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Full fingerprint hyperspectral imaging of prostate
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Claire A. Hart, d Diego F. Sanchez, e Pedro Oliveira, f Mick Brown, d

Noel Clarke, g,h Ashwin Sachdeva d,g and Peter Gardner *a,b

One of the major limitations for clinical applications of infrared spectroscopic imaging modalities is the

acquisition time required to obtain reasonable images of tissues with high spatial resolution and good

signal-to-noise ratio (SNR). The time to acquire a reasonable signal to noise spectroscopic scan of a standard

microscope slide region of tissue can take many hours. As a trade-off, systems can allow for discrete wave-

number acquisitions, sacrificing potentially vital chemical bands in order to reach specific acquisition targets.

Recent instrumentation developments now allow for the full fingerprint imaging of entire microscope slides in

under 30 minutes, enabling rapid, high quality spectroscopic imaging of tissues within clinical timeframes

without sacrificing frequency bands. Here we compare the data from a novel QCL microscope to an FTIR

microscope covering multiple aspects of spectroscopic imaging of a large, clinically relevant, prostate cancer

tissue cohort (N = 1281). Comparisons of hyperspectral data acquisition quality in both achieved signal to

noise and image contrast alongside the capacity for unsupervised and supervised modelling of tissue con-

stituents are reported. We conclude that it is now possible to collect full fingerprint spectra and derive clini-

cally relevant data in a timeframe suitable for translation into the pathology laboratory without the need to

resort to discrete frequency imaging with subsequent loss of information.

Introduction

Prostate cancer (PCa) is the most common cause of cancer in
males within the United Kingdom, with approximately 50 000
new diagnoses and 12 000 deaths each year.1 Unfortunately,
PCa is ubiquitous in an aging population, meaning that the
number of cases is growing year on year, thus putting an ever-
increasing strain on the UK healthcare system. This problem is
confounded by the number of UK pathologists taking retirement

and a concomitant lack of training and recruitment to the
service. This has prompted Cancer Research UK to report
“Immediate action is needed to avert a crisis in pathology
capacity and ensure we have a service that is fit for the future”.2

The increased use of technology, particularly the recent use of AI,
is seen a part of the solution. However, although digital pathol-
ogy and the automated analysis of whole slide images offers
some key benefits to the pathologist, the information content
remains the same whether analysed by computer or by eye.
Infrared spectroscopic analysis of tissue can potentially augment
current histopathological practice since additional information is
obtained in the form of a chemical fingerprint, indicative of
tissue type and disease state.

Although it was over 70 years ago that infrared spectroscopy
was first applied to a biomedical specimen,3,4 and the first
infrared reflecting microscopes were developed,5 the low sensi-
tivity coupled with a lack of fundamental understanding of the
interaction of infrared radiation with a chemically hetero-
geneous and morphologically complex sample, meant that it
was another 40–50 years before any significant progress was
made.6 The advent and widespread adoption of FTIR revolutio-
nised infrared spectroscopy, with the Michelson interferom-
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eter giving both a multiplex and significant throughput advan-
tage over scanning instruments. However, in the context of
conventional infrared microscopy, this advantage is partially
negated by the fact that the amount of light impinging on the
sample through a narrow microscope aperture, is significantly
attenuated, leading to poor SNR at high spatial resolution.
This led to the wide spread use of ultra-bright synchrotron
sources that could obtain diffraction limited spatial resolution
with reasonable SNR.7–10 Even so, mapping a tissue sample, by
raster scanning, meant that data acquisition times were prohi-
bitively long for clinical samples. Thus the majority of bio-
medical studies were related to the analysis of single cells.11–17

It was really the coupling of infrared microscopes with large
area focal plane array (FPA) detectors that facilitated the wider
use of standard benchtop instrumentation for tissue imaging
research.18,19 As a result Infrared spectroscopy has become an
appealing modality for molecular diagnostic and prognostic
research within the clinical space.20–25 Previous works have
shown the capacity for IR spectroscopy to be used across mul-
tiple facets of biomedical research: from histopathological
recognition,19,26,27 to digital histopathology,24,28,29 to classifi-
cation of cancerous tissues for diagnostic and prognostic
applications.8,30

Specifically for prostate cancer, it has been shown that
infrared analysis has been successfully employed with the
ability to distinguish cell-types, Gleason grade and stage, and
has the potential to predict the presence of prostatic
adenocarcinoma.26,31–34 However, despite the advances in
instrumentation and the ability to significantly augment the
diagnostic process, FTIR imaging is still too slow for adoption
in a pathology laboratory for routine biopsy analysis.

