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FTIR-based machine learning for prediction of
malignant transformation in oral epithelial
dysplasia

Rong Wang, *a Roya Sabzian,b Tanya M. Gibsonc and Yong Wang a

Oral squamous cell carcinoma (OSCC) is an aggressive cancer with a poor prognosis. Oral epithelial dys-

plasia (OED) is a precancerous lesion associated with an increased risk of malignant transformation (MT)

into OSCC. However, current histopathological methods for diagnosing OED are subjective and ineffec-

tive in assessing MT risk. FTIR provides a comprehensive biochemical profile of tissues, known as “bio-

molecular fingerprinting”. Previously we developed an FTIR-based OSCC-Benign classifier that accurately

distinguishes OSCC from benign tissue. In this study, we evaluated whether this classifier could also

predict MT risk in OED. Thirty OED patient biopsies with documented MT outcomes were analyzed,

including 12 with and 18 without MT. FTIR images were acquired from six regions of interest (ROIs) per

tissue section, yielding an average epithelial spectrum for each ROI, and a total of 180 spectra for model

evaluation. The OSCC-Benign classifier achieved an accuracy of 81.7% with an F1 score of 0.77 at the ROI

level, and an accuracy of 83.3% with an F1 score of 0.8 at the biopsy level in predicting MT in OED. Our

findings suggest that OEDs with biomolecular fingerprints similar to OSCC carry a higher risk of MT, while

those resembling benign tissue carry a lower risk, providing new insight into the malignant transformation

process. In summary, the FTIR-based machine learning approach outperforms traditional histopathology

in predicting MT risk in OED, potentially offering a quantitative and objective tool for clinical diagnosis.

Introduction

Oral cancer refers to a subgroup of head and neck malignan-
cies that affect various intra-oral sites, including the lips,
tongue, gingiva, floor of the mouth, and buccal mucosa. It
poses a significant global health concern, with an estimated
377 713 new cases and 177 757 deaths reported in 2020, predo-
minantly in low- and middle-income countries.1 More than
90% of oral cancers are oral squamous cell carcinoma (OSCC).
Despite the accessibility of the oral cavity for clinical examin-
ation and advancements in therapeutic strategies, the overall
five-year survival rate for OSCC remains low, ranging from 50%
to 60%. Early detection is critical for improving patient prog-
nosis and survival outcomes.2,3

Oral carcinogenesis is a highly complex, multifactorial, and
multistep process. It often begins with benign hyperplasia/
hyperkeratosis, progressing to oral epithelial dysplasia (OED),
carcinoma in situ, and finally invasive OSCC.4 OED, a micro-
scopically diagnosed precancerous lesion, is associated with an
increased risk of malignant transformation (MT) into OSCC. It
is characterized by cytological and architectural alterations that
disrupt the normal maturation and stratification of the epi-
thelium. An OED can be graded as mild, moderate, or severe
based on the three-tier classification system established by the
World Health Organization (WHO).5 It has been reported that
the likelihood of MT varied by OED grade, with an estimated
rate of 7%–50% for severe, 3%–30% for moderate, and <5% for
mild OED.6–8 Although these histological grades statistically cor-
relate with clinical outcomes, the WHO’s gold standard diagnos-
tic system is subjective and ineffective in predicting MT risk in
individual OED patients.9,10 To overcome these limitations,
researcher have proposed integrating clinical and molecular bio-
markers into the diagnostic process; however, none have
achieved the desired clinical effectiveness.10,11

Fourier transform infrared (FTIR) spectroscopy is a
versatile analytical technique used to characterize molecular
structures by analyzing how chemical bonds interact with
infrared radiation. This technique generates a unique spectral
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“fingerprint” that provides qualitative and quantitative insights
into the biochemical composition of a specimen, including pro-
teins, nucleic acids, lipids, and carbohydrates.12,13 When com-
bined with light microscopy, FTIR imaging enables spatially
resolved biomolecular analysis producing a three-dimensional
hyperspectral dataset. Due to its label-free, non-invasive, and
highly sensitive nature, FTIR spectroscopy and imaging tech-
niques have been explored for the detection and diagnosis of
various cancers.14–17 FTIR imaging generates high-dimensional
data, often requiring multivariate chemometric and machine
learning methods for data analysis and interpretation.17

In a previous study, we applied FTIR imaging and machine
learning to differentiate between OSCC, OED and benign
(hyperkeratosis) oral biopsy tissues. We developed three super-
vised discriminant models – partial least squares discriminant
analysis (PLSDA), support vector machines discriminant ana-
lysis (SVMDA), and extreme gradient boosting discriminant
analysis (XGBDA) – to discriminate OSCC from benign tissues.
Using 10-fold Venetian blinds cross-validation, we reported
100% sensitivity and specificity for the PLSDA model, com-
pared to 95% sensitivity and 96% specificity for the SVMDA
and XGBDA models.18 These preliminary results were very
encouraging, though the potential risk for overfitting remains
a concern due to the limited sample size. Exploratory analysis
of the OED biopsy samples (hereafter referred to as biopsies)
revealed partial spectral overlap with both OSCC and benign
tissues. When evaluated using the OSCC-Benign PLSDA
model, some OED spectra were classified as OSCC-like, while
others Benign-like. Since clinical outcomes for these OED
biopsies were previously unknown, we hypothesized that OED
spectra classified as OSCC-like indicate a higher risk of MT,
whereas those classified as Benign-like suggest a lower risk.

