as
laboratory strains. Actinomyces naeslundii (DSM 43013),
Veillonella dispar (DSM 20735), Porphyromonas gingivalis (DSM
20709) and Fusobacterium nucleatum (DSM 15643) were pur-
chased from the German Collection of Microorganisms and
Cell Cultures (DSMZ; Braunschweig, Germany). Streptococcus
oralis (ATCC 9811) and Aggregatibacter actinomycetemcomitans
(MCCM 2474) were obtained from the American Type Culture
Collection (ATCC; Manassas, VA, USA) and the Microbial
Culture Collection Marburg (MCCM; Marburg, Germany),
respectively. All species were kept as glycerol stocks at −80 °C
prior to experiments. S. oralis, A. naeslundii and V. dispar were
individually incubated in 10 ml of brain heart infusion
medium (BHI; CM1135B, OXOID, Hampshire, United
Kingdom) supplemented with 10 µg ml−1 Vitamin K for
24 hours at 37 °C in anaerobic conditions (air tight contain-
ment with Thermo Scientific™ Oxoid™ AnaeroGen™ 2.5 L
bags (Fisher Scientific GmbH, Schwerte, Germany)).
A. actinomycetemcomitans was incubated in 10 ml Todd-Hewitt
broth medium (THB; CM0189, OXOID) supplemented with
10% yeast extract at 37 °C in a 5% CO2 incubator for 48 hours.
F. nucleatum and P. gingivalis were first streaked on fastidious
anaerobe agar plates (NCM2020A; Neogen, Lansing, MI, USA)
supplemented with 5% defibrinated sheep blood (SR0051X;
OXOID) for 72 hours in anaerobic conditions at 37 °C prior to
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liquid culture. The bacteria were collected from the agar plate
and cultured in 10 ml of sterile fastidious anaerobe broth
medium (FAB; LAB071, Neogen). P. gingivalis and F. nucleatum
were incubated at 37 °C in anaerobic conditions for 48 and
24 hours, respectively. Three individual cultures from each
bacteria species were prepared according to the protocol
above. After their respective incubation times, all samples were
centrifuged in an ultracentrifuge (Avanti JXN30; Beckman
Coulter, Brea, CA, USA) at 4000g for 15 minutes at 4 °C.
Afterwards, the supernatant was removed and the pellet was
resuspended in 8 ml of ultrapure water. All samples were
washed three times by centrifugation for 5 minutes at 2000g
and resuspended in ultrapure water to ensure the removal of
any excess medium prior to fixation. All samples were then
fixed using 4% freshly prepared paraformaldehyde (PFA) solu-
tion. After the last washing step, the pellet was resuspended in
4% PFA instead of ultrapure water and left at room-tempera-
ture for 20 minutes. Afterwards, the samples were centrifuged
again, the PFA was removed and the pellet was resuspended in
ultrapure water. Once again, three washing steps, with a
15 minutes long pause in between, were performed to clear
the sample of excess PFA. After washing and fixation, all
samples were stored at 4 °C prior to measurement.

A total of 15 patient-derived strains were obtained from the
CCUG and BiobankBIT culture collections, further information
on the strains can be found in Table 1.29 The bacterial strains
used in this study were either previously published or obtained
from established clinical culture collections (see Table S1†).
No strains were isolated directly from patient samples by the
authors; therefore, no additional ethical approval was
required. All species were streaked on fastidious anaerobe
agar, supplemented with 5% sheep blood (MSPS_029) [46 g
L−1 fastidious anaerobe agar (FAA, LAB090/NCM2020A; LabM/
Neogen), 5% sheep blood (SR0051E; Thermo Scientific)] from
glycerol stocks, incubated for 72 hours or 96 hours and in case
of P. gingivalis strains, cultured at 37 °C in an anaerobic
chamber with 5% CO2. All bacteria grown on plates were
scraped and mixed in 1 ml of ultrapure water. The bacteria

were washed and fixed as described above. For all samples,
preparation was repeated three times, cultured on different
days.