For measuring using a Fourier-Transform Infrared
Spectroscopy (FTIR) modality, trade-off rules allow for faster
acquisitions at the sacrifice of spectral quality (either through
lowering of scan co-additions, thus reducing SNR, or decreas-
ing spectral resolution resulting in loss of information).
However, even using large (128 × 128) focal plane array detec-
tors, whole slide imaging (25 × 75 mm2) can still take many
hours.35 The use of tuneable mid infrared Quantum Cascade
Laser (QCL) systems offer much faster acquisition times and
significant work has been carried out in this field.36–42 In most
cases the faster data acquisition is due to discrete frequency
imaging, at the expense of sacrificing the number of wavenum-
bers at which measurements are made.43,44 Previous QCL
microscopes that utilised focal-plane array detectors to image
full fingerprint wavenumber regions would still take upwards
of 13 hours to image a region covering a standard microscope
slide.41,45 However, recent advancements in QCL spectroscopic
instrumentation can enable scanning of this region within an
hour. A modern QCL-based imaging IR microscope can take a
hyperspectral image covering a 320 mm2 region (an approxi-
mate size of a moderate tissue TMA) scanned at 2 cm−1

spacing with a nominal pixel size of 4.3 µm in around
53 minutes (up to the limit of the instrument’s working dis-
tance).46 The novel LUMOS II ILIM system (Bruker Optics
GmbH & Co KG) improves further on this acquisition time,

capturing the same region at identical spacing and pixel size
in under 22 minutes. The improvements of the QCL modality
is not without issues, as unlike globar source spectrometers,
QCL systems have high degrees of temporal and spatial coher-
ence (called the coherence effect).47 As such, the results of
these systems must be compared against those acquired with
well-established commercial FTIR infrared microscopes.

In this paper we report on a comparison of a prostate
cancer tissue microarray comprising of 1281 representative
tissue cores from 183 patients imaged on one of the most com-
monly used FTIR instrument with a large FPA namely a Cary
620 FTIR microscope (Agilent Technologies Inc.)48–51 and a
new state-of-the–art QCL system namely the LUMOS II ILIM
(Bruker Optics GmbH & Co. KG), herein referred to as FTIR
and QCL respectively. Comparisons will cover instrument
setups, the acquisition of hyperspectral data including analysis
of image contrast and SNR, and the performance of supervised
classification techniques applied to the data. To ensure fair
comparison, data treatments were designed to follow the same
steps (where possible) with sample annotations being com-
pleted on the same set of training cores across similar regions
and components of tissue.

Patients and methods
Tissue collection

Human prostate tissue samples were obtained from the
Manchester Cancer Research Cancer Biobank (10_NOCL_02)
from tissue collected following ethical approval by the South
Manchester Research Ethics Committee (Ref: 22/NW/0237).
Formalin-fixed paraffin-embedded prostate tissue samples from
patients undergoing transurethral resection of the prostate
(TURP) or transrectal ultrasound guided needle core biopsies
(TRUSBx) between 1994 and 2004 were used to construct tissue
micro arrays (TMAs). Clinical characteristics of the patient cohort
are tabulated in the ESI (Table 1†). Serial tissue sections were cut
at 5 µm for each TMA block, with one section being H&E-stained
and imaged, with the remainder loaded onto calcium fluoride
(CaF2) slides for spectral imaging.

FTIR data acquisition

As indicated in Table 1, FTIR scans of the tissues were
acquired using an Agilent Cary 670-IR spectrometer coupled to
an Agilent Cary 620-IR imaging microscope, equipped with a
liquid nitrogen cooled mercury cadmium telluride (MCT) focal
plane array (FPA) detector with 128 × 128 detector elements. A
15× Cassegrain microscope objective was used producing a
field-of-view measuring 704 × 704 µm2, with each pixel
measuring 5.5 × 5.5 µm2. A sealable enclosure covered sample
stage and optics, providing a continuous supply of dry air.
Data were collected with a humidity level <1% to remove any
water vapour from the compartment that could have been
recorded as part of the spectrum. Background scans, collected
from a section of clean paraffin-free calcium fluoride (CaF2),
consisted of 256 co-additions at a spectral resolution of
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5 cm−1. For tissue scans images were obtained as a mosaic of
multiple tiles, each with 8 co-added scans. Blackmann-Harris
interferogram apodisation was used with two levels of zero
filling, with a spectral range of 900 to 3800 cm−1.

