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Spectral imaging and a one-class classifier for
detecting elastane in cotton fabrics†

Ella Mahlamäki, *a Inge Schlapp-Hackl, b Tharindu Koralage, b

Michael Hummel b and Mikko Mäkelä a

Elastane detection is important for textile recycling as elastane fibers can hamper mechanical and chemi-

cal fiber recycling. Here, we report the use of near-infrared imaging spectroscopy and class modelling to

detect 2–6% elastane in consumer cotton fabrics to provide alternatives to current detection methods,

which are invasive and time-consuming. Our method automatically identified outlier fabrics and

measurements with class-specific clustering and showed higher classification accuracies by averaging

across individual pixel spectra to reduce sampling uncertainty. The final classification results showed

median test set true positive and true negative rates of 89–97% based on randomized resampling. Class

modelling offers clear benefits compared to commonly used discriminant classifiers as it allows modelling

new classes using only a set of target samples without requiring representative training objects from all

the other classes. Overall, these results open the possibility for fast non-invasive detection of small

amounts of elastane in cotton, taking us a step closer to a circular economy of textiles.

1. Introduction

The discovery of polyurethanes is often credited to Otto Bayer
who found that diols and diisocyanates react readily in a con-
densation reaction.1 The underlying principle of hard poly-
urethane fibers paved the way for the development of highly
elastic fibers nowadays known as elastane in continental
Europe. In some other countries the names spandex and lycra
have become proprietary on the market. Elastane is used in
apparel to provide stretch, flexibility, and comfort to clothing
items allowing for better mobility and fit, particularly in garments
like sportswear and leggings that require flexibility during physi-
cal activities. Although the exact composition of elastane fibers
can differ depending on the manufacturer, they all consist of
polyurethanes. The resulting fibers have tenacities up to 15 cN
tex−1 at elongation to break values of 200–800% with almost com-
plete elastic recovery up to 500%.2 Only small quantities of these
fibers are needed in fiber blends to produce form-fitting apparel
due to these outstanding properties. Apparel products thus fre-
quently contain elastane and the share of elastane containing tex-
tiles is increasing. The global production of elastane fibers
declined for the first time to 1.1 million tons in 2022 after hitting

its all-time production high of 1.2 million tons in 2021.3,4 Of
these overall volumes, approximately 2.6% is estimated to be
recycled elastane.3

We report a novel method to detect elastane in cotton
fabrics based on near infrared (NIR) imaging spectroscopy and
class modelling. Cotton, together with regenerated cellulosic
fibers viscose and Lyocell, covers 32% of global textile fiber pro-
duction,5 and is often combined with elastane for clothing appli-
cations. The same elastane properties that provide clear benefits
in clothing, however, complicate several unit operations during
textile recycling. For example, end-of-life textiles are usually disin-
tegrated by shredding and highly elastic polyurethane fibers can
block and clump the shredders.6 Subsequent dissolution and
spinning of cellulosic textile fibers are also hampered by trace
quantities of elastane.7 Elastane can be found on the surface or
in the core of a yarn, which makes its detection challenging.
Recent academic publications and patents in elastane fiber
identification have mainly focused on non-invasive methods
using traditional NIR spectrometers or hyperspectral cameras.8–12

Most of these methods did not specifically focus on detecting
elastane in cotton or elastane as a minor component but focused
on classifying broader textile material categories. Studies includ-
ing elastane blends as one of the textile categories utilized mainly
linear and non-linear discrimination methods.10,11 Hohmann
et al. and Langeron et al. mentioned poor separability of elastane
using traditional point spectrometers and linear class models.8,9

