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FTIR characterisation of chondroitin sulfate E
(CS-E) di-, tetra-, and hexasaccharide derivatives
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Sulfated glycosaminoglycans (GAGs), namely, chondroitin sulfate (CS), dermatan sulfate, keratan sulfate,
heparin, and heparan sulfate, are linear complex polysaccharides that are covalently attached to core pro-
teins to form proteoglycans. They are present at the cell surface and in the extracellular matrix and play a
key role in the regulation of cellular microenvironmental effectors. To better understand the biological
functions of GAGs and particularly of CS-E (4,6-disulfated) at the molecular level, structurally well-
defined oligosaccharides are necessary. Chemically synthesised biotinylated conjugates are useful to
study the interactions with proteins at the intra- and extracellular levels. Herein, FTIR spectroscopy was
used to characterise nine chondroitin oligosaccharides, including biotinylated or reducing CS-E di-, tetra-
and hexasaccharides as well as their non-sulfated analogs. Spectral features characteristic of the
vibrational modes of oligosaccharides (1640, 1626, 1565, 1418, 1375, and 1160 cm™), CS-E (1280-1200,
1134, 1065, 1034, 1000, 927, and 866-860, 815 cm™), and biotin (1681, 1460, 1425, and 792 cm™) were
identified. FTIR spectroscopy was sensitive enough to reveal structural microheterogeneity, allowing dis-
tinguishing C-4 from C-6 sulfated isoforms. CS-E- and biotin-specific signatures were obtained via differ-
ence spectra. PCA plots revealed three distinct groups: biotinylated oligosaccharides, CS-E biotinylated
oligosaccharides and CS-E reducing oligosaccharides. Furthermore, the first component clearly distin-
guished sulfated from non-sulfated forms, while component two tended to discriminate according to the
chain length, exclusively for non-sulfated oligosaccharides. Identifying the spectral signatures of these
oligosaccharides is an important step for future research on the monitoring of the internalisation of oligo-
saccharide- and cell-penetrating peptide-bound forms in drug-delivery studies.

cellular matrix (ECM)."” The cell surface composition influ-
ences their cell internalisation. It has been reported that carbo-

Sulfated glycosaminoglycans (GAGs), namely, chondroitin
sulfate (CS), dermatan sulfate, keratan sulfate, heparin, and
heparan sulfate, are linear complex polysaccharides that are
covalently attached to core proteins to form proteoglycans.
They are mostly present at the cell surface and in the extra-
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hydrates interact with cell-penetrating peptides (CPPs),"* and
penetratin has been shown to undergo a massive GAG-depen-
dent entry into cells.®™® CPPs could self-assemble and were
found to enter cells more efficiently, triggering a glycosamino-
glycan-dependent pathway."*™* Santini and collaborators
recently demonstrated that computationally designed cyclic
peptides could effectively target GAGs, suggesting their poten-
tial as novel therapeutic agents.'® It was also shown that GAGs,
and in particular heparan sulfates, were able to selectively
interact with proteins to control their internalisation.'®
Chondroitin sulfates are linear polysaccharides consisting of a
disaccharide repeating unit composed of p-glucuronic acid
(0-GlcA) and 2-acetamido-2-deoxy-p-galactose  (p-GalNAc)
arranged in the sequence [-4)-f-p-GlcA-(1-3)-p-p-GalNAc-(1-],
and bearing sulfate groups at various positions. The CS-sul-
fated units CS-D and CS-E are composed of the disaccharide

