
Analyst

PAPER

Cite this: Analyst, 2025, 150, 700

Received 1st December 2024,
Accepted 15th January 2025

DOI: 10.1039/d4an01496k

rsc.li/analyst

Optimized machine learning approaches to
combine surface-enhanced Raman scattering and
infrared data for trace detection of xylazine in
illicit opioids†

Rebecca R. Martens,a Lea Gozdzialski,a Ella Newman,a Chris Gill, b,a,c,e

Bruce Wallaced,e and Dennis K. Hore *a,e,f

Infrared absorption spectroscopy and surface-enhanced Raman spectroscopy were integrated into three

data fusion strategies—hybrid (concatenated spectra), mid-level (extracted features from both datasets)

and high-level (fusion of predictions from both models)—to enhance the predictive accuracy for xylazine

detection in illicit opioid samples. Three chemometric approaches—random forest, support vector

machine, and k-nearest neighbor algorithms—were employed and optimized using a 5-fold cross-vali-

dation grid search for all fusion strategies. Validation results identified the random forest classifier as the

optimal model for all fusion strategies, achieving high sensitivity (88% for hybrid, 92% for mid-level, and

96% for high-level) and specificity (88% for hybrid, mid-level, and high-level). The enhanced performance

of the high-level fusion approach (F1 score of 92%) is demonstrated, effectively leveraging the surface-

enhanced Raman data with a 90% voting weight, without compromising prediction accuracy (92%) when

combined with infrared spectral data. This highlights the viability of a multi-instrument approach using

data fusion and random forest classification to improve the detection of various components in complex

opioid samples in a point-of-care setting.

1 Introduction

The ongoing overdose crisis has become the leading cause of
death in British Columbia, Canada, claiming over 14 000 lives
since 2016.1 Over the past decade, the illicit drug market in
many communities has experienced a rapid shift toward syn-
thetic opioids, with fentanyl and its analogues replacing

heroin.2–5 Recently, the illicit opioid markets have grown more
complex, with frequent and unpredictable changes in drug
composition across North America, including the introduction
of potent co-competing sedatives adulterated into drug
mixtures.6–12 Among these, xylazine, a veterinary tranquilizer,
has become a notable concern due to its severe health
risks.9,10,13 Xylazine has been found to reduce heart rate and
breathing and when combined with opioids significantly
increases the risk of respiratory depression and death.12–14

Notably, the effects of xylazine are unresponsive to naloxone,
complicating overdose interventions and heightening risks for
people who use drugs, making it a critical target for detection
in harm reduction efforts.15

Harm reduction-based drug checking initiatives provide
people who use drugs with essential information on sample
contents, supporting informed decision-making and overdose
prevention.16 Currently, many point-of-care drug checking
sites rely on paper-based antibody test strips and vibrational
spectroscopy methods such as infrared absorption (IR) and
Raman scattering.17,18 While off-label use of immunoassay test
strips offer increased sensitivity, they can be challenging to
use correctly and lack the ability to differentiate between drug
analogues, which vary in potency and effect.19–22 IR and
Raman instruments are relatively low cost, capable of in-field
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analysis, and offer richer sample composition data than test
strips. However, they have higher limits of detection, thereby
hindering their effectiveness for detecting potent adulterants
at trace levels. Additionally, street opioid samples typically
have complex matrices that may include a variety of cutting
agents and often dyes that absorb throughout the visible and
near-infrared, presenting challenges for Raman due to strong
fluorescence. Both techniques also require extensive library
matching and spectral interpretation, reducing accessibility
for untrained operators.17,23–27