FTIR spectroscopy

All measurements were performed using a FTIR spectrometer
(Spectrum Two, L160000E, PerkinElmer, Waltham, MA, USA)
with a DTGS detector. The spectrometer was equipped with an
UATR-Accessory (L1600129, PerkinElmer) including a single-
bounce diamond ATR-crystal. The spectral acquisition was
done using the Spectrum 10 software (PerkinElmer) within the
wavenumber range between 400 cm−1–4000 cm−1, with a
resolution of 4 cm−1 and 10 spectra recorded and averaged per
measurement. Prior to measurements being taken, a back-
ground spectrum was acquired automatically when starting up
the program. All samples were vortexed before measurement
and 1 µl sample was pipetted onto the ATR crystal. The spec-
trum was acquired after 5 minutes or after complete evapor-
ation of the residual water. After the measurements, the ATR
crystal was cleaned using 70% ethanol before the next sample
was placed onto the crystal. For the laboratory strains, 40
spectra per stock were acquired or a total of 120 spectra per
species. For the patient-derived samples, 10 spectra per stock
with a total of 30 spectra per species were recorded.

Data pre-processing and analysis

All spectra were pre-processed using OriginPro (Version 2022;
OriginLab Corporation, Northampton, MA, USA) following the
same protocol. After loading in OriginPro, all spectra were
vector normalized and scaled to [0,1]. Principle component
analysis (PCA) was performed for first evaluation of the data.
Prior to PCA analysis, the data was mean centred using
MATLAB R2021b (MathWorks, Inc., Portola Valley, CA, USA).
For further analysis and classification, the classification
toolbox for MATLAB was used.30 For all classification, the data
set was split into training and test set. In order to avoid bias in
the classification, several techniques can be used to split the
data and achieve nearly random distribution.31 The MLM
algorithm proposed by Santos et al. is freely available for
MATLAB at https://doi.org/10.6084/m9.figshare.7393517.v1.31

This algorithm was used to split the laboratory species as well
as the patient species data into training and test set at a ratio
of 80 : 20, respectively. This resulted in a laboratory species
training set containing 572 spectra and a test set containing
144 spectra. The patient data set contains 359 spectra in the
training set and 90 spectra in the test set. Column and row
pre-processing can also potentially exert a strong impact on
the classification results.

The classification toolbox allows for automatic column and
row pre-processing of each data set before training the models.
The ideal pre-processing was chosen, based on exploratory
data analysis of each data set. For row pre-processing, standard
normal variate, multiplicative scatter correction, first and
second derivative were tested. For column pre-processing
mean centering, auto-, variance- and range scaling were tested.
For the laboratory species, the first derivative was chosen as

Table 1 Overview of patient-derived samples, the corresponding refer-
ence numbers from other culture collections can be found in the ESI S1†
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row pre-processing. Although the second derivative is known
to better resolve overlapping peaks and is therefore widely
used in secondary protein analysis,32,33 the first derivative per-
formed better in classification for the given data set. As
column pre-processing, variance scaling was chosen and
applied across all wavenumbers. For the patient-derived
spectra, standard normal variate was chosen as row pre-proces-
sing and mean centering as column pre-processing. Only the
spectral region between 800–1800 cm−1 was used for
classification.

Results

To develop a fast and non-destructive method for accurate oral
bacteria identification in clinical dentistry and basic research,
the present study used ATR-FTIR spectroscopy to characterize
six oral bacterial strains. The generated spectra were then used
to train a chemometric model that allowed for the successful
identification of patient-derived bacterial species.

FTIR spectra of six different oral bacteria

In order to use FTIR spectroscopy to assess a biofilm’s state
and development, the technique must be able to distinguish
between the spectra of different species. In general, bacterial
spectra can be divided into different regions, based on signals
from different types of macromolecules. Fig. 1 shows an
example spectrum with these different parts highlighted. The
definition on these parts was first proposed by Naumann
et al.34,35 and has been widely adopted by many researchers in
the field. The most relevant biological signals are between
3600–2800 cm−1 and 1800–400 cm−1. The region in between is
considered to be biologically silent because there are no sig-
nificant peaks from biological components.36 Although the
signal of Amide I and II in region C (Fig. 1) are the most pro-
minent in biological samples, they cannot be used to classify
specific bacterial species, because they arise from all proteins

which are present in the sample. For classification purposes,
regions F and G are of particular interest, since they provide
insights into specific molecules present in the sample. In
region F, also called the polysaccharide region, the absorption
bands of symmetric stretching of PO2 groups and stretching
vibrations of C–O–C and C–O–P can be seen, mostly resulting
from carbohydrates.34,37,38 Region G which is also referred to
as the ‘real’ fingerprint region shows multiple weak and very
specific peaks from nucleotides and amino acids.