In the current study, to test this hypothesis, we analyzed 30
OED patient biopsies with documented clinical outcomes,
including 12 that underwent MT and 18 that did not. The orig-
inal histopathological diagnoses of these biopsies were verified
by a collaborating oral pathologist and used as the “ground
truth” for validation. FTIR images were acquired from six
regions of interest (ROIs) per biopsy, and the corresponding
average epithelial spectra were computed, resulting in a
dataset of 180 spectra labeled according to the verified MT out-
comes. Using this OED FTIR dataset as a test set, we assessed
the feasibility and effectiveness of the OSCC-Benign PLSDA
model for predicting MT risk in OED. In comparison, we also
trained a new PLSDA model using the OED FTIR dataset itself
and evaluated its performance using cross-validation.

Experimental

Fig. 1 illustrates the schematic of the experimental workflow,
which is described in detail in the following sections. All
experiments were performed in accordance with the Ethical
Principles and Guidelines for the Protection of Human
Subjects of Research, and were approved by the Institutional
Review Board of the University of Missouri–Kansas City
(UMKC) under project number 2087842. Patient identifiers
were removed prior to experimentation to ensure privacy and
confidentiality.

Patient biopsy identification and sample preparation

The patient database in the UMKC School of Dentistry
Pathology Department was searched to identify suitable biopsy
samples for the study. OED patient biopsies with documented

Fig. 1 Schematic illustration of the experimental workflow. Two consecutive thin sections of FFPE (formalin-fixed paraffin-embedded) oral biopsy
tissues were subject to H&E staining and FTIR imaging. Machine learning analyses were performed on FTIR spectra from the OED biopsies to assess
their MT risk.
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MT were selected based on an initial diagnosis of dysplasia fol-
lowed by a subsequent OSCC diagnosis in the same patients.
OED biopsies without MT were selected based on an initial
dysplastic diagnosis followed by a later diagnosis that did not
progress to OSCC. Since the timeline for malignant transform-
ation varies, definitive determination of OED cases without
MT remains challenging. Considering the reported average
transformation time of 1.82 ± 1.55 years for OED,19 we used a
practical selection criterion requiring a minimum two-year
interval between the initial and follow-up diagnoses for cases
without MT. Consequently, 30 formalin-fixed paraffin-
embedded OED blocks were identified from the Pathology
Department, including 12 with MT from 9 patients and 18
without MT from 17 patients. Four patients had multiple OED
diagnoses over time before the final diagnosis. These biopsies
were included in our investigation as independent samples
and are discussed in groups by patients. De-identified demo-
graphic and diagnostic information was provided by the colla-
borating oral pathologist and summarized in Table 1.

Two 4-micron-thick sections were cut from each block
using a microtome (Leica RM2125, RTS, Leica Biosystems Inc.,
Buffalo Grove, IL, USA). One section was affixed onto a posi-
tively charged glass slide (Cat. No.: 22034979, Fisher Scientific,
Waltham, MA, USA) for Hematoxylin and Eosin (H&E) staining
and histological evaluation. The adjacent section was placed
on an IR transparent BaF2 substrate measuring 25 × 2 mm
(REFLEX Analytical Corporation, Ridgewood, NJ, USA) for FTIR
imaging. The H&E-stained sections were digitally scanned at
×40 magnification using a Leica Aperio CS2 digital scanner
(Leica Biosystems W. Lake Cook Road, Deer Park, IL, USA) and
sent to our collaborating oral pathologist for verification. Then
the digital H&E images were manually annotated for the dys-
plastic regions using the open-source software QuPath (v0.4.0)
and used as references for ROI selection during FTIR imaging.
The biopsy tissue sections on the BaF2 substrate underwent
deparaffinization by immersion in histological grade xylene
(CAS number 1330-20-7, Sigma-Aldrich, St Louis, MO, USA)
three times for five minutes each at room temperature. The
deparaffinized sections were air-dried and stored in a vacuum
desiccator for FTIR imaging within a week.

FTIR image acquisition

FTIR images were acquired in transmission mode using a
PerkinElmer FTIR Spectrum Spotlight imaging system
(Spectrum one, Spotlight 300, PerkinElmer, Waltham, MA,
USA). The Spotlight 300 imaging system is equipped with a
dual-mode detector featuring a 1 × 16 narrow band mercury
cadmium telluride (MCT) array and 100 µm medium band
MCT single point detector, operating at liquid nitrogen temp-
erature. The FTIR image acquisition parameters were set as
follows: spectral resolution 4 cm−1, spectral range
4000–950 cm−1, pixel resolution 6.25 µm, and co-adding
number 16 per pixel. First, a survey image was generated using
the built-in light microscope in the FTIR Spotlight system for
the tissue section. Subsequently, more than six ROIs in the
size of 400 µm × 100 µm (64 × 16 pixels) were defined on the

survey image, in reference to the annotated digital H&E image.
The ROIs were selected to encompass the basal epithelium
and adjacent stroma, while avoiding areas with poor structural
integrity. Before acquiring FTIR images for each ROI, a back-
ground spectrum was obtained from a clean area of the sub-
strate outside the tissue section for background correction.
FTIR image acquisition was carried out using the Spectrum
IMAGE software by PerkinElmer.

Data analysis

The same spectral preprocessing, outlier removal, and cluster-
ing procedures used in the development of the OSCC-Benign
models in our previous study were used in the current study
and are briefly described below.18 The data analysis and
machine learning modeling were performed using the
Eigenvector PLS_Toolbox 9.3 and MIA_Toolbox 3.1
(Eigenvector research incorporated, Inc., Manson, WA, USA) in
MATLAB (R2020b, MathWorks).