To address these challenges, researchers and drug checking
facilities have investigated spectroscopic techniques that
increase sensitivity and reduce fluorescence interference, with
some focus on surface-enhanced Raman spectroscopy
(SERS).28–32 SERS has also been explored for opioid detection
in complex sample matrices, including toxicology screening of
blood and urine30,33–35 and identifying fentanyl in powdered
samples.36–42 SERS has shown promise in quantifying trace
fentanyl in complex drug matrices39,40 and for identifying
adulterants in opioid samples using machine learning
techniques.20,43 IR spectroscopy, by contrast, has been more
widely used across North America in drug checking
applications,17,44 including in automated analysis of single
and multi-component drug mixtures.27 Many point-of-care
drug checking services currently rely on IR spectroscopy to
detect and estimate concentrations of major components, pro-
viding a comprehensive mixture analysis for substances
present above its 5% w/w detection threshold.17,18,23,27,45,46

Integrating a simple, low-cost, and portable SERS method into
routine workflows could significantly improve the detection of
lower-concentration adulterants, particularly in complex
opioid samples where IR falls short and other inexpensive
methods, such as immunoassay test strips, fail to differentiate
between substances. In drug checking services, where mini-
mizing manual interpretation while capturing detailed sample
information to identify most or all compounds in illicit mix-
tures is a key research focus, both IR and SERS provide valu-
able, yet incomplete, information when used independently.

Identifying compounds in multi-component mixtures is
challenging, prompting research into automated analyses and
chemometric methods to address overlapping spectral
features.27,43,47 Supervised machine learning algorithms are
particularly advantageous for analyzing complex sample
matrices,48–50 but classifier selection can be complicated by
factors such as the instrumental platform, training dataset,
and hyperparameters, all of which impact performance.51,52 As
a result, researchers have explored and compared various
classifiers,53–58 finding that high-performing algorithms like
random forest (RF), support vector machines (SVM), and
k-nearest neighbor (KNN) demonstrate high accuracy in identi-
fying components within complex drug mixtures.27,43,59–61

Recently, data fusion has emerged as a strategy to boost
model performance by combining complementary spectro-
scopic data, to harness the unique advantages of each tech-
nique for better detection in complex samples.62–65 Studies
assessing early, mid, and late data fusion approaches for

Raman and IR models have shown success in differentiating
watercolor ink62 and in multi-component quantitation.63

However, research on data fusion strategies for real-world drug
detection remains limited, with few studies examining fusion
techniques alongside various supervised models to determine
the most effective combinations. As drug checking becomes
more prevalent, it is essential to recognize that no single
analytical method can address all compound identification
needs.7,18 Thus, exploring synergistic combinations of data
fusion techniques and classification models to advance auto-
mated trace compound identification is a promising area of
research.

In this work, we examine three data fusion strategies using
SERS and IR spectral data to evaluate the predictive perform-
ance of RF, SVM, and KNN optimized models for the detection
of xylazine in complex opioid samples. Given the spectral
interference that hinders xylazine detection using IR,43,66 we
developed nine supervised machine learning classifiers to
assess overall improvements or reductions to performance for
early, mid, and late data fusion strategies. Our findings indi-
cate that the three random forest models built using concate-
nated SERS–IR spectral data, extracted features from both
spectra, and a high-level weighted fusion of SERS and IR
models outperform SVM and KNN models. The high sensi-
tivity and specificity afforded to RF classification using any
fusion method illustrate the potential for effectively utilizing
IR data with SERS for component prediction in point-of-care
drug checking.

2 Experimental
2.1 Materials and sample selection

For SERS sample preparation, 50 nm gold nanoparticle (AuNP)
solution (BBI Solutions, UK), magnesium sulfate anhydrous
certified powder (MgSO4, Fisher Chemical), and deionized
water (18.2 MΩ cm, Barnstead Nanopure water, Thermo Fisher
Scientific) were utilized. The illicit drug samples used in this
study were acquired at Substance, the Vancouver Island Drug
Checking project,18,67 in Victoria, BC, Canada. 218 opioid
samples with either fentanyl, fluorofentanyl, or heroin identi-
fied as one of the main active components were selected for
analysis. Each sample was received in powdered form and was
finely ground and thoroughly mixed with a spatula prior to
analysis. Drug composition was determined using benzo-
diazepine immunoassay test strips (Rapid Response, BTNX)
and paper-spray mass spectrometry (PS-MS). Sugars, cutting
agents, and analogue types were identified through FTIR spec-
tral analysis, where a drug technician used library matching of
reference spectra to detect specific compounds present above
5% w/w,18 these findings were incorporated into the final
sample breakdown. The selected opioid samples (n = 218) con-
tained various combinations of cutting agents, opioid ana-
logues, and adulterants. The selected opioid samples were
chosen to reflect the complexity of the multi-component
opioid samples currently in circulation within the illicit drug