In addition, Cura et al. found that elastane content had a larger
influence on the detectability of elastane in cotton fabrics than its
location in the fabric.12
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Our method offers three distinct aspects of novelty com-
pared with the current alternatives in the fiber identification
field. First, we focus on cotton where elastane is used as a min-
ority component and show how fabrics with 2–6% elastane
were reliably identified with median true positive and true
negative rates of 89–97% based on randomized resampling.
Second, we illustrate how outlier fabrics and measurements
can be automatically identified and how averaging across indi-
vidual pixel spectra improved classification accuracy by redu-
cing sampling uncertainty. Outliers are important as fabrics
with incorrect labels can distort the chemical subspace
described by the class model. In addition, averaging across
individual pixel spectra provides a sampling advantage com-
pared to traditional point spectrometers, which determine
spectra from a single localized area within a fabric, because
both chemical and physical properties are known to influence
NIR measurements.13,14 Third, we used class modelling which
offers clear benefits for model training compared with com-
monly used discriminant classifiers. One-class classifiers
enable modelling a new class by training a separate class
model to describe the features of that class without representa-
tive training objects from the other classes. Overall, we show-
case a novel non-invasive alternative to time-consuming
chemical methods for elastane identification that can take us
a step closer to a circular economy of textiles.

2. Experimental
2.1 Sampling and reference measurements

Pure cotton fabrics and cotton–elastane blends were purchased
from the local fabric shop Eurokangas, the import and wholesale
shop Tekstiilipalvelu, and the fabric sample provider Finlayson.
The collected fabrics had different colors, patterns, and weaving
techniques. A total of 201 independent fabric samples were col-
lected and the two classes are summarized in Table 1. All col-
lected fabrics were cut to approximately 10 × 10 cm2 samples for
the imaging measurements. Some selected fabrics were analyzed
in detail using an optical microscope (manufacturer: Leica;
model: DM750; transmitted light microscope with a camera). The
fabrics were manually opened, the yarns were unraveled, and the
fibers were identified using a 20× magnification.15,16

2.2 Imaging spectroscopy

NIR images were obtained using a Specim SWIR 3 imaging
spectrograph with a similar imaging setup to that in our pre-
vious work. The instrument worked in a line-scanning mode

and recorded light intensity from 384 spatial pixels and 288
spectral variables within the wavelength range 967–2560 nm.
The field of view was set to approximately 12 cm with a pixel
size of approximately 0.1 mm2. For more details, see
Mahlamäki et al.17 or Mäkelä et al.5,18

The images were initially determined in raw signal intensity
counts and later converted to reflectance values using a two-
point linear reflectance transformation. This transformation
was based on measurements taken from a reflectance target
and dark current readings.19 The noise at extreme wavelengths
was eliminated by excluding variables outside the range
1000–2500 nm. Consequently, the number of spectral variables
was reduced to 270.

2.3 Exploratory analysis and class modelling

Fabric pixels in the reflectance images were separated from the
image backgrounds using principal component analysis (PCA).
An average spectrum was determined from each fabric and the
object spectra were preprocessed using a second derivative
Savitsky–Golay polynomial filter20,21 with a window length of
11 variables. The preprocessed spectra were mean centered
and decomposed with conjoint PCA to visualize variations
across both classes.22 The decomposition was determined
according to the general PCA model, eqn (1):

X ¼
Xn
k¼1

tkpk
T þ En ð1Þ

where X denotes the preprocessed and mean centered average
object spectra, tk and pk the orthogonal score and orthonormal
loading vectors, respectively, and En the residual matrix after n
principal components (PCs). The loadings of the first principal
component were determined as the weights which maximized
the variation explained by the corresponding scores, eqn (2):23

argmax
w¼1

ðtT tÞ ð2Þ

and the loadings of all subsequent PCs were required to be
orthogonal to the previous ones. Outliers in the PC scores were
identified based on disjoint PCA and clustering. Scores values
were determined separately for both classes and the object scores
of the first two PCs were divided into two groups based on their
Euclidean distances with k-means clustering. The cluster with a
lower number of objects was identified as the outlier group and
was assumed to include the false positives of that class. These
outlier objects were removed from the final sample set.