Spectral preprocessing

Raw hyperspectral images were preprocessed as follows: 1,
transmission to absorbance conversion (A = log(1/T )); 2, finger-
print region selection (1800–950 cm−1); 3, Savitzky–Golay
smoothing (order = 2, window = 13 pt, tails: polyinterp); 4,
EMSC (extended multiplicative signal correction) for light-scat-
tering; 5, baseline correction using automated weighted least
squares (order = 3); and 6, vector normalization (length = 1).
During model training, validation and testing, a second deriva-
tive transformation (order = 2, window = 7 pt) was further
applied to the input spectral data to enhance model
performance.

Outlier removal

Outliers may be present in the pixel-level spectral data, particu-
larly from areas with compromised tissue quality or integrity.
To address this, unsupervised principal component analysis
(PCA) was performed after spectral preprocessing to identify
and remove outliers. PCA transforms the original coordinate
system into a new one defined by principal components (PCs)
that capture the most significant variance in the dataset. For
each ROI image dataset, a Reduced Hotelling’s T2 versus
Reduced Q residual scatter plot was generated. Spectra with
values exceeding 1 in either Reduced Hotelling’s T2 or
Reduced Q residual were flagged, examined, and subsequently
removed to ensure data integrity.

Representative spectra extraction

Each ROI typically contain both epithelial and stromal tissues.
To distinguish FTIR spectra of different tissue components,
unsupervised hierarchical cluster analysis (HCA) was employed
to cluster pixel-level spectra in each ROI using Ward’s
method.20 The histological identity of each cluster was deter-
mined by referencing the corresponding H&E-stained section.
Then the average spectra from epithelial clusters in each ROI
were extracted and used as the representative spectra for sub-
sequent analyses. Not all acquired ROI images yielded high
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Table 1 Deidentified demographic and diagnostic information for the thirty OED patient biopsies and ROI-level risk prediction by the
OSCC-Benign PLSDA model

Biopsy information Initial diagnosis Follow-up diagnosis Model
prediction

ID
Patient birth
year Sex Clinical description

Histological diagnosis

Clinical description

Histological diagnosis

ROI-level
Location Location
Month/year Month/year

OED biopsies with MT
05 1930 F Leukoplakia,

ulceration
Mod to sev OED Leukoplakia,

ulceration
Mod to well diff. SCC 6/6 low risk

Lateral/ventral Tongue Lateral tongue
10/2014 03/2015

06 1945 F Not given VHK w mod OED erythro-Leukoplakia Sf-invasive SCC 5/6 high risk
Buccal vestibule Retromolar region 1/6 low risk
10/2014 08/2019

94 1945 F Not given HK & acan w mod OED erythro-Leukoplakia Sf-invasive SCC 6/6 high risk
Retromolar pad area Retromolar region
09/2018 08/2019

42 1952 F erythro-Leukoplakia Mod to sev OED erythro-Leukoplakia Mod to well diff. SCC 5/6 high risk
Palatal papilla Buccal mucosa 1/6 low risk
09/2016 04/2018

46 1932 F Granular tissue mass Atyp EH w OED Raised dense tissue Well diff. SCC 6/6 high risk
Buccal mucosa Edentulous ridge &

buccal mucosa
12/2016

03/2017
51 1939 M Mixed erythro-

leukoplakia
Atyp EH w sev OED Ulceration Mod diff. SCC 5/6 high risk

Anterior maxilla Palatal mucosa &
gingival margin

1/6 low risk

02/2017
01/2018

55 1939 M erythro-Leukoplakia Atyp EH w sev OED Ulceration SCC 5/6 high risk
Anterior maxilla Palatal mucosa &

gingival margin
1/6 low risk

04/2017
01/2018

63 1952 M Hyperkeratosis
leukoplakia

Mod OED Leukoplakia SCC 6/6 low risk

Lateral posterior tongue Anterior floor of mouth
11/2017 07/2018

67 1963 F Leukoplakia Mod OED Leukoplakia Sf-invasive SCC 5/6 high risk
Lateral tongue Left tongue 1/6 low risk
01/2018 05/2020

83 1963 F Leukoplakia Mild to mod OED Leukoplakia Sf-invasive SCC 6/6 high risk
Ventral surface tongue left tongue
03/2018 05/2020

80 1959 F erythro-Leukoplakia Atyp EH w OED Erythroplakia
ulceration

Mod to well diff. SCC 6/6 high risk

Gingiva and mucosa Buccal gingiva &
mucosa

03/2018
03/2018

90 1945 F erythro-Leukoplakia Sev OED Mass with rolled
borders

Well diff. SCC 6/6 high risk

Buccal gingiva Gingiva
07/2018 12/2019

OED Biopsies without MT
04 1960 F Multiple leukoplakia Mod OED Rough leukoplakia HK w mild OED 6/6 low risk

Left upper vestibule Buccal gingiva
07/2014 08/2018

02 1967 M Leukoplakia Mild OED Leukoplakia Mild OED 6/6 low risk
Lateral tongue Lateral tongue
07/2014 06/2018

08 1967 M Leukoplakia Mild to mod OED Leukoplakia Mild OED 6/6 low risk
Lateral tongue Lateral tongue
11/2014 06/2018

09 1963 M erythro-Leukoplakia Mild to mod OED Erythroplakia
ulceration

Sev OED 6/6 low risk

Buccal mucosa Left cheek
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quality spectral data. To ensure data reliability, six high-quality
ROIs were randomly selected from each biopsy, resulting in a
total of 180 representative spectra from thirty OED biopsies,
which were combined into one OED FTIR dataset for further
analysis. Each spectrum was assigned a class label according
to the MT outcome of the corresponding patient (1: with MT;
2: without MT). The class-average spectra of OED with
and without MT were then compared to those of benign and
OSCC tissues from our previous study to identify spectral
differences.