This journal is © The Royal Society of Chemistry 2025
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units GlcA2S-GalNAc6S and GlcA-GalNAc4S6S, respectively.
The monosulfated units CS-A and CS-C consist of
GlcA-GalNAc4S and GlcA-GalNAc6S disaccharide units, respect-
ively. Highly sulfated CS subtypes are often linked to pathologi-
cal conditions, including cancer."”” CS-E plays an important
role in numerous physiological and pathological
processes.'®>! Elevated expression of CS-E and CSPG (e.g., ver-
sican) in the ECM of ovarian cancer patients has been associ-
ated with poorer prognosis.’*>* vallen and collaborators
demonstrated that CS-E is associated with metastatic lesions
and that it confers tumors with adhesive properties.>® In
addition, chondroitin sulfate disaccharides have been reported
as serum markers for primary serous epithelial ovarian
cancer.?*?® Furthermore, CS and its derivatives have been
used as key components in drug- and gene-delivery systems
due to their biocompatibility, low toxicity, and rapid
biodegradability.>**° A more detailed overview of the biologi-
cal structure/functions of CS was recently provided by
Vijayakumar and collaborators.'® In order to better understand
the biological functions of GAGs at the molecular level, chemi-
cally synthesised and structurally well-defined CS-E (4,6-disul-
fated) and its biotinylated conjugates were suggested to be
potentially useful tools.>’* Their characterisation is usually
performed by classical analytical methods, such as NMR,
HRMS and flash silica chromatography.®’*

In the present report, Fourier-transform infrared (FTIR)
spectroscopy is proposed as an analytical tool to characterise a
set of biotinylated or reducing di-, tetra-, and hexasaccharide
chondroitin sulfate derivatives. FTIR is a rapid, reagent-free
and non-destructive analytical tool that provides a molecular
fingerprint of a sample. It has previously been used to charac-
terise GAG standards.®® The specific spectral signatures of
polysaccharides and sulfates could be clearly identified by this
method. Furthermore, the sulfation degree of the GAG stan-
dards could be assessed. FTIR spectroscopy was also sensitive
enough to identify the structural microheterogeneities,
enabling the distinction between chondroitin-4-sulfate and
chondroitin-6-sulfate isoforms, wherein the sulfate group
adopts an axial or equatorial orientation, respectively. FTIR
spectroscopy has also been shown to be a useful tool to charac-
terise GAGs in complex biological systems, such as single
cells,** 38 secretomes of cancer cells*® and tissues.>”**4°

The main objective here was to determine whether FTIR
spectroscopy could characterise a set of biotinylated or redu-
cing synthetic di-, tetra-, and hexasaccharide derivatives with
respect to the chain length, and presence or not of CS-, bioti-
nylated or reducing forms.

Experimental
Chemical structures of the oligosaccharides

The synthesis of biotinylated and reducing CS-E oligosacchar-
ides and their non-sulfated biotinylated analogs have already
been reported.’>* Briefly, all these oligosaccharides can be
obtained in 10-30 steps by an original and straightforward
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process involving hemisynthesis from commercially available
CS polymers,®® which allows the gram-scale synthesis of a
building block with suitable orthogonal protecting groups.
Starting from this building block and following an efficient
and stereo-controlled convergent strategy involving classical
deprotection, deprotection, glycosylation and sulfation reac-
tions, a library of reducing or biotinylated oligosaccharides of
a defined-size (from di- to hexasaccharides) and defined-sulfa-
tion (CS-E or non-sulfated) patterns was obtained.

These oligosaccharides, including biotinylated or reducing
CS-E di-, tetra- and hexasaccharides as well as non-sulfated
analogs, were as follows: sulfated CS-E reducing disaccharide
(CS-E Di OH), CS-E reducing tetrasaccharide (CS-E Tetra OH),
CS-E reducing hexasaccharide (CS-E Hexa OH) (Fig. 1); sulfated
CS-E biotinylated disaccharide (CS-E Di Biot), CS-E biotiny-
lated tetrasaccharide (CS-E Tetra Biot), CS-E biotinylated hexa-
saccharide (CS-E Hexa Biot) (Fig. 2); non-sulfated biotinylated
disaccharide (Di Biot), biotinylated tetrasaccharide (Tetra Biot)
and biotinylated hexasaccharide (Hexa Biot) (Fig. 3).