A supervised class model was then determined for the
cotton–elastane class (Table 1) using soft independent model-
ling class analogy, SIMCA.24 The class spectra were first
decomposed with PCA and two distance metrics determined to
assign a class boundary. These distances were the squared
Mahalanobis distance of a score object to the center of the
model subspace and the squared Euclidean distance to the
model subspace, eqn (3) and (4), respectively:

Ti
2 ¼ ti

TTT
N� 1

� ��1

tTi ð3Þ

Table 1 Overview of the collected fabrics

Class
Number of
fabric objects

Composition reported in the
fabric label

Cotton (%) Elastane (%)

Cotton 100 100 0
Cotton–elastane 101 94–98 2–6
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Qres; i ¼ eieTi ; ð4Þ
where ti denotes the score vector of an object, T the score
vectors of the training objects, N the number of training
objects, and ei a vector of model residuals for an object. The
two distances were then used to define a combined distance, c,
for supervised classification, eqn (5):

c ¼ T2

Tlim
2 þ

Qres

Qreslim
ð5Þ

where Tlim
2 and Qreslim denote critical distances based on a

chosen confidence level. These critical distances were deter-
mined according to Jackson using a confidence level of 95%.25

An object was then considered to belong to the cotton–elastane
class if it fulfilled the classification rule, eqn (6):

c � clim ð6Þ
where clim denotes the critical limit value for the combined
index alternative discussed by Vitale et al.24

Training and test sets were generated randomly by selecting
one third of the cotton–elastane objects to the test set with all
the cotton objects. A suitable number of PCs for the SIMCA
classifier was identified through Monte Carlo cross-vali-
dation.26 Two thirds of the training objects were randomly
selected to a cross-validation training set and the true positive
rate (TPR) of the remaining cross-validation test set objects
was determined based on the number of PCs used for class
description. This cross-validation procedure was repeated 1000
times and the number of PCs with a median true positive rate
closest to the confidence level 95% was selected for the final
classifier. Additional resampling was then performed by ran-
domly assigning the objects to training and test sets during
1000 resampling iterations and the distributions of the TPR
and true negative rate (TNR) were determined. The analysis
workflow is visualized in Fig. 1.

The effect of sampling was evaluated by varying the
number of pixels used for calculating the average spectrum of

each fabric object. Squared regions of interest of 1–1024 pixels
were selected from the center of each image and the median
true positive rates were determined with a similar Monte Carlo
cross-validation procedure as described above. The analyses
were performed using in-house scripts developed in Matlab®
(The MathWorks, Inc.) including functions from the PLS
toolbox (Eigenvector Research, Inc.).

3. Results and discussion
3.1 Methodological details

We obtained NIR images of cotton fabrics with 0–6% elastane
to develop a non-invasive method to reliably detect elastane in
cotton. Fig. 2a shows a visualization of the imaging principle.
The fabric spectra acquired from the images were determined
by averaging over individual pixel spectra (Fig. S1a†) and were
preprocessed with Savitzky–Golay filtering (Fig. S1b†). The
second order derivation in Savitzky–Golay filtering trans-
formed positive reflectance peaks into negative ones and
resulted in inverted peaks in the preprocessed spectra and the
following loadings. The preprocessed average spectra of the
fabrics were first decomposed with PCA to systematically evalu-
ate the differences in the sample set. The first two principal
components explained 82% of the variation in the spectra.
Scores of the first two PCs are shown in Fig. 2b. Most of the
cotton–elastane class objects showed lower score values on the
first principal component than the cotton class. The loadings
(Fig. 2b) indicated that these lower score values were associ-
ated with negative loadings in preprocessed spectra at approxi-
mately 1431 and 1483 nm, which generally correspond to N–H
vibrations in NIR spectra.27,28 The loadings also showed the
highest values at 1920 nm, which could be assigned to CvO
vibrations in the CONH structure.27,28 The N–H, O–H and
CvO vibrations also showed higher values in the region
2060–2100 nm.27,28 The positive score values of the cotton
class on the first principal component suggested higher values

Fig. 1 A image analysis and class modelling flowchart. Principal component analysis (PCA) reduces data dimensionality while preserving variance,
and soft independent modelling of class analogy (SIMCA) builds a PCA-based classification model for known groups and assigns new samples based
on similarity.
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of preprocessed spectra at 1670 nm. We, however, did not find
credible assignment for 1670 nm, but it has been previously
reported for C–H vibrations in lignin.29 Overall, interpretation
of the PC loadings suggested that the main spectral variations
which separated the two classes were mainly associated with
the vibrational modes of nitrogen and oxygen structures in
elastane. Cotton and cotton–elastane fabrics are visualized on
several discussed wavelengths in Fig. S2.†