Fig. 2 illustrates an overview of the process, including ROI
selection, FTIR image acquisition, spectral preprocessing, HCA
clustering, and the extraction of average epithelial spectra.

Model evaluation

We previously developed three discriminant models, PLSDA,
SVMDA, and XGBDA, to differentiate average epithelial spectra
between eleven OSCC and twelve benign oral tissue biopsies.
Based on 10-fold Venetian blinds cross-validation, the PLSDA
model achieved 100% sensitivity and specificity, while the

Table 1 (Contd.)

Biopsy information Initial diagnosis Follow-up diagnosis Model
prediction

ID
Patient birth
year Sex Clinical description

Histological diagnosis

Clinical description

Histological diagnosis

ROI-level
Location Location
Month/year Month/year

11/2014 10/2018
10 1951 M Leukoplakia Mild to mod OED Leukoplakia Mod OED 6/6 low risk

Lateral tongue Lateral tongue
11/2014 02/2018

11 1983 F Leukoplakia VHK w mild OED Leukoplakia VHK w mild OED 6/6 low risk
Lingual Lingual
12/2014 12/2018

12 1960 M Leukoplakia Mild OED Leukoplakia Mild OED 6/6 low risk
Lateral border tongue Ventral lateral border
02/2015 02/2020

17 1982 M Not given Mod to sev OED Erythroplakia Mod to sev OED 5/6 high risk
Lateral tongue Lateral tongue 1/6 low risk
06/2015 01/2021

20 1940 F Leukoplakia w
hyperkeratosis

VHK w epi atyp Raised leukoplakia VHK 6/6 low risk

Palatal Apical gingival
09/2015 11/2021

41 1934 F Multiple leukoplakia VHK w mod OED Leukoplakia Mild OED 5/6 low risk
Left cheek, buccal &
lingual upper left

Left buccal mucosa 1/6 high risk

11/2020
08/2016

50 1936 F Leukoplakia w
ulceration

Mod OED Hyperplastic tissue Mild to mod OED 6/6 low risk

Buccal gingiva Buccal
01/2017 06/2019

54 1967 M Leukoplakia Mod OED Leukoplakia Mild to mod OED 5/6 high risk
Left tongue Lateral tongue 1/6 low risk
04/2017 01/2020

56 1952 M Leukoplakia VHK w mod OED Leukoplakia HK w epi atyp 6/6 low risk
Facial mucosa Edentulous site
06/2017 04/2020

59 1951 F Granular Mild OED Leukoplakia HK & acan. w epi atyp 5/6 low risk
Marginal gingiva Marginal gingiva 1/6 high risk
07/2017 08/2019

62 1942 M Verrucous leukoplakia HK & acan. w epi atyp Leukoplakia HK & acan. w epi atyp 6/6 low risk
Facial Gingival margin
08/2017 07/2020

70 1952 M Erythroplakia Mild OED erythro-Leukoplakia Mild to mod OED 6/6 low risk
Buccal mucosa Left buccal mucosa
01/2018 07/2021

86 1956 M Leukoplakia Mild OED Leukoplakia VHK 6/6 low risk
Palatal vault Gingiva
04/2018 07/2021

89 1957 M erythro-Leukoplakia Sev OED Rough leukoplakia Sev OED 3/6 high risk
Gingiva papilla Lingual 3/6 low risk
07/2018 03/2021

HK: hyperkeratosis, VHK: verrucous hyperkeratosis, SCC: squamous cell carcinoma, sf-invasive: superficially invasive, EH: epithelial hyperplasia,
acan: acanthosis, atyp: atypic, epi: epithelial, mod: moderate, sev: severe, w: with, diff: differentiated.
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other two models generated 95% sensitivity and 96% speci-
ficity.18 PLSDA is a supervised machine learning technique
that extends Partial Least Squares (PLS) regression by incorpor-
ating linear discriminant analysis (LDA) for classification.
Instead of predicting a continuous response, PLSDA uses a cat-
egorical response matrix (Y) to represent class labels. The
algorithm identifies latent variables (LVs) from the spectral
dataset (X) that best differentiate the classes while maximizing
covariance between X and Y. The OSCC-Benign PLSDA model
consisted of four LVs, explaining 94.50%, 4.48%, 0.38% and
0.29% of the spectral variance between OSCC and benign
tissues, respectively. In the current study, we tested the
OSCC-Benign PLSDA model using the OED FTIR dataset to
evaluate its performance in predicting MT risk in OED. Under
our hypothesis, an OSCC-class prediction indicated high MT
risk, while a Benign-class prediction suggested low risk. The
dataset contained 72 spectra from twelve OED biopsies with
MT and 108 spectra from eighteen OED biopsies without MT,
resulting in a class ratio of 40/60 or 2 : 3. Model performance
at the ROI level was assessed using ROC (receiver operating
characteristic) curves with AUC (area under the curve) scores,
confusion matrices, sensitivity, specificity, accuracy, precision,
and F1 scores.21 To determine MT risk at the biopsy level, we
applied a majority voting rule: if at least three out of six ROI

spectra from a biopsy were classified as high-risk, the entire
biopsy was labeled as high-risk. This approach enabled esti-
mation of the OSCC-Benign PLSDA model’s predictive per-
formance at the biopsy level.