QCL data acquisition

All experiments were performed in transmission mode on a
Bruker LUMOS II ILIM, which is a quantum-cascade-laser
microscope equipped with a 520 × 480 focal plane array (FPA)
room temperature microbolometer and a refractive 4× IR objec-
tive lens (0.6 NA). This combination enables high-speed IR
imaging with 2.2 × 2 mm2 field of view (FOV) and a nominal
pixel size of 4.3 × 4.3 µm2. A hardware-based, patented coher-
ence reduction mechanism enables the acquisition of sharp IR
images. The instrumental optics were purged with dry air and
despite the sample compartment having an open design, no
significant water vapour bands were detected in the recorded
spectra. A single background scan was collected from an area
of clean paraffin-free calcium fluoride (CaF2) for each slide,
respectively. Full spectra were recorded in sweep scan mode
within a spectral range of 1800 to 950 cm−1 using a spectral
sampling interval of 2 cm−1 without co-added scans (i.e., one
scan per sampling area). As a result, 249 600 spectra were
acquired simultaneously for each sampling area (2.2 × 2 mm2)
within 16 s, resulting into an IR imaging speed of 16.8 mm2

per minute. The total measurement time (i.e., from inserting
the sample to completing data acquisition) for one TMA slide
was about 25 minutes.

Data pre-processing

All spectra captured across both modalities underwent the fol-
lowing pre-processing steps where applicable, performed in
Python (version 3.9) using the PyIR toolkit in Spyder.52,53 Many
pre-processing protocols were considered based on other
works in classification of cancerous tissues.54 Greater detail on
the implementation of these pre-processing steps has been
provided and discussed in prior works.54 Pre-processing proto-
cols for both modalities are as follows:

FTIR quality control

Quality control consisted of integrating the amide I peak
region of 1600–1700 cm−1, with any integrated peak values

under 2 being discarded. This is done to ensure mixed pixels
with significant contribution from wax or calcium fluoride are
removed. To ensure comparability, the FTIR data is then
truncated to the 950–1800 cm−1 region. No additional
quality control steps were completed such as anomaly
detection.55

QCL quality control

Quality control consisted of integrating the amide I peak
region of 1600–1700 cm−1, with any integrated peak values
under 2 being discarded. A tissue filter binary mask is then
generated from this thresholding.

Objects within this binary mask are then identified, with
any object smaller than 100 pixels being discarded. This step
removes any tissue debris or small interferents from areas sur-
rounding the tissue cores that passed the initial thresholding
check.

Common pre-processing steps

Following quality control, spectra from both FTIR and QCL
systems underwent the following processing steps:

- Linear baseline subtraction.
- Removal of the paraffin peak region of 1360–1490 cm−1.
- Vector normalisation.
- Minimum noise fraction denoising (with 30 bands for

reconstruction).56

- 2nd derivative conversion using a Savitsky–Golay (SG) filter
with a 21 wavenumber window size and 5th order fitted
polynomial.57

Results
Comparing SNR and spatial resolving power of measurements

The first level of comparison can be conducted at the point of
data collection (without pre-processing). Image quality such as
image contrast and image resolution can be compared
through integration of the amide I peak (1600–1700 cm−1).
This peak is a strong absorber across both modalities so is apt
for comparison. A comparison of image quality is plotted in
Fig. 1. The improved nominal pixel size of the QCL system
appears to result in better contrast in the images, while also
decreasing the number of mixed pixels where pixel contri-
bution comes from paraffin or sample substrate.