Scores of the first two PCs, however, showed an overlap in
the two fabric classes. Some cotton objects were located over
the cotton–elastane class and some cotton–elastane objects
were located over the cotton class in the PC score space, see
Fig. 2b. This overlap suggested that some of the fabric labels
were not in line with the information in the NIR spectra. We
decomposed the two classes separately with disjoint PCA and
separated the class scores of the first two PCs into two groups
with k-means clustering to determine the overlapping objects.
The results are shown in Fig. 2c. The majority groups in both
classes were assumed to be true representatives of that class
and the minority groups were deemed as potential outliers.
There were altogether 38 potential outliers, 21 in the cotton
class and 17 in the cotton–elastane class, which was 19% of
our sample set. The disjoint PCA loadings are given in Fig. S3
in the ESI† which shows that the wavelength differences of the
majority and minority groups were associated with the same
wavelengths as shown in Fig. 2b. These results suggested that
some cotton fabrics likely contained synthetic fibers and some
cotton–elastane fabrics did not contain elastane, or that the
elastane was not visible in the NIR measurements.

We manually unraveled the outlier fabrics and visually
inspected the separated fibers with a microscope to confirm
our observations on the potential outliers. The results showed
that the outlier fabrics with a cotton label did contain syn-

thetic fibers and four of the fabrics also contained elastane.
The microscopic structural images of these findings are shown
in Fig. S4.† Synthetic fibers and elastane were also found in
most of the cotton–elastane outliers (Fig. S5†). According to
European Union Regulation no. 1007/2011 fabrics are allowed
to have up to 2% of extraneous fibers without mentioning it
on the fabric label if they are added unintentionally during
production.30 This regulation accounts for small changes in
fiber content during a manufacturing process. The NIR
measurements were influenced not just by the extraneous
fibers, but also by the structure of the fabrics. Five of the
cotton–elastane outliers had a knitted fabric structure, where
elastane was in the core of the fiber surrounded by cotton yarn
(Fig. S6†).31–33 This suggested that NIR light had not pene-
trated through the cotton yarn to detect the elastane fibers.
Eleven of the outliers had a woven structure, where elastane
yarn was found only in the weft direction, and one fabric con-
tained synthetic fibers other than elastane. Moussa et al.
(2006) studied the effects of the fabric structure on light scat-
tering from fibers and found that the highest back-scattering
occured when the direction of incident light was perpendicular
to the incidence plane for yarn samples and to the weft direc-
tion in the woven fabric.34 In addition to the direction of the
light, the penetration depth of NIR light into the sample must
be sufficient to detect elastane fiber in the core of the yarn.
The fabric structures of the potential outliers containing elas-
tane suggested that elastane was not on the surface of the
fabric or elastane fiber, in relation to the incidence plane, was
in the direction of increased scattering, and was not visible in
the NIR spectra. All potential outlier fabrics in the minority
groups were deemed as outliers and removed from the final
sample set. After outlier removal the conjoint PC scores
showed two clusters, and the loadings showed that the wave-

Fig. 2 An illustration of the imaging principle modified from Mahlamäki et al.17 in (a), conjoint principal component (PC) scores across both classes
(CO denoting cotton and EL elastane) and respective principal component loadings with the most important wavelength differences in (b), disjoint
class specific principal component scores with identified outliers colored in (c), and revised conjoint principal component scores after outlier
removal in (d). The wavelengths marked in the loading plot in (b) are discussed in text.
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length differences of the cotton and cotton–elastane groups
were associated with the same wavelengths as shown in
Fig. 2b. The revised PC scores are shown in Fig. 2d. Overall,
disjoint PCA and clustering provided a convenient way to auto-
matically identify fabrics or NIR measurements which were
not in line with the information reported in the fabric label.