Meanwhile, we trained another OED PLSDA model using
the 180 OED spectra and evaluated its performance. We
employed 10-fold Venetian blinds cross-validation for hyper-
parameter tunning and model performance evaluation. To
ensure the rigor of model training and evaluation, we assigned
all six spectra from each OED biopsy to a single blind so that
they remained together during the split. Model performance at
the ROI-level was evaluated using the same metrics as before.
However, due to cross-validation and potential variations in
ROI-level predictions across iterations, estimating biopsy-level
prediction accuracy was not performed. The top four LVs of
the OED model were identified and compared to those of the
OSCC-Benign model.

Results

Fig. 3 presents a comparison of class average spectra for
Benign, OSCC, and OED biopsies with and without MT, high-
lighting spectral differences mainly in four regions: around

Fig. 2 Illustration of (a) ROI selection and FTIR image acquisition, (b) spectral preprocessing, (c) FTIR image clustering and average epithelial spec-
trum extraction.
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1650 cm−1, 1600–1500 cm−1, 1350–1180 cm−1, and
1160–950 cm−1. The 1650 cm−1 band corresponds to the
amide I band of proteins, mainly associated with CvO stretch-
ing vibrations in the peptide backbone. The comparison
revealed a descending trend in Amide I band intensity in the
order of Benign > OED-without-MT > OED-with-MT/OSCC,
with OED-with-MT exhibiting a band intensity closely resem-
bling that of OSCC. The 1600–1500 cm−1 region represents the
amide II band of proteins, mainly linked to the bending
vibration of N–H bond and the stretching vibration of C–N
bond in the peptide backbone. The comparison showed a des-
cending band intensity at 1548 cm−1 following the order
Benign > OED-without-MT > OED-with-MT > OSCC.
Additionally, band broadening was observed in the order
OSCC/OED-with-MT > OED-without-MT > Begin, along with a
red shift toward lower wavenumbers from 1548 cm−1 to
1500 cm−1, following the trend OSCC > OED-with-MT > OED-
without-MT/Benign. The spectral region of 1350–1180 cm−1 is
attributed to the amide III band of proteins (1350–1250 cm−1),
the asymmetric vibration of –PO2

− (1240 cm−1) and the defor-
mational modes of the CH3/CH2 groups in phospholipids and
nuclei acids. The comparison disclosed a descending band
intensity at 1310 cm−1 in the order of Benign > OED-without-
MT > OED-with-MT/OSCC, with OED-with-MT closely resem-
bling OSCC. Similarly, the band at 1240 cm−1 exhibited
decreasing intensity in the order OSCC > OED-with-MT > OED-
without-MT > Benign, accompanied by a red shift in the same
order. The spectral region of 1160–950 cm−1 is attributed to
the stretching vibrations of the C–O/C–C groups in carbo-
hydrates (e.g., glycogen) at 1154 and 1030 cm−1, as well as the
symmetric vibration of –PO2

− in phospholipids and nuclei

acids at 1080 cm−1. The comparison indicated a descending
band intensity at 1080 cm−1 following the order OSCC/OED-
with-MT > OED-without-MT > Benign, with OED-with-MT
closely resembling OSCC.12,22–25

Table 1 summarizes the demographic and diagnostic infor-
mation for thirty OED biopsies from twenty-six patients.
Notably, biopsy pairs #06 and #94, #51 and #55, #67 and #83,
and #02 and #08 represent biopsies from the same patients.
Among the twenty-six patients, there were an equal number of
males and females, with thirteen of each. The patients’ ages
ranged from 35 to 86 years at the time of their follow-up diag-
noses. The time interval between the initial and follow-up
diagnoses for the OED with MT ranged from three to fifty-
eight months, with one exception. Biopsy #80 had an OSCC
diagnosis within one month of the initial OED diagnosis,
which may indicate a misdiagnosis due to mis-sampling, as
moderate or severe dysplasia may occur near carcinoma.
Nonetheless, we retained this biopsy to evaluate whether our
approach could identify such misdiagnoses. The time interval
between diagnoses for the OED without MT ranged from
twenty-five to seventy-four months. The MT risk prediction for
each of the six ROIs in the OED biopsies, as determined by the
OSCC-Benign PLSDA model, is shown in the last column.
Using the majority voting rule, our analysis identified five OED
biopsies with incorrect predictions, including two false posi-
tives and three false negatives, as indicated by the grey rows in
Table 1.

Fig. 4 illustrates the MT risk probability distribution for the
180 OED representative spectra predicted by the OSCC-Benign
PLSDA model. Each biopsy is represented by six consecutive
markers of the same color and shape. OED spectra with and

Fig. 3 Comparison of class average FTIR spectra in the fingerprint region (1800–950 cm−1) for Benign, OSCC, OED with and without MT. Inserts
show the enlarged spectral regions for (a) Amide I, (b) Amide II, (c) Amide III, DNA/RNA, and (d) Glycogen, DNA/RNA.
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without MT are represented in solid and empty markers
respectively. The two false positives and three false negatives
are indicated by empty and solid red arrows respectively.
Among the thirty OED biopsies, twenty exhibited a homo-
geneous risk distribution across all six ROIs, nine demon-
strated consistent risk predictions for five of the six ROIs. One
particular biopsy #89 showed an equal number of high-risk
(three) and low-risk (three) ROIs. Based on the predefined
majority voting rule, biopsy #89 was assigned as high-risk for
MT.