The laboratory strains used in this study are representative
members of certain groups of bacteria that are crucial in oral
biofilm development. S. oralis and A. naeslundii were chosen
as common early colonisers, with V. dispar and F. nucleatum
acting as bridging bacteria and paving the way for attachment
of pathogenic bacteria like P. gingivalis and A. ac as seen in
mature biofilms.39 Spectra of the six different laboratory
strains are shown in Fig. 2A. The overall spectral band shape
showed similarity across all species, due to the presence of
common biological macromolecules as described before.
However, slight differences could be observed among the band
shapes. Fig. 2B shows the biologically most relevant region
between 400–1800 cm−1, that was also used for classification.
Most prominent differences between the spectra could be
observed at lower wavenumbers, especially in the region
between 950–1200 cm−1 (Fig. 2C). This corresponds to the
PO2

− symmetric stretching from nucleic acids. Clear differ-
ences between the species could be observed in this region
due to the differences in the bacterial genome GC content.

An important aspect of species phenotyping using FTIR
spectroscopy is the practical need to minimize the variation in
sample preparation. Some studies have shown that the growth
medium, culture conditions and sample handling can change
the spectra of the species in some cases.40 This effect seems to
be species dependent as other studies have, in contrast, found
little to no effect.41 In the present study, different bacterial
species were cultured in different growth media, due to their
auxotrophic nature towards specific nutrients. Extra washing
steps were implemented to ensure complete removal of
medium before measurement. Nevertheless, this did not seem
to influence the overall capability of FTIR to differentiate
between the species. A PCA of all spectra can be seen in
Fig. 2D, which clearly showed clustering of the individual
species. Fig. 2E shows the PCA of each species, each symbol
representing spectra from a different sample run. It could be
observed that for spectra of some species, such as S. oralis and
V. dispar, samples from individual culture batches cluster
together whereas spectra of the other species are more homo-
genously spread. This observation supports the hypothesis of
species dependency, which implies that some species may be
more susceptible to small variations in sample preparation.42

Multivariate classification and differentiation of bacterial
species

In order to classify the data and demonstrate the ability of
multivariate methods to correctly identify bacterial species by
their FTIR spectrum, as a first step, linear discriminant ana-

Fig. 1 Exemplary FTIR spectrum of bacteria with important functional
regions assigned according to Naumann et al.34,35 (A) 4000–3100 cm−1

–OH and N–H stretching modes, (B) 3100–2800 cm−1 C–H stretching
vibrations of –CH3 and >CH2 corresponding to fatty-acid chains of
membrane amphiphiles, (C) 1800–1500 cm−1 amide I and II arising from
the amide groups of proteins, (D) 1500–1300 cm−1 bending modes of
>CH2 and >CH3 from lipids and proteins40 (E) 1230 cm−1 >PvO asym-
metric stretching from phospholipids, (F) 1200–900 cm−1 PO2

− sym-
metric stretching from nucleic acids, (G) 900–600 cm−1

fingerprint
region.
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lysis was used. Linear discriminant analysis (LDA), is often
combined with dimension reduction methods like PCA, since
the number of samples needs to be larger than the number of
variables. Fig. 3 shows the scores on first and second canonical

variable of LDA performed on the first 10 principal com-
ponents. The first 10 PCs explained 97% of the variance of the
data. The six laboratory strains clustered accordingly and
could be well distinguished from each other.

Fig. 2 FTIR spectra of six different bacterial species, (A) mean spectra with standard deviation shown, (B) zoomed in view between 1800–400 cm−1,
(C) zoomed in view between 1200–950 cm−1, (D) PCA of all spectra, (E) PCA of individual species, markers show each sample run.
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The results shown in Fig. 3 are based on the training data,
and correspond to 80% of all spectra per species. In order to
assess the classification ability of this technique, the remain-
ing 20% of spectra were used as a test set which had not been
seen by the network previously. Table 2 shows the prediction
results from the test set on the model, previously trained only
on the training set. As illustrated, the model was nevertheless
able to accurately predict the correct class for all spectra within
the test set.