FTIR spectroscopy of the oligosaccharides and data analysis

All the oligosaccharides (Fig. 1-3) were obtained in lyophilised
form after their synthesis (Institut de Chimie Organique et
Analytique (ICOA), UMR 7311 CNRS et Université d’Orléans,
France). They were solubilised in sterilised distilled water, and
then one drop (5 puL) of each sample was deposited on an IR-
transparent calcium fluoride (CaF,) substrate and dried at
room temperature. The FTIR spectra of the samples were
recorded using the Spotlight 400 FTIR microscope coupled to
a Frontier spectrometer (PerkinElmer, Villebon-sur-Yvette,
France). For each sample, three to five spectra were recorded in
transmission mode in the 4000-750 cm™* spectral range, with
an aperture size of 100 x 100 pm?, using a 4 cm™" spectral
resolution and 128 accumulations. A reference spectrum on a
clean surface of the CaF, substrate was acquired using the
same parameters. This reference was automatically removed
from the spectrum of the samples. All the spectra were aver-
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Fig. 1 Chemical structures of the sulfated CS-E reducing di-, tetra-,
and hexasaccharides. Red box indicates the position of the —OSOzNa

group.
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Fig. 2 Chemical structures of the sulfated CS-E biotinylated di-, tetra-,
and hexasaccharides. Red box indicates the position of the —OSOzNa
group.
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Fig. 3 Chemical structures of the non-sulfated biotinylated di-, tetra-,
and hexasaccharides.

aged, baseline corrected using a rubber band method with 64
points, and vector normalised in the 1800-750 cm™ spectral
range prior to spectral comparison and calculation of the
difference spectra. The difference spectra were computed with
a subtraction coefficient of 1.

For chemometrics analysis, both hierarchical cluster ana-
lysis (HCA) and principal component analysis (PCA) were
applied to the fingerprint region (1800-750 cm™") after vector
normalisation.

Results and discussion
Dried-drop FTIR spectroscopy of the oligosaccharides

The mean FTIR spectral profiles of the chondroitin sulfate E
di-, tetra-, and hexasaccharide derivatives and their biotiny-
lated or reducing conjugates are displayed in Fig. 4.

Comparison of the nine mean spectra showed specific spec-
tral features characteristic of oligosaccharide (1640, 1626,
1565, 1418, 1375, 1160 cm™ '), CS-E (1280-1200, 1134, 1065,
1034, 1000, 927, 866-860, 815 cm_l], and biotin (1681, 1460,
1425, 792 cm™ ") vibrational modes (Fig. 4).
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Fig. 4 Mean FTIR profiles of chondroitin sulfate E di-, tetra-, and hexa-
saccharide derivatives and their biotinylated or reducing conjugates.
Assignment of specific peaks to biotin (blue dashed line), CS-E (orange
dashed line) and oligosaccharides (black dashed line) molecular
structures.

In addition, FTIR spectroscopy was sensitive enough to
identify the structural microheterogeneity allowing dis-
tinguishing C-4 (927 and 866-860 cm™") from C-6 (1000 and
815 cm ™) sulfated isoforms, as previously found.*® The power-
ful sensitivity of FTIR spectroscopy is promising in the per-
spective of being able to detect C6S-derived oligosaccharides
cancer biomarkers,"”*">®

In order to confirm these assignments, difference spectra
were calculated. CS-E-specific signatures were obtained by sub-
tracting the biotinylated oligosaccharides from their corres-
ponding CS-E forms (Fig. 5). Hence, the difference spectra
exhibited CS-E specific peaks at 1280-1200 cm ™" (asymmetric

o
=] S
I

CS-E Hexa Biot
— Hexa Biot

Absorbance

CS-E Tetra Biot
— Tetra Biot

0.05

- Di Biot

1
1800 1700 1600 1500 1400 1300 1200 1100

Wavenumber (cm)

Fig. 5 Difference spectra obtained by subtracting non-sulfated biotiny-
lated forms from their corresponding CS-E analogs (subtraction coeffi-
cient of 1). Assignment of specific peaks associated with CS-E vibrational
modes (orange dashed line).
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S0,>7), 1134, 1065 cm™" (C-O-C/symmetric SO,>7), 1034 cm ™"
(C-N), 1000 cm™" (C-O-S from C68S), 927 cm™" (C-O-S from
C4S), 860 cm ™" (C-0O-S from C4S), 815 cm™" (C-O-S from C6S),
allowing differentiation between the two isoforms. It is known
that the CS-E structure contains two sulfate groups, one in the
C-4 and the other in the C-6 position. Therefore, in our data,
information of the sulfate groups from both the C-4 and C-6
positions were present and could be identified in both Fig. 4
and 5.