Fig. 5 summarizes the performance of the OSCC-Benign
PLSDA model and the OED PLSDA model for MT risk predic-
tion. Fig. 5a shows the ROC curve with AUC score and con-
fusion matrix for testing 180 OED representative spectra using
the OSCC-Benign PLSDA model. The AUC score was 0.89, and
the confusion matrix indicated a sensitivity of 76.4%, speci-
ficity of 85.2%, accuracy of 81.7%, precision of 77.5%, and an
F1 score of 0.77 at the ROI level. When applying the majority
voting rule, the OSCC-Benign PLSDA model achieved sensi-
tivity, specificity, and accuracy of 83.3%, precision of 76.9%,
and an F1 score of 0.8 at the biopsy-level. Fig. 5b shows the
cross-validation ROC curve with AUC score and confusion
matrix for the new OED PLSDA model. The AUC score was
0.85, and the confusion matrix indicated a sensitivity of
76.4%, specificity of 88.9%, accuracy of 83.9%, precision of
82.1%, and an F1 score of 0.79 at the ROI level. Among the
evaluation metrics, both F1 and AUC scores provide insights
into a model’s accuracy. While the accuracy score indicates the
proportion of correct predictions at a particular decision
threshold, the AUC provides a broader evaluation of model

performance across different thresholds. The AUC is an
effective combined measure of sensitivity and specificity,
reflecting the inherent validity of a diagnostic test. An AUC
score of 0.8–0.9 indicates very good diagnostic accuracy.26 The
F1 score, which combines precision and recall (sensitivity), is
particularly useful for evaluating models with imbalanced
classes. In the current study, with a class ratio of 2 : 3, the F1
score may provide a more reliable evaluation than the accuracy
score. Fig. 5c provides a summary of the performance metrics,
including sensitivity, specificity, accuracy, precision, F1 and
AUC scores, of the two PLSDA models. For the OED PLSDA
model, the Root Mean Square Error of Calibration (RMSEC)
was 0.29 and the Root Mean Square Error of Cross-Validation
(RMSECV) was 0.39.

Fig. 6 shows the top four LVs of the two PLSDA models in
their second derivative format. In the OSCC-Benign PLSDA
model, the loadings of LV1, LV2, LV3, and LV4 explained
94.50%, 4.48%, 0.38% and 0.29% of the spectral variations
between OSCC and benign tissues, respectively. In the OED
PLSDA model, the loadings of LV1, LV2, LV3, and LV4
explained 96.32%, 2.27%, 0.20% and 0.17% of the spectral
variations between OED biopsies with and without MT,
respectively. A visual comparison shows that LV1 and LV2 are
very similar in both models, collectively explaining 99.0% of
the spectral variations between OSCC and benign tissues, as
well as 98.5% of the spectral variations between OED tissues
with and without MT.

Eleven prominent FTIR bands were identified from the top
two latent variable loadings (LV1 and LV2) of both PLSDA
models as discriminative spectral biomarkers for differentiat-

Fig. 4 MT risk probability for 180 representative FTIR spectra from 30 OED biopsies, predicted by the OSCC-Benign PLSDA model. Each biopsy is
represented by six consecutive markers in the same color and shape. Red empty and solid arrows indicate false positive and false negative predic-
tions, respectively.
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ing OED biopsies with and without MT, as summarized in
Table 2. These discriminative bands are attributed to altera-
tions in the quantities and molecular structures of proteins
(1670 cm−1, 1654 cm−1, 1550 cm−1, 1516 cm−1, 1080 cm−1,
970 cm−1), nucleic acids (1237 cm−1, 1080 cm−1, 970 cm−1),
lipids (1704 cm−1, 1482 cm−1), and carbohydrates (1080 cm−1,
1428 cm−1, 1024 cm−1) within the tissues.12,24

Discussion

OED is a histologically defined oral lesion that carries an
increased risk of progression to OSCC. The primary goal of
OED grading is to evaluate tissue abnormalities and assess a
patient’s risk of malignant transformation. The current gold
standard for OED diagnosis is the WHO’s three-tier system,
which grades dysplastic lesions as mild, moderate, or severe

based on histological features. Moderate or severe OED has
been shown to be statistically associated with a greater risk of
MT compared to mild OED, with an odds ratio of 2.4 (99% CI
1.5–3.8).27 However, there are several issues with the WHO
diagnostic system, including substantial subjectivity and wide
inter- and intra-observer variability, especially for moderate
OED.28 To address these issues, Kujan et al. proposed a binary
grading system that categorizes dysplastic lesions as either low
or high grade using morphological criteria similar to those of
the WHO system.29 Although some studies have suggested that
the binary system improves observer consistency compared to
the three-tier system,30,31 a recent meta-analysis indicated that
both grading systems exhibited limited effectiveness in pre-
dicting MT in individual OED patients.32 In some cases, lower-
grade lesions may progress to OSCC, while higher-grade
lesions may remain unchanged.33,34 Additionally, patients
without an OED diagnosis may still develop OSCC.35

Fig. 5 Model performance in ROC with AUC and confusion matrix for MT risk prediction in OED at the ROI-level for the (a) OSCC-Benign PLSDA
model, in which the OED FTIR dataset was used as a test set, and (b) OED PLSDA model, which was trained using the OED FTIR dataset with 10-fold
veteran blinds cross-validation. (c) A summary of performance metrics for both models.
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At the molecular level, it remains unclear why some OED
lesions progress to OSCC while others don’t, and the mecha-
nisms driving OED progression are still poorly understood.36