While SNR values could not be directly calculated for both
modalities for comparison, the root mean squared deviation
(RMSD) across a small wavenumber window (1780–1800 cm−1)
is a sufficient surrogate for SNR comparisons. This value is cal-
culated as the square root of the mean squared deviation of
absorbance values (xi) from the mean absorbance (x)̅ within
the spectral window (across N wavenumbers), as expressed in
eqn (1). This value represents the change in absorbance values
measured in a spectral region with no expected chemical
peaks, providing a measure of how much the signal deviates in
this spectrally silent region. The RMSD values were calculated
using 809 000 spectra for the FTIR data, and 995 000 spectra

Table 1 Key setup information of FTIR and QCL spectrometers used to
acquire hyperspectral datasets

FTIR QCL

Objective 15× 4×
Numerical aperture (NA) 0.6 0.6
FPA size (pixels) 128 × 128 520 × 480
Nominal pixel size 5.5 µm 4.3 µm
FOV 704 × 704 µm2 2210 × 2040 µm2

Source Globar QCL
Background co-additions 256 1
Scan co-additions 8 1
Spectral resolution 5 cm−1 4 cm−1

Time to scan (∼28 × 18 cm2) 480 minutes 25 minutes
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for the QCL data, and show an improved RMSD for the QCL
data (Table 2).

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðxi�x̄Þ2

N

s
:

ð1Þ

Absorbance plots of randomly selected spectra, as in Fig. 2,
help visualize the improved SNR of the acquired data. This is
particularly noticeable in the lower wavenumber region of
Fig. 2, which contains diagnostically important bands which
are nevertheless quite weak compared to the noise. Example
bands and their proposed vibrational modes and sources are
tabulated in. Comparisons of core images generated from inte-
gration of a lower wavenumber region (1220–1240 cm−1), as in
Fig. 3, show how complex tissue architectures are still being
spatially resolved in the QCL data, while being largely
obscured in the FTIR data. This underlines that QCL imaging
delivers spectral data with better overall SNR, thus, providing

for a comprehensive chemical analysis of fine morphological
features for which FTIR shows limited applicability.

Comparing unsupervised clustering applications

In the absence of labelled data, it is still possible to identify
and resolve tissue constituents using infrared data, with
k-means clustering being a commonly used method.58–61

Similar chemical fingerprints can be grouped together into a
cluster, which when arrayed can create a segmentation map,
highlighting key chemical regions within a hyperspectral
image. Fig. 4 displays the comparison of clustering results
between the FTIR and QCL data for a pair of prostate cores to
further highlight differences in data quality. Spectral data for
both modalities followed their respective pre-processing treat-
ments and underwent k-means clustering with 4 clusters. It can
be seen that the FTIR and QCL clusters can overlap substantially
in the generalised location of key prostate tissue constituents.
However, the cluster results based on the QCL data display an
increased level of detail. For instance, the boundaries of identi-
fied epithelial regions (red colour) are much more refined in the
QCL segmentation map compared to the FTIR (see zoom-ins for
Fig. 4a and b). Additionally, it appears that the stromal regions
(blue) directly neighbouring the epithelial appears unresolved in
the FTIR clusters (see zoom-ins for Fig. 4a and b). Notably, this is
not an inherent limitation of FTIR since stroma types have been
identified previously, but is a consequence of the reduced

Fig. 1 Comparison of amide I peak integration (1600–1700 cm−1) images for 100 cores imaged on d FTIR and QCL instruments (left). A single core
is highlighted (white dotted lines, left) in greater detail (centre), with four selections from within the core also plotted for comparison of image
quality (right).

Table 2 Root Mean Squared Deviation (RMSD) of datapoints between
1780–1800 cm−1 for both FTIR and QCL datasets

RMSD (1780–1800 cm−1) FTIR QCL

Median 1.50 × 10−3 4.45 × 10−6

iqr25 1.09 × 10−3 3.00 × 10−6

iqr75 2.10 × 10−3 6.74 × 10−6
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number of scans and thus poor SNR dictated by the requirement
of reasonable measurement times.21,62

Comparing supervised machine learning applications

The performance of supervised machine learning applications
can also be compared between QCL and FTIR modalities. This
can be done at a simple level where only key tissue constitu-
ents are modelled, as well as at a more complex level where
subgroupings of several tissue constituents can be modelled.
To illustrate, two tiered sets of Random Forests classifiers were
built on annotated prostate cancer tissue covering the same
patient cores in roughly the same areas, for both simple and
complex modelling architectures. The annotations of tissue
regions were created under pathologist guidance for 260 tissue
cores covering 65 unique patients, and treated as the ground
truth for result evaluations. The complex model architecture,
including sample sizes for each group, are presented in Fig. 5.
The simple model architecture is provided in the ESI (Fig. 1†).
Training sets are generated in two steps: First, a main training
data set is sampled from all available labelled data for each
tissue group to form the training data (in example, 25 000
spectra of benign epithelium). It is from this main group of
training data that the individual classes for each model are
built. Evenly sized training sets of spectra were randomly
selected for each class from the main groups of sampled anno-
tated data, in example, for Class 1 in Model 1 within Fig. 5,
each tissue group (stroma, epithelium, red blood cells, and
immune infiltration) will have 2500 spectra each, totaling

10 000 spectra for the whole class. This is done to ensure equal
representation of tissue groups within classes. Some spectra
are used for training in multiple models, however there is no
data leakage between training and test sets. All remaining
labelled data is used for testing.