Similarly, biotin-specific signatures were obtained by sub-
tracting the reducing forms from their corresponding biotiny-
lated analogs (Fig. 6). The results showed that biotin-specific
signatures could be associated with the peaks at 1681 cm™"
(C=0 vibration), 1460 cm™" (CH, deformation), 1425 cm™* (O-
H deformation), and 792 cm™' (C-H twist). These main
specific signatures and their tentative assignments were done
based on published data,*?%*** and are summarised in
Table 1.

Chemometrics analysis

In order to better appraise the spectral differences between the
sulfated CS-E reducing oligosaccharides, sulfated CS-E biotiny-
lated oligosaccharides, and non-sulfated biotinylated oligosac-
charides, unsupervised chemometrics analysis was performed
using HCA and PCA on the vector-normalised mean spectra in
the 1800-750 cm ™" spectral region. Fig. 7A shows the resulting
dendrogram. At first glance, it shows a clear separation
between the sulfated and non-sulfated oligosaccharides. In
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Fig. 6 Difference spectra obtained by subtracting reducing forms from
their corresponding biotinylated analogs (subtraction coefficient of 1).
Assignment of specific peaks associated with biotin vibrational modes
(blue dashed line).

This journal is © The Royal Society of Chemistry 2025

View Article Online

Paper

Table 1 Tentative assignments of specific peaks (reducing, biotinylated
and CS-E forms) observed in the FTIR spectra of the nine oligosacchar-
ides. def: deformation. These main specific signatures and their tentative
assignments are achieved based on published data>>384142

Wavenumber (cm™") Tentative assignment

1681 C=0O0 (biotin)

1640 C=0 (-CONH) (oligosaccharides)

1565 N-H def (oligosaccharides)

1460 CH, def (biotin)

1425 O-H def (biotin)

1375 C-C (oligosaccharides)

1280-1200 Asymmetric SO,>~ (CS-E)

1160 C-O-C (saccharide)

1065 Symmetric SO,>~, C-O-C (CS-E)

1034 C-N (CS-E)

1000 C-0-S in equatorial position CS-E (C6S)
927 C-0-S, CS-E (C4S)

866-860 C-0-S in axial position CS-E (C4S)

815 C-0-S in equatorial position CS-E (C6S)
792 C-H twist (biotin)

addition, within the CS-E oligosaccharides, a good discrimi-
nation between the biotinylated and reducing forms was
found. This analysis shows the stronger impact of the sulfate
groups on this classification compared to the presence of the
biotin moiety. However, this classification does not indicate
any tendency for the chain length except for the non-sulfated
oligosaccharides.

The data were further analysed using principal component
analysis (PCA) to confirm the previous results and to gain
more insights into the structural characteristics of these oligo-
saccharides. Fig. 7B displays the score plot using the principal
components 1 and 2 (accounting for 90.9% of the total var-
iance) after data mean centering. This analysis confirmed the
results obtained above using HCA with a clear-cut difference
between the different types: sulfated CS-E reducing oligosac-
charides, sulfated CS-E biotinylated oligosaccharides, and
non-sulfated biotinylated oligosaccharides.

The first principal component (PC1) distinguished the sul-
fated from the non-sulfated forms. This was confirmed by the
profile of PC1 (Fig. 7C), where the sulfate bands between 1234
and 1256 cm™' (asymmetric SO,>7) and C-O-S vibrations at
999, 929, 860 and 822 cm ' were more pronounced. In
addition, PC2 showed major contributions from the peaks at
1692, 1651, 1536, 1060 and 788-779 cm™, which may be
attributed to biotin signatures. The other peaks present could
be assigned to repeating disaccharide units. PC2 also tended
to discriminate according to the chain length of the oligosac-
charides exclusively for the non-sulfated oligosaccharides. A
possible explanation for this is that the presence of the CS-E
component carried a higher variance, thus compromising the
effect of the chain length.