Oral carcinoma is thought to arise from the progressive
accumulation of molecular changes, with the final change
establishing the cancer genotype and triggering invasion.37

The process of MT may involve a range of genetic and mole-
cular alterations, including enhanced oncogene activity,
reduced tumor suppressor gene function, changes in cell cycle

regulators and growth factors, as well as alterations in protein
phosphorylation, mitosis, and cell proliferation.38–41 However,
research on genetic changes in dysplastic lesions and OSCC
has yielded conflicting results. While some research identified
shared genetic changes between dysplastic lesions and carci-
noma samples, other studies showed that molecular changes
in precancerous lesions had little relationship to those in sub-
sequent carcinomas.42–45 Many molecular biomarkers have
been studied for their potential in predicting MT in OED.
These include biomarkers of cell proliferation and apoptosis
(e.g., Ki-67 and p53), cell adhesion and junction proteins (e.g.,
podoplanin and S100A7), immune and inflammatory markers
(e.g., CD68 and PD-1), as well as biomarkers associated with
genomic instability, cancer stem cells and miRNAs.46,47

Unfortunately, no single biomarker has demonstrated
sufficient clinical reliability for OED diagnosis.48 Multi-omics
approaches offer new opportunities to integrate data across
different cellular function levels, including genomics, epige-
nomics, transcriptomics, proteomics, metabolomics, and
microbiomes, to enhance our understanding of complex dis-
eases such as oral cancer and precancerous oral lesions.
Despite their promise, clinical translation and implementation
of multi-omics approaches face significant challenges, includ-
ing the need for specialized infrastructure, advanced compu-
tational resources, and the high costs associated with data
generation and analysis.49

We propose the integration of FTIR with machine learning
to address the challenges in OED diagnosis. One notable
advantage of the FTIR technique is its capability to provide a
comprehensive molecular fingerprint of a biological sample,

Fig. 6 Comparison of the top four latent variables (LVs) between the (a) OSCC-Benign PLSDA model and (b) OED PLSDA model. The LVs are in
second derivative form of the FTIR spectra.

Table 2 Important FTIR spectral biomarkers for differentiating between
OEDs with and without MT

Wavenumber
(cm−1) Vibrational modes and biochemical assignments

1704 Ester carbonyl CvO stretching, fatty acid esters,
lipids

1670 Amide I, secondary structure of proteins
1654 CvO stretching of Amide I
1550 C–N & CN–H stretching of amide II
1516 Amide II, secondary structure of proteins
1482 Deformation vibrations of –CH3, lipid
1428 CH2 bending (polysaccharides, cellulose)
1237 Asymmetric phosphodiester stretching νas

(–PO2
−), lipid, DNA/RNA, Amide III (C–N stretch-

ing, N–H bending)
1080 Symmetric phosphodiester stretching νs. (–PO2

−),
protein phosphorylation, phospholipids, collagen,
DNA/RNA

1024 Glycogen (C–O stretching associated with
glycogen)

970 C–O stretching of the phosphorylated proteins,
DNA/RNA
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capturing information across the entire “omics” landscape
simultaneously. In a previous study, we applied FTIR to evalu-
ate oral biopsy tissues with histological diagnoses of hyperker-
atosis (benign), moderate-to-severe dysplasia, and OSCC. We
developed discriminant models that accurately differentiated
epithelial FTIR spectra between OSCC and benign tissues.
Interestingly, we observed that some OED epithelial spectra
closely resembled OSCC, while others were more similar to
benign tissue. This led us to hypothesize that the OSCC-like
subgroup of OED carries a high risk of MT, while the Benign-
like subgroup carries a lower risk. In the current study, we
tested this hypothesis by applying the OSCC-Benign PLSDA
model to a labelled OED FTIR dataset with documented MT
outcomes. The model demonstrated good predictive perform-
ance, with a sensitivity of 76.4%, specificity of 85.2%, precision
of 77.5%, F1 score of 0.77, and accuracy of 81.7% at the ROI-
level. Applying the majority voting rule for each biopsy further
enhanced model performance, achieving sensitivity, specificity
and accuracy of 83.3%, precision of 76.9%, and an F1 score of
0.8 at the biopsy level. In contrast, the gold standard WHO
three-tier system has been reported to provide only 24–40%
accuracy in predicting MT in OED.32,50 Similarly, a meta-ana-
lysis of the histological binary grading system showed that the
MT rates for low-grade and high-grade OED cases were 12.7%
and 57.9%, respectively.51 When comparing our model’s predic-
tions with WHO histological grading, all eight mild OED biop-
sies were classified as low-risk, while five out of six severe or
moderate-to-severe OED biopsies (except for #05) were classified
as high-risk for MT. This indicates a strong correlation between
histological grading and our model’s predictions, particularly
for mild and severe/moderate-to-severe OED biopsies. Moderate
OED diagnosis presents the greatest challenge within the WHO
three-tier system, often exhibiting poor inter-observer agreement
and a lack of clear clinical management guidelines (28, 52). In
our study, out of the 12 moderate/mild-to-moderate OED biop-
sies, our model correctly classified ten cases (four high-risk and
six low-risk), achieving an accuracy of 83%. This suggests that
our FTIR-based machine learning approach could offer a more
objective and reliable method for risk assessment and manage-
ment of moderate OED biopsies.