We focused on training a SIMCA classifier specifically for
the cotton–elastane class and divided the objects of that class
into training and test sets. All cotton class spectra were desig-
nated to the test set. Significant features in the training set
were extracted with a PCA model, which was used to determine
the relevant model distances for the classifier. An illustration
of the model distances and the class boundary in a one-dimen-
sional principal component model is shown in Fig. 3a. An
appropriate number of PCs was estimated by Monte Carlo
cross-validation.26 The results showed that a median true posi-
tive rate closest to the predetermined 95% confidence level
was achieved with only one PC based on 1000 random
sampling iterations, see Fig. 3b. Cross-validation performance
started to decrease with more than one PC, which indicated
that a one component class model was sufficient to reliably
describe the properties of the target class.

We also determined cross-validation performance with
different preprocessing combinations based on first and
second derivative Savitzky–Golay filtering and standard normal
variate transformation.35 The results are shown in Fig. S7,†
where we report the effect of derivative filtering on different
filter window lengths. A wider filter window led to excessive
smoothing and removed important features in the average
spectra, while a narrower filter window likely generated excess

noise to the signals. An appropriate processing method was
important to enhance the chemical features of elastane. We
evaluated the effect of pixel averaging by controlling the
number of pixels used for determining the average fabric
spectra. As shown in Fig. 3c, median true positive rates were
closest to the predetermined confidence level 95% using 1024
or all fabric pixels. Cross-validation performance decreased
with a decrease in the number of pixels used for averaging.
Using fewer pixels for averaging increased sampling uncer-
tainty and reduced our capability to extract chemically relevant
features from the spectra.

We then determined the performance of the final SIMCA
classifier with the randomly chosen test set. Classification of
the test set spectra resulted in a true positive rate of 93% and a
true negative rate of 97% with an overall accuracy of 96%.
Fig. 3d shows the squared Mahalanobis distances within the
model and the squared Euclidean distances to the model for
the test set objects with the derived class boundary, and
Fig. 3e reports the confusion matrix based on the test set. In
Fig. 3d the axes are logarithmically transformed for visualiza-
tion, which makes the linear class boundary appear non-
linear. Two cotton–elastane fabrics and two cotton fabrics
were misclassified. The misclassified fabrics were similarly
manually unraveled as the outliers. The microscopy images of
the two misclassified cotton fabrics showed synthetic fibers
(Fig. S8†). The misclassified cotton–elastane fabrics contained
3% of elastane based on the fabric label. The elastane fiber
was found in the core of the fibers from both misclassified
fabrics, which suggested that elastane in these fabrics was not
visible in the NIR measurements.

Fig. 3 An illustration of the distance metrics and the class boundary for a one-dimensional SIMCA model in (a), the median true positive rates (TPR)
of the first 15 principal components (PC) during cross-validation with the respective 5th and 95th percentiles in (b), the cross-validation median
TPRs for varying number of pixels used to determine average fabric spectra and the respective 5th and 95th percentiles in (c), test set classification
results of the SIMCA model trained for cotton–elastane (CO-EL) fabrics in (d) with the respective confusion matrix in (e). The axes in (d) were logar-
ithmically transformed for visualization, which makes the linear class boundary appear non-linear. TPR and true negative rates (TNR) of the SIMCA
model based on random resampling (f).
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As shown in Fig. 3d and e, we tested the SIMCA classifier
after we had randomly assigned one third of the cotton–elas-
tane spectral objects in the remaining sample set to a separate
test set with the cotton objects. There were thus 56 objects in
the training set and 107 objects in the corresponding test set
(Fig. 3e). The results suggested promising classifier perform-
ance based on determined TPR and TNR which, however,
varied depending on which exact objects were assigned to the
training and test sets. To account for this variation, we per-
formed additional resampling by randomly assigning the
objects to training and test sets during 1000 resampling iter-
ations and determined distributions of TPR and TNR. The
results are illustrated in Fig. 3f. The randomized resampling
iterations led to median true positive and true negative rates of
89% and 97%, which indicated that our classifier correctly
identified cotton fabrics with small amounts of elastane inde-
pendent of how the training and test set objects were chosen.