The sensitivity, specificity and accuracy of the predictions
made by the model for each species were calculated during
cross-validation (CV), and the prediction of the test set (Test)
can be found in the ESI S2.† PCA-LDA was found to be able to
classify an unknown test set with 100% accuracy. These results
strongly underscore the fact that FTIR spectroscopy is an excel-
lent and highly specific method to distinguish and identify
oral bacteria at species level.

FTIR measurement of patient-derived oral bacteria

In order to test the capability of FTIR within clinical appli-
cations, patient-derived samples of varying strains and subspe-
cies were measured. Different strains of F. nucleatum and
P. gingivalis were chosen, due to their clinical relevance in

pathogenic biofilms within the human oral cavity. These
strains are known to be an indicator of a shift in species distri-
bution towards a more pathogenic situation.43 In addition,
S. oralis was chosen as a control since it is present in most bio-
films and should not interfere with the identification of patho-
gens. Fig. 4 shows the mean spectra of the different patient-
derived strains. In every graph, the corresponding laboratory
strain is shown as a reference. For most species, the patient-
derived strains showed similar band shapes with only minor
differences. A clear exception is P. gingivalis sample SPS_791
which showed very different band shape from all other
Porphyromonas species as well as all other species measured,
even though Saenger sequencing of this patient-derived strain
has confirmed its taxonomy as P. gingivalis. Thus, we identified
a P. gingivalis strain with a unique chemical fingerprint of an
unknown origin. To exclude contamination during cultivation,
the spectra were collected from three independent cultures on
MSPS_029. However, they still showed consistent spectral pat-
terns with little to no differences. Hence, further microbiologi-
cal investigations are needed to analyse potential differences
in cell wall composition or metabolism of this particular strain
in the future.

Multivariate classification of patient-derived oral bacteria

Similar to the laboratory strains, PCA-LDA was performed on
the patient-derived species. The patient-derived species of each
genus showed very similar band shapes. The score plot in
Fig. 5 illustrates the clear clusters that were observed between
the three genera, as well as between the individual strains.
This pattern was further confirmed, when testing the trained
model with the patient-derived spectra as test data. The corres-
ponding accuracy, sensitivity and specificity was calculated
and can be found in the ESI S3.† All samples could be classi-
fied with high accuracy. Since the test set only contained six
spectra per strain, the analysis was performed multiple times
with varying spectra in the training and test set with similar
results. S4† presents the results of a representative classifi-
cation run.

Multivariate model based on laboratory species for
classification of patient-derived samples

Since the number of bacterial species in the oral cavity is vast,
and incorporation of all known species in a PCA-LDA model
would accordingly be extremely complex and time consuming,
we additionally tested, if the model trained with only the lab-
oratory data could nevertheless accurately identify the patient-
derived strains. With this approach, it would be possible to
create a reduced model and limit it to a representative strain
of one species or even genus, which would still facilitate accu-
rate classification of all similar strains of the respective
species.

In addition to PCA-LDA, two additional multivariate classi-
fication models were tested for this purpose, namely partial
least squares discriminant analysis (PLS-DA) and k-nearest
neighbour classification (k-NN). These models have all been

Fig. 3 Score plot on first two canonical scores of PCA-LDA of the six
laboratory species data.

Table 2 Result of classification test set of laboratory strains. The
abbreviations are as follows: S. oralis (SO), A. naeslundii (AN), V. dispar
(VD), A. actinomycetemcomitans (Aac), F. nucleatum (FN) and
P. gingivalis (PG)
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selected because they have been shown to be able to classify
similar data sets with high accuracy.44,45

All models were trained using the same laboratory species
data set and initially tested with the same laboratory species
testing set, with all three showing similar results to the
PCA-LDA as shown previously. The results can be found in the
ESI (S5 and S6).† In the next step, the performance of the

trained models on predicting the unknown patient-derived
species was tested. Fig. 6 shows the score plot of the previous
PCA-LDA analysis including the scores of the predicted patient

Fig. 5 PCA-LDA score plot of patient-derived species, LDA performed
on the first 10 PCs of the patient species training set.

Fig. 6 Score plot of PCA-LDA of lab species as shown before with the
predicted patient samples shown as (*) coloured according to the
correct class.