At the biopsy-level, our model produced two false positives
and three false negatives. Specifically, two OED biopsies #05
and #63, from patients with MT, were predicted as low risk.
This discrepancy may result from mis-sampling during the
initial biopsy procedure or inaccuracy of the model. On the
other hand, three OED biopsies #17, #54, and #89 from
patients without MT were predicted as high-risk, which may be
due to inaccuracy of the model, possible clinical interventions
following the initial OED diagnoses, or a potential MT process
beyond the follow-up period. Four of the five misdiagnosed
biopsies had false predictions from all (6/6) or the majority (5/
6) of the ROIs, while one misdiagnosed biopsy (#89) had false
predictions from half (3/6) of the ROIs, suggesting biochemical
heterogeneity within some OED tissues. Tissue heterogeneity
will be the subject of our future studies to better understand
how it influences the prognosis and risk assessment of OED.

In the literature, we found two other studies from the same
research group that also investigated an FTIR-based machine
learning approach for MT prediction in OED. Ellis et al.
applied principal component analysis followed by linear discri-
minant analysis (PCA-LDA) to FTIR spectra from 17 OED biop-
sies and produced a mean sensitivity of 79% and specificity of
76% in MT prediction.52 The authors subsequently conducted
a follow-up study on the same dataset using a different
machine learning algorithm (MLA) and generated a mean sen-
sitivity of 84% and specificity of 79% in predicting the MT of
OED.53 Our study differs from these two studies in several key
aspects, including sample size (30 vs. 17), FTIR instrumenta-
tion and acquisition protocols, spectral pre-processing
methods, discriminant models (PLSDA vs. PCA-LDA and MLA),
and the use of average spectra versus pixel-level spectra for
model training or testing. A particularly significant distinction
lies in our model development approach. While the two other
studies used the conventional method of splitting their OED
spectral dataset into training and test sets, we explored a novel
strategy: applying a model trained for OSCC-Benign discrimi-
nation to predict OED risk. This novel approach provides a bio-
logically meaningful rationale for OED diagnosis: OED biop-
sies with biochemical profiles similar to OSCC are associated
with a high risk of MT, whereas those resembling benign
tissues carry a lower risk. For further comparison, we devel-
oped another OED PLSDA model using the 180-spectrum OED
dataset and evaluated its performance via 10-fold cross-vali-
dation. Notably, the two PLSDA models demonstrated similar
performance in predicting MT risk in OED. The loadings of
the top two LVs of the two models were nearly identical.
Comparison of the class average spectra revealed similar spec-
tral features between high-risk OED and OSCC. Our findings
suggest that high-risk OEDs share distinct biochemical charac-
teristics with OSCC, reflecting underlying carcinogenic path-
ways and molecular changes that lead to cancer development
in these OED patients.

This pilot study has several limitations. First, the generaliz-
ability of the findings is constrained by the small sample size,
which was drawn from a single center. Our future studies aim
to expand the sample size and include data from multiple
centers, which will help enhance the robustness and reliability
of our prediction model across a more diverse patient popu-
lation. Second, we utilized six ROIs per biopsy to capture the
spatial distribution of the tissue. However, the manual selec-
tion of ROIs may introduce potential bias. Besides, some biop-
sies exhibited spatial heterogeneity, which we accounted for
using a majority voting rule for biopsy-level predictions. To
refine this approach, we plan to capture FTIR images of entire
biopsy tissues and perform a more comprehensive analysis of
the whole-tissue dataset. We will also explore better methods
for interpreting and analyzing spatial heterogeneity. Third,
this study focused on the PLSDA model, which was the highest
performing model in our previous OSCC-Benign study. Moving
forward, we aim to investigate more advanced machine learn-
ing techniques, including deep learning architectures such as
Convolutional Neural Networks (CNNs), to further enhance the
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model performance. Deep learning models excel at automati-
cally learning relevant features from complex, high-dimen-
sional data, and often outperform traditional machine learn-
ing models, particularly with large datasets. Through these
efforts, we aim to establish and validate the FTIR-machine
learning approach for clinical applications in OED diagnosis,
ultimately contributing to improved patient outcomes.

Conclusions

In summary, our results demonstrate the potential of the
FTIR-based machine learning approach as a more accurate
tool for predicting MT risk in OED than traditional histological
methods. Our FTIR-based PLSDA model generated 83.3% accu-
racy on the biopsy level in predicting the MT of OED, com-
pared to less than 40% accuracy reported for the histological
method. This approach provides a quantitative and objective
diagnostic tool with enhanced biological interpretability,
assisting clinicians in the assessment and management of
OED patients. Low-risk OED patients can follow conservative
surveillance protocols and avoid unnecessary medical pro-
cedures, while high-risk OED patients can benefit from timely
interventions such as surgery, laser therapy, topical chemo-
therapy, and photodynamic therapy.54–56 A high-risk classifi-
cation may also necessitate additional sampling, more fre-
quent follow-ups, and re-examination of other oral regions to
ensure comprehensive assessment.36 In addition to an objec-
tive and accurate diagnostic tool, the quality of biopsy, includ-
ing factors such as size, depth, orientation and fixation, also
contributes to reliable OED diagnosis. Early detection of oral
cancer at its precancerous stage can significantly reduce their
transformation rates and enhance patient survival
outcomes.50,57,58 Future studies should focus on increasing
sample size and developing advanced machine learning
models to improve diagnostic accuracy. Additionally, validating
these models across diverse multicentric cohorts will enhance
their generalizability and readiness for clinical translation.
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