Analyst Paper

This journal is © The Royal Society of Chemistry 2025 Analyst, 2025, 150, 700–711 | 701

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Ja

nu
ar

y 
20

25
. D

ow
nl

oa
de

d 
on

 8
/2

7/
20

25
 1

0:
34

:3
9 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4an01496k


market. A subset of 50 samples was designated as the test set
to evaluate the performance of all fusion-based techniques.
This subset consisted of n = 25 samples with xylazine (median
concentration 4.35% w/w), where concentrations represent the
proportion of the target drug relative to the total sample
weight. The composition breakdown of the all samples ana-
lyzed in this study is provided in Table S1.†

2.2 Sample preparation and data collection

SERS measurements. SERS measurements were recorded in
the 200–2000 cm−1 Stokes shift range using a portable Raman
spectrometer (Resolve, Agilent Technologies, Santa Clara, USA)
that has an 830 nm laser wavelength and a spectral resolution
of 15 cm−1. Details regarding the sampling method and instru-
ment specifications can be found in previous
publications.20,43,68 Briefly, around 1.5 mg of powdered sample
was dissolved into ≈700 μL of deionized water, the solution
was vortexed and heated to ensure homogeneity. 70 μL of the
sample solution was spiked into 1.42 mL of the OD 1 50 nm
AuNP solution and vortexed for 30 s. Finally, 10 μL of the
aggregating agent (1 M MgSO4) was added to make up the
final 1.5 mL solution, which was vortexed again for 10 s.
Opioid sample spectra were acquired at a constant laser power,
collecting 10 averages, with a 2 s integration time.

FTIR measurements. A portable FTIR spectrometer (Agilent
4500a, Santa Clara, USA) equipped with a single-bounce 45°
diamond internal reflective element (IRE) was used for record-
ing attenuated total reflectance (ATR) IR absorption measure-
ments. A small aliquot of the powdered opioid sample was
placed on the IRE and the spectra were captured across the
650–4000 cm−1 range, with a spectral resolution of 4 cm−1.

Mass spectrometry measurements. All samples in this study
were analyzed using a TSQ Fortis™ triple quadrupole mass
spectrometer equipped with a VeriSpray™ Paper Spray ion
source (Thermo Fisher Scientific, San Jose, USA). Details on
the methodology, calibration, and data processing have been
previously described.69–72 This procedure has determined the
xylazine detection limit to be 0.01% w/w. In brief, 0.5–2.1 mg
of the powdered opioid sample was dissolved in 1.2 mL of
methanol and vortexed, creating a solution with a concen-
tration of approximately 1 mg mL−1. A 1 μL aliquot of this
solution was diluted in an internal standard cocktail to
achieve a final concentration of 6 μg mL−1. For mass spec-
trometry analysis, 10 μL of this solution was applied on a
PS-MS sample strip in a VeriSpray™ sample plate to determine
sample composition.

2.3 Data processing and chemometric modeling

Spectral data for samples in the training (n = 168) and testing
(n = 50) sets were labeled with their corresponding sample
composition information and organized into data frames
using the pandas Python package.73,74 All statistical analyses,
spectral preprocessing, and modeling was conducted in
Python using the scikit-learn package.75 These included princi-
pal component analysis (PCA), minimum covariance determi-
nant (MCD) method, and Mahalanobis distances for outlier