3.2 Practical relevance

Elastane accounts for 1% of the global textile fiber production
as only a small share is needed to provide elasticity and
additional wear comfort in textiles. Fabrics made from natural
fibers such as cotton or wool often contain 1–5 wt% elastane
and polyester or polyamide fabrics may contain up to
20 wt%.36 These natural and synthetic fibers most often
blended with elastane account for approximately 87% of
global fiber production,3 but data on the share of fabrics con-
taining elastane are not available. The share of elastane con-
taining textiles has increased drastically in the past decade
due to increased elastane production, with no indication that
the use of elastane will decrease soon. Elastane detection is
important for textile recycling as elastane fibers can block and
clump defiberization and shredding equipment during re-
cycling. Mechanical recycling of fibers containing elastane
results in lower quality yarns and residual amounts of poly-
urethane impede chemical recycling of polyester and cellulosic
fibers.7,36 Methods to identify and isolate elastane-containing
textile waste are therefore key to ensure efficient recycling of
polyester, polyamide, and cellulosic fibers.

NIR imaging spectroscopy provides an appealing alternative
for fast and non-invasive identification of elastane in textiles.
Imaging spectrometers determine material-specific chemical
fingerprints from every pixel of an image scene, which provides
large amounts of data. These data can then be used for training
image classification or regression models as part of high-through-
put and automated sorting systems, which are currently breaking
ground in the textile field.37 However, scaling imaging spec-
trometers for industrial applications presents challenges such as
increased costs, demands on processing speed and complexity.
Instruments working on wider NIR wavelength regions, such as
1000–2500 nm, generally use expensive cryogenically cooled MCT
detectors, whereas imaging in shorter regions up to 1700 nm can
be performed with cheaper InGaAs sensors.38,39 The required
wavelength region is determined by the application and the spec-
tral features as different chemical bonds interact with light on
specific wavelengths. The speed of the measurement is specified

by spectral and spatial resolutions, the frame rate of the detector,
and the speed of the conveyor belt. These determine how many
pixels are imaged and how quickly they are captured, which then
defines the time required to process the data.

Beyond costs and speed, a significant challenge for indus-
trial applications is the large amount of variation and contami-
nants in post-consumer textile materials.12 Variations in fabric
types, sources, quality and condition generate a lot of spectral
variation. Contaminants, such as dirt, oil, or residues from
previous processing steps, can change the spectral signature of
the fabric as they may introduce additional absorption or
reflection features that are not representative of the target
fabric material. Detecting detailed properties or minor fiber
components in fabrics, such as elastane, thus requires that the
collected textile waste is first sorted.37

Here, we have focused on a small problematic category of
textile waste and presented on lab-scale how 2–6% elastane
can be detected in cotton fabrics, but future efforts should
acknowledge these challenges when developing machine
vision algorithms for industrial applications of textile material
identification. Based on the principles of our classification
model, we believe that our method is applicable also to fabrics
with elastane content outside the range 2–6%, and generaliz-
able to other elastane fabrics with similar characteristics as
long as the classifier can be trained on correct labels and the
elastic fiber is visible in the NIR spectra.

Conclusions

We have shown how 2–6% elastane was identified in consumer
cotton fabrics using NIR imaging spectroscopy and class model-
ling. Our spectral image classifier showed median test set true
positive and true negative rates of 89–97% based on randomized
resampling and indicated that the relevant spectral features were
associated with the vibrational modes of nitrogen and oxygen
structures in elastane. We also showed how outlier samples and
measurements could be automatically identified and how aver-
aging across individual pixel spectra improved classification accu-
racy by reducing sampling uncertainty. Our class modelling
approach would in the future enable training new class models
with only a set of target samples without representative training
objects from all the other classes. These results are significant as
they indicate a novel non-invasive alternative to time-consuming
chemical analyses for elastane identification. In the future, this
will enable guiding the right materials to the appropriate recycling
paths bringing us a step closer to a circular economy of textiles.
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