Fig. 4 FTIR spectra of the different patient-derived samples, (A) Streptococcus strains with S. oralis laboratory strain shown in dotted line, (B)
Fusobacterium strains with F. nucleatum laboratory strain shown in dotted line, (C) Porphyromonas strains with P. gingivalis laboratory strain shown
in dotted line. All spectra are mean spectra with standard deviation shown in shaded area.

Table 3 Results of the classification of patient-derived samples by different models only trained on laboratory species data
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data. Fusobacterium and Porphyromonas species were found to
cluster closely to the corresponding laboratory species. In con-
trast, the Streptococcus data was comparatively widespread.
This behaviour can also be seen in Table 3, where the classifi-
cation results of all models are displayed.

For the patient-derived Fusobacterium species, classification
showed accurate results (>92% accuracy) across all models,
with k-NN showing the highest accuracy as well as specificity
and sensitivity (>97%).

By contrast, the accuracy for predicting the Porphyromonas
species was found to be highly dependent on the model used.
The results for PCA-LDA and k-NN were very similar, whereas
PLS-DA was unable to classify Porphyromonas, and instead cate-
gorized it as ‘unknown’. For Streptococcus, only k-NN per-
formed well, whereas PCA-DA and PLS-DA misclassified it as
V. dispar or did not assign any class at all, respectively. Overall,
k-NN showed the highest classification accuracy for all patient-
derived samples and confirmed that it is in general possible to
correctly classify patient-derived species based on FITR spectra
when using a model solely trained with laboratory strains.

Discussion

We have successfully demonstrated that FTIR spectroscopy has
the ability to differentiate closely related oral bacteria strains,
in agreement with the literature on this topic.40 However, in
order to fully capitalize upon the potential of FTIR spec-
troscopy as a diagnostic tool for rapid oral bacteria species
identification, a spectral database containing the bacterial
species of interest would also be needed. Several studies have
attempted to build spectral databases for identification of
specific bacteria.46–48 All of these databases contain spectra of
a few hundred different species, that could all be correctly
identified. This approach could also be implemented within
the context of the bacterial communities commonly found in
the human oral cavity; however, the spectra database would
need to be extended to contain oral bacteria. Since the oral
bacterial community can be very diverse, we demonstrated that
it would be possible to identify bacterial strains that are not
part of the spectral data bank as the right genus. This opens
up the possibility to use the data bank for genera identifi-
cation while still increasing the number of strains included.

Our results showed that patient-derived strains could be
correctly classified based on FTIR spectra using a k-NN model,
without losing the ability to also differentiate between strains.
It should also be noted, that k-NN is a straightforward classifi-
cation technique directly comparing the similarity between
samples. This simplified approach could potentially lead to
misclassification especially when measured spectra have only
minimal differences.49 Nevertheless, with the bacterial strains
measured in this study, k-NN could correctly classify the indi-
vidual strains with high accuracy – indicating that this tech-
nique is suitable for the task at hand.

We readily acknowledge that the reduced model shown here
only contained a small number of bacterial species. Although

different Streptococcus species have already been included as a
reference to see if it interferes with the classification, it
remains to be investigated, how the performance of the model
changes when other species are measured and more closely
related species are incorporated in the model. When increas-
ing the number of samples, it should also be kept in mind,
that the k-NN classification technique is a memory-based
classification model which can become computationally costly
when dealing with large datasets.49 Several approaches can be
used to speed up the classification process such as condensed
nearest neighbour (CNN) or the KD-tree method.50 However,
when increasing the complexity of the data set, the exploration
of more complex algorithms like neural networks might
become necessary.

Conclusion

This work demonstrated the ability of FTIR spectroscopy to
distinguish between different oral bacteria species that play
key roles in the development of (pathogenic) oral multispecies
biofilms. In addition to its classification ability at the strain-
level, FTIR spectroscopy was also used to correctly classify the
genus when the model was trained only using laboratory
species spectra. When patient-derived samples belonging to
the genus Streptococcus, Fusobacterium and Porphyromonas
were additionally cultivated and measured, these different
strains could be correctly classified with >97% accuracy.
Furthermore, we showed that 15 different patient-derived
strains could be identified correctly at genus-level with a spec-
tral library containing spectra of a single representative species
per genus. Our results highlight the prospect of constructing a
spectral library containing only a few species while still
enabling identification of a larger number of different strains.
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