detection (Fig. S1†) described in the ESI.† The derivative and
normalization techniques implemented on spectral data were
mean centring followed by unit variance scaling, area normali-
zation, min–max normalization, standard normal variate
(SNV), first-order derivative, and second-order derivative. Both
derivatives were implemented with Savitzky–Golay smoothing
(window size 5, polynomial order 2). Fig. 1 provides a represen-
tation of the mean 0th, 1st, and 2nd derivative spectra of the
training set (n = 168) for the concatenated SERS–IR data used
in this study. Additionally, classification models were devel-
oped and optimized using PCA, random forest (RF), support
vector machine (SVM), and k-nearest neighbor algorithm
(KNN). All models were constructed using a 5-fold cross-vali-
dation grid search on the training set and optimal hyperpara-
meters were selected based on F1 score. Documentation of all
classifier-specific parameters evaluated (Table S2†) and
additional details on model construction, hyperparameter
tuning, and spectral preprocessing for training and testing
data are provided in the ESI.†

2.4 Data fusion strategies

This study explores three data fusion strategies: a hybrid, mid-
level, and high-level approach; an overview of the procedure is
presented in Fig. 2.

Hybrid data fusion. In the hybrid SERS–IR data fusion tech-
nique (Fig. 2a), all SERS and IR spectra were preprocessed
using global max normalization, setting the maximum inten-
sity value across all datasets to 1. The normalized SERS and IR
spectra were concatenated, with the IR spectral values
appended to the tail end of the SERS data (Fig. 1a). The fused
SERS–IR dataset for training (n = 168) and testing (n = 50) com-
prised of 5601 variables, where the SERS and IR spectra con-
tributed 1601 and 4000 variables, respectively. High variance
samples were removed from the training set using an outlier
detection method (Fig. S1†) and the final training set (n = 154)
was used to develop the RF, SVM, and KNN models.
Hyperparameter tuning of the model parameters was evalu-
ated against individual spectral preprocessing (normalization
and order of derivatives) of the SERS and IR regions in the
fused dataset separately (Tables S3–S5†). The optimal combi-
nation for RF, SVM, and KNN hybrid models is detailed in the
ESI† and the model performance (F1 score) on the training set
is shown in Table 1.

Mid-level data fusion. For the mid-level data fusion
approach (Fig. 2b), SERS and IR spectral data were each trans-
formed into 0th, 1st, and 2nd order derivatives. These datasets
were standardized about their mean and scaled to unit var-
iance prior to PCA. The optimal order of derivative for the
extracted features was determined based on the maximum F1
score achieved during hyperparameter tuning for each classi-
fier in the training phase (Tables S6–S8†). The first-order
derivative was used for RF and SVM models while no deriva-
tives were applied for the KNN model. The Principal com-
ponents (PCs) making up 95% of the cumulative variance were
extracted as features for the individual SERS and IR datasets.
Fig. 3 illustrates the number of principal components deter-
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mined and the cumulative explained variance of the SERS
(Fig. 3a) and IR (Fig. 3b) datasets for their respective order of
derivatives. The extracted features were then fused together by
stacking the IR features to the tail end of the SERS features in
a single dataset for classification. The fused SERS–IR extracted
features in the mid-level training set (n = 168) for the 0th
derivative set included 54 PCs (46 PCs for SERS and 8 PCs for
IR) and the 1st derivative set included 87 PCs (50 PCs for SERS
and 37 PCs for IR) which were used to develop the RF, SVM,
and KNN models, optimizing respective model hyperpara-
meters for the PCA data (Tables S6–S8†). The optimal para-
meters and order of derivatives for RF, SVM, and KNN mid-
level models is detailed in the ESI† and the model perform-
ance (F1 score) on the training set is shown in Table 1.