In predicting the test data, spectra are passed through the
tiered models until a terminal node is reached. In example, for
the complex model illustrated in Fig. 5, a spectrum that is pre-
dicted as benign epithelium will pass from Model 1 to Model 7
receiving a final prediction label, whereas a spectrum of
normal stroma will pass to Model 4 from Model 2. Models
were validated via 10-fold cross validation, with new models
being trained for each fold.

Results of both FTIR and QCL systems are presented as
follows: Complex model summary statistics are provided in
Table 3, with the fifth ranked fold by model accuracy presented
in Table 4. The fifth rank fold is chosen to represent the median
model result, resulting in a fairer representation of the model
performance. The summary statistics for the simple model
results are provided in the ESI (Table 2†) alongside the fifth
ranked fold by model accuracy (ESI Table 3†). The calculation of
these summary statistics has been discussed in prior works.26

The results obtained highlight the ability to develop extre-
mely well performing models for both modalities when classi-
fying key tissue constituents with sensitivity and specificity
values over 0.9 for all classes. For more complex modelling,
the QCL system achieves greater results in comparison to the
FTIR, maintaining the high sensitivity and specificity values of

Fig. 2 Comparison of 20 randomly sampled raw (unprocessed) spectra collected on FTIR (top) and QCL (bottom) systems. Plots are generated for
full fingerprint regions (1800–1000 cm−1) and lower wavenumber regions (1400–1000 cm−1).
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at least 0.9 across all classes. False colour images can be gener-
ated for whole core predictions using the simple and complex
models for both FITR and QCL models, as shown in the ESI
(Fig. 2†) and Fig. 6 respectively. Predicted cores appear gener-
ally consistent in the majority of cases, however some observed
differences are expected given the key differences in model per-
formance (Table 5).

Discussion

It is well established that infrared hyperspectral imaging can
be used to evaluate tissue constituents and has the potential

to be used as a diagnostic tool to aid pathologists. One of the
main reasons for the slow progress to clinical adoption is the
slow scan times of FTIR for large areas of tissue. QCLs enable
the fast scanning of large regions of tissue, but until recently,
only if the number of frequencies measured was significantly
reduced. This results in potential loss of information and can
also be influenced by varying background effects caused by
scattering or reflection artefacts.61,85–90 Scanning the full fin-
gerprint region to obtain hyperspectral images offered no real
advantage over FTIR. However, a new commercially available
QCL-based IR microscope allows to perform full fingerprint
acquisitions at a rate of 16.8 mm2 per minute. Compared to a
commercial FTIR microscope, the QCL microscope improves

Fig. 3 Comparison of integrated lower wavenumber spectral regions (1220–1240 cm−1) for unprocessed data of four separate prostate cores
imaged using FTIR and QCL systems, with H&E stained adjacent sections and key manually drawn pathological annotations for stroma and epithelial
regions (pink and green respectively) provided for visual comparison.

Paper Analyst

1746 | Analyst, 2025, 150, 1741–1753 This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
0/

16
/2

02
5 

3:
57

:1
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5an00046g


upon the size of the FPA alongside improved nominal pixel
size, allowing for larger regions to be scanned with more
spectra per area. To highlight the scale of improvement, the
collective scan time (excluding instrument calibration and
sample purging) needed to image the full set of tissues
reported in this publication using the FTIR system was around
180 hours. This time was brought down to 9 hours for the QCL

system, a 20-fold improvement. This level of improvement is
further increased when considering the time increase needed
to perform additional scan co-additions to try and improve the
SNR of the FTIR data.