In addition, it could be observed that the reducing CS-E
(non-biotinylated) cluster showed a lower intra variability (red
symbols), while the presence of biotin tended to enhance the
variability within the groups (green and blue symbols).
Generally, GAG-derived oligosaccharides are analysed by NMR,

Analyst, 2025, 150, 3364-3371 | 3367
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Fig. 7 Chemometric analysis of the mean normalised spectra of the
nine oligosaccharides using the 1800-750 cm™ spectral range. (A)
Dendrogram showing the clustering of the nine oligosaccharides. (B)
Principal component analysis using the scores of PC1 and PC2. Triangle,
square and circle indicate di-, tetra- and hexasaccharides, respectively.
Biotinylated oligosaccharides (blue color), CS-E biotinylated oligosac-
charides (green color) and CS-E reducing oligosaccharides (red color).
(C) Loading vectors corresponding to PC1 (orange curve) and PC2 (blue
curve).

HRMS, flash silica chromatography or by HPLC with fluo-
rescence detection.*>*** However, we show here that FTIR
spectroscopy could provide, in a direct, non-destructive, and
reagent-free manner, characteristic information on the CS-E
oligosaccharide derivatives as well as their biotinylated or
reducing conjugates.

GAGs have been shown to be implicated in the endocytosis
of several CPPs. CPPs are considered to be promising systems
for the intracellular delivery of molecular probes and thera-
peutic drugs. They are generally short purely basic or amphi-
pathic peptides that can enter cells by two different pathways:
endocytosis and direct translocation across the plasma mem-
brane. Several CPPs are currently under clinical development.
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CPP arginine residues play an essential role in GAG binding,
due to their ability to form bidentate hydrogen bonds with
GAG carboxylate and sulfate groups.'" For instance, the intern-
alization mechanism of Engrailed2 (En2), a cationic protein
that is a transcription factor, is proposed to require an initial
interaction with GAGs on the cell surface.'® This study demon-
strated the critical role of GAGs as an entry gate, finely tuning
the homeoprotein capacity to internalise into cells. Using
glycan microarray analysis, the CPP En2 was shown to prefer-
entially bind to long and highly sulfated HS oligosaccharides.
The presence of soluble CS-E in the ECM was shown to either
promote or inhibit En2 internalisation in CHO-K1 -cells,
depending on the GAG concentration, as observed with
soluble heparin. These data suggest that membrane surface
CS-E could also play a role in CPP internalisation.'®

Our preliminary results on pgsA-745 cell lysates spiked with
different amounts of chondroitin sulfate E showed that FTIR
spectroscopy was capable of detecting as low as 5 pg of chon-
droitin sulfate in the cell lysate at a protein concentration of 1 ug
pL™" (see ESI Fig. 1t). The same detection limit was obtained
with a protein concentration of 0.1 pug pL™"' (data not shown).
The pgsA-745 cell line was chosen since it is a mutant of the
CHO-K1 cell line, with the characteristics of being deficient in
xylosyltransferase, so it consequently produces a very low
amount of glycosaminoglycans in comparison with the wild-type
CHO-K1 cell line. In this sense, there was no overlapping with
the spectral signatures of the spiked chondroitin sulfate.

Conclusions

FTIR spectroscopy analysis of nine synthesised biotinylated or
reducing CS-E oligosaccharides and their non-sulfated biotiny-
lated analogs provided specific spectral signatures that could
be attributed to the oligosaccharides, CS-E forms and biotin.
FTIR could further identify microheterogeneities within the
isoforms, allowing differentiating C4-S from C6-S. HCA and
PCA unsupervised analyses objectively allowed differentiating
the three different groups of samples, separating the sulfated
forms from the biotinylated ones. These characteristic signa-
tures could be identified in the loading vectors obtained from
PCA analysis. Further, the effect of the chain length could also
be detected in the PCA plot, albeit exclusively for the non-sul-
fated oligosaccharides.

These results are interesting and promising in view of a
better understanding of the molecular and structural properties
of these molecules. Indeed, identifying the spectral signatures
of these oligosaccharides is an important step for future
research into the monitoring of the internalisation of the oligo-
saccharides and CPP-bound forms in drug-delivery studies.
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