High-level data fusion. The high-level data fusion approach
(Fig. 2c) combines predictions from two independently trained
classification models, one built on SERS spectral data and the
other on IR spectral data. High variance samples in the train-
ing set (n = 168) were identified for SERS (n = 17) and IR (n =
15) data using an outlier detection method (Fig. S1†) and sub-
sequently removed, resulting in SERS (n = 151), IR (n = 153),
and combined high level SERS–IR (n = 141) training libraries.
RF, SVM, and KNN models were optimized for both SERS and
IR datasets through a 5-fold cross-validation grid search,
tuning model parameters and testing various spectral prepro-
cessing techniques (Tables S9–S11†). A weighted voting classi-
fier (sklearn.ensemble) was employed to combine predictions
from the optimized standalone SERS and IR models. Weights

Fig. 1 Mean spectra of samples in the training set (n = 168) for concatenated SERS–IR fused data in the (a) 0th, (b) 1st, and (c) 2nd derivative. SERS
spectra in the stokes region of 300–2000 cm−1 is represented in blue and IR spectra in the wavenumber region of 650–4000 cm−1 is represented in
red.
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summing to 1 were assigned to the predictions of the SERS
and IR classification models and evaluated using a 5-fold
cross-validation grid search on the high-level training set (n =

141). The optimal weight combination, determined based on
the maximum F1 score (Tables S12–S14†), was applied to the
predicted probability scores of the respective standalone

Fig. 2 Flowchart of data fusion strategies for (a) hybrid, (b) mid-level, and (c) high-level fusion approaches. The presentation style has been adapted
from ref. 63.

Table 1 F1 scores for all optimized models built with SERS, IR, PCA SERS–IR and SERS–IR training data for the detection of xylazine. Optimal
weights selected for SERS and IR standalone model contribution and their respective F1 scores are detailed for the construction of high-level
classification models

Data fusion Model Training data F1 score Voting classifier Weights [SERS, IR] Ensemble F1 score

Hybrid RF SERS–IR 0.743 — — —
SVM SERS–IR 0.881 — — —
KNN SERS–IR 0.748 — — —

Mid-level RF PCA SERS–IR 0.616 — — —
SVM PCA SERS–IR 0.805 — — —
KNN PCA SERS–IR 0.614 — — —

High-level RF SERS 0.805 Weighted voting [0.9, 0.1] 0.754
IR 0.532

SVM SERS 0.869 Weighted voting [0.9, 0.1] 0.795
IR 0.790

KNN SERS 0.690 Weighted voting [0.6, 0.4] 0.637
IR 0.618

Paper Analyst

704 | Analyst, 2025, 150, 700–711 This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Ja

nu
ar

y 
20

25
. D

ow
nl

oa
de

d 
on

 8
/2

7/
20

25
 1

0:
34

:3
9 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4an01496k


models to generate the final high-level fusion predictions.
Detailed parameters of the standalone models are provided in
the ESI,† while the weights of all standalone models used in
the high level fusion approach, along with their training set
performance (F1 score), are listed in Table 1.

3 Results and discussion
3.1 Hyperparameter optimization

SERS and IR standalone models. The initial performance of
the standalone models is evaluated by examining the opti-
mized parameters for the three classifiers built using SERS
and IR spectral data (Tables S9–S11†).

Random forest models. The standalone RF models exhibited
varied predictive performance, with F1 scores of 0.805 for
SERS and 0.532 for IR during cross-validation (Table S9†).
These results, along with the selected optimal hyperpara-
meters, demonstrate that SERS has a stronger affinity for
detecting xylazine.43 The SERS RF model shows good initial
performance, benefiting from a relatively high number of

decision trees and consistent normalization techniques that
effectively capture complex patterns in the data. In contrast,
the IR RF model, while utilizing deeper trees (maximum depth
of 30), had reduced forest diversity due to the limited number
of trees (30), leading to fewer averaged predictions and an
increased likelihood of overfitting to the training data. Despite
the increased tree depth, the poor initial performance, with an
F1 score only marginally better than a baseline classifier,
suggests that IR spectral data is not well-suited to capturing
xylazine features within the sample matrix.