It must also be noted that for many microscopes, there is a
further added time for acquisition associated with sample
loading and purging of the sample compartment. For micro-

Fig. 4 Unsupervised k-means clustering images (n = 4) for FTIR and QCL hyperspectral images of two cancerous prostate cores (a and b). Clusters
are coloured blue, red, green, and orange. H&E stained adjacent sections are provided for each core, with pathological regions showing key stromal
and epithelial boundaries (pink and green borders respectively) drawn for interpretation. Four key zoomed in regions of interest (ROI) are presented,
with numbers 1 through to 4 corresponding to top left, top right, bottom left, and bottom right ROIs.
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scopes that have a sample compartment it can take upwards of
ten minutes per sample to reach a relative humidity close to
0% to remove the effect of water vapour within the spectra,

depending on the size of the sample compartment and the
flow rate of the purge air. The QCL system used in this study
does not have a sample compartment, removing this addition
time consideration altogether. Impressively, there does not
appear to be any water vapour contribution being detected
within the spectral data acquired. There is also the added
advantage that the QCL does not need a liquid nitrogen cooled
detector and time is saved while not needing to let the detector
settle (often 30 minutes after filling) alongside cost savings
associated with liquid nitrogen acquisition.

Additional to the improved acquisition time, the SNR of the
QCL data is a marked improvement compared to the FTIR data
acquired. The better SNR allows smaller absorbing peaks in
the lower fingerprint region to be resolved much more easily
than in the presence of noise. It is also possible that at a
certain SNR, some peaks can be misidentified as being chemi-
cal peaks when in fact they are noise, or simply not identified.
Furthermore, the impact of noise scaling when calculating the
derivatives of spectral data is further reduced with improved
SNR. This in turn can lead to improved results for unsuper-
vised techniques such as clustering, where the improved SNR
allows for subgroups of tissues (such as loose and dense
stromal tissue) to be separated effectively when their differ-
ences are small changes to specific peaks (such as collagen).
The impact of better SNR data further extends to supervised
techniques that form the backbone of diagnostic and prognos-
tic methods relying on the outputs of trained classification
algorithms. Lower levels of noise will result in fewer misclassi-
fications, and better performing models. However, with QCL
systems the impact of coherence must not be overlooked. In
this study the impact of coherence was minimised enough to a
level that any coherence artefacts did not meaningfully impact
the results of either the unsupervised or supervised
approaches applied to the data. It is thought the most impact-
ful reduction of coherence was a combination of instrumenta-
tion based coherence reduction, and the preprocessing proto-
col applied post-acquisition.

Regarding the performance of the supervised classification
model obtained in this study, the achieved performance

Table 3 Examples of diagnostically important lower wavenumber absorbance bands. Suggested vibrational modes and source(s) are provided for
generic tissue band assignments

Approximate
wavenumber
(cm−1) Suggested vibrational Mode(s) Suggested source(s) Ref.

1030 C–O stretch Glycogen, collagen 33 and 63–67
1064 C–O ribose stretch Carbohydrates 68 and 69
1082 Symmetric PO2-stretch Phosphodiester, nucleic acid 64, 65 and 69–73
1127 C–O stretch Carbohydrates, sucrose 74
1156 C–O stretch, C–O–C asymmetric stretch Glycogen, mucin 75
1171 C–OH stretch, CO–O–C asymmetric stretch, CO stretch Serine, tyrosine, threonine, collagen 63, 70, 72 and 76
1207 Asymmetric PO2-stretch Phosphates, collagen 67, 69 and 71
1240 C–N stretch, N–H bend, asymmetric PO2-stretch Proteins (amide III), nucleic acid, collagen 63, 67, 70, 71 and 76–79
1284 N–H bending, C–N stretching Proteins (amide III), collagen 65, 71 and 80
1317 N–H bending, C–N stretching Proteins (amide III), collagen 65, 71 and 73
1340 CH2 wagging, C–O stretch Lipids, collagen 65, 67, 73 and 81
1402 Symmetric CH3 bend, C–N stretch, symmetric COO-stretch Proteins, fatty/amino acids 65, 67 and 82–84

Fig. 5 A complex, tiered Random Forests classification architecture
covering seven separate models: Model 1 for classifying stroma, epi-
thelium, red blood cells and immune cell infiltration from corpora amy-
lacea; Model 2 for classifying epithelium, red blood cells and immune
cell infiltration from stroma; Model 3 for classifying epithelium and
immune infiltration from red blood cells; Model 4 for classifying normal
and cancer associated stroma; Model 5 for classifying epithelium from
immune infiltration; Model 6 for classifying high grade cancerous epi-
thelium (Gleason score 4 and 5) from low grade epithelium (benign and
Gleason score 3); Model 7 for classifying benign epithelium and Gleason
score 3 epithelium. The number of datapoints for model training for
each class in both FTIR and QCL based models are provided.
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matches that of other models reported in literature, and
improves upon the FTIR based model results for complex
tissue modelling. The poor F1 score and precision results for
classes with high sensitivity and specificity metrics (≥0.90) can
be attributed to largely unbalanced sample sizes typically seen
in spectroscopic tissue datasets. Assuming no change in sensi-
tivity and specificity, scaling the prediction results such that

the total number of datapoints are comparable to the larger
datasets (>100 000 spectra) will result in F1 and precision
scores >0.9.

While we have shown that the employed QCL microscope
does address the acquisition time concern for clinical uptake
considerations, there still exists other challenges that must
also be mentioned, namely the cost of sample substrates. If

Table 4 Summary statistics (sensitivity, specificity, F1 score, precision, and model accuracy) of 10-fold cross validation supervised classification
model prediction results for complex models (epithelial and stromal subgroupings) trained and tested on FTIR (top) and QCL (bottom) measured
data. Standard deviations of over 0.01 are shown where relevant

Sensitivity Specificity F1 score Precision

FTIR 10-fold cross validation average (std dev ≥0.01)
Normal epithelium 0.79 0.96 0.84 0.91
Cancerous epithelium (GL3) 0.79 (0.01) 0.96 0.32 0.20
Cancerous epithelium (GL4/5) 0.76 0.96 0.82 0.89
Normal stroma 0.85 0.97 0.88 0.91
Cancerous ass. Stroma 0.84 0.98 0.73 0.65
Immune infiltration 0.90 0.96 0.25 (0.01) 0.14
Red blood cells 0.97 0.99 0.59 (0.02) 0.42 (0.02)
Corpora amylacea 0.99 1.00 0.72 (0.01) 0.57 (0.02)

Model accuracy 0.80
QCL 10-fold cross validation average (std dev ≥0.01)
Normal epithelium 0.90 0.97 0.92 0.94
Cancerous epithelium (GL3) 0.90 0.99 0.84 0.78 (0.01)
Cancerous epithelium (GL4/5) 0.90 0.98 0.93 0.97
Normal stroma 0.96 0.98 0.94 0.92
Cancerous ass. Stroma 0.92 0.98 0.86 0.80
Immune infiltration 0.96 0.99 0.68 (0.01) 0.52 (0.01)
Red blood cells 0.97 0.99 0.64 (0.01) 0.48 (0.01)
Corpora amylacea 0.99 0.99 0.81 (0.02) 0.69 (0.02)

Model accuracy 0.91

Fig. 6 Comparison of the complex multi-tiered supervised classifications of multiple tissue constituents for 25 prostate cores imaged on FTIR (left)
and QCL systems (right).
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this technology is to be used in a routine clinical workflow, the
vast number of samples processed in a standard histopathol-
ogy laboratory would need to be placed on to infrared trans-
mitting substrates for spectroscopic imaging, which becomes
exceptionally expensive with sample substrates such as
calcium and barium fluoride (CaF2 and BaF2). One could
argue that samples slides could be cleaned for reuse, however
this removes the ability to catalogue and archive tissue
samples for re-analysis. One way to address this is the use of
membrane slides, which are infrared transmitting and a much
cheaper alternative to current sample substrates. These slides
have been shown to facilitate high quality imaging for QCL
systems.42

Conclusions

This study shows that Quantum Cascade Laser systems can
acquire high quality full fingerprint region hyperspectral data-
sets of tissue samples within clinical timeframes, addressing
one of the major considerations for clinical uptake of spectro-
scopic imaging techniques. An entire patient cohort rep-
resented by a collection of prostate cancer tissue microarrays
were imaged on both QCL and FTIR instruments, with the
QCL system achieving better SNR data, higher image contrast
resultant of improved nominal pixel size, improved unsuper-
vised clustering of tissues, and comparably high-performing
supervised models used for tissue classification, within 1/20th

of the time. It is anticipated that this study underlines the
potential for QCL spectroscopy to be used within histopathol-
ogy labs for clinical applications. Future studies will aim to
further establish the effectiveness of this novel QCL imaging
modality across different tissue types covering various diagnos-
tic and prognostic research questions.
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