Support vector machine models. SVM models built with SERS
and IR data achieved the highest individual precision and
recall scores during cross-validation (Table S10†), with F1
scores of 0.869 for SERS and 0.790 for IR. Early performance
metrics on the training set suggest both spectral devices seem
compatible with SVM classification. The optimized SVM para-
meters for both SERS and IR data indicate a strong focus on
capturing complex, non-linear relationships in the data. The
use of polynomial kernels with different degrees (2 for SERS
and 3 for IR) allows the models to capture interactions
between features, while ‘balanced’ class weights help address
class imbalance. High values of C suggest that the models are
less regularized, aiming to fit the training data closely. Overall,
these parameters highlight the tailored approach taken to opti-
mize the SVM models for the specific characteristics of SERS
and IR spectral data, resulting in high initial predictive per-
formance as indicated by their respective F1 scores.

k-Nearest neighbor models. KNN models for SERS (F1 score
0.690) and IR (F1 score 0.618) showed no strong preference for
either platform in detecting xylazine during cross-validation
(Table S11†). The individual KNN models both demonstrated
lower precision and recall scores compared to their hybrid
counterpart (see below). The use of a single neighbour and
Manhattan distance by the SERS model emphasizes its
immediate data points, while the IR model applies the second
derivative and Euclidean distance to capture subtle features.
However, both utilize simple approaches with a single neigh-
bour which may lead to poor generalization on unseen data,
limiting performance on the validation set.

Hybrid fusion models. F1 scores of 0.743, 0.881, and 0.748
were obtained from the optimized RF, SVM, and KNN classi-
fiers (Table 1), respectively, for predicting xylazine using conca-
tenated SERS–IR spectral data during cross-validation on the
training set. All hybrid models (Tables S3–S5†) demonstrated
relatively high predictive performance, with the SVM model
achieving the highest precision and recall (F1 score of 0.881)
within the SERS–IR training set.

The optimal SVM hyperparameters (Table S4†) included the
‘rbf’ kernel for handling non-linear classification and the
‘scale’ kernel coefficient, which adjusts gamma based on the
number of features, thereby controlling the influence of each
data point according to the hybrid datasets complexity and
variability. The selected preprocessing methods suggest that
applying the second derivative to the IR data enhances relevant
features, while the raw SERS data, normalized by area, is
sufficiently informative.

Fig. 3 The cumulative explained variance of principal components for
(a) SERS and (b) IR spectral data with no derivatives (blue), first derivative
(red), and second derivative (green). The number of principal com-
ponents required to capture 95% of the variance is indicated for each
case, with the cutoff point highlighted in grey.
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For the hybrid RF model (Table S3†), the optimal spectral
preprocessing techniques were the same for both SERS and IR
regions, with snv normalization and no derivative, indicating a
consistent approach to reducing intensity variations across the
entire dataset. Similarly, the hybrid KNN model (Table S5†)
selected area normalization, ensuring consistent total signal
intensity across all samples. This uniformity in spectral pre-
processing for the RF and KNN models suggests that the con-
catenated SERS–IR spectral data share underlying character-
istics best captured when treated as a whole.

The selection of 50 decision trees for the hybrid RF model,
indicates a balanced approach to model complexity and com-
putational efficiency. The use of 50 trees allows the model to
capture more diverse patterns related to xylazine while mitigat-
ing the risk of overfitting to the training data. In contrast, the
hybrid KNN model employed a simple approach by using a
single neighbour for predictions, relying on the most immedi-
ate data point’s characteristics, indicating a potential for high
bias to the training set.

Mid-level fusion models. The mid-level models initial pre-
dictive performance, presented in Table 1, showed that SVM
had the highest F1 score (0.805), followed by RF (0.616) and
KNN (0.614). SERS accounted for a greater portion of the
explained variance compared to IR, likely due to its enhanced
sensitivity in capturing spectral variation from low-concen-
tration adulterants. As a result, all mid-level models incorpor-
ated more features from SERS in their training metrics for xyla-
zine detection (Fig. 3). Consequently, hyperparameter tuning
(Tables S6–S8†) was primarily focused on enhancing the pre-
dictive power of SERS data. The superior performance of SVM
in the training phase is likely due to the reduced dimensional-
ity, as the extracted features capture critical information that
benefits supervised max-margin models like SVM, which can
otherwise overfit in high-dimensional spaces. The chosen
parameters for the SVM model (Table S7†), particularly a C
value of 1, allows for a wider margin around the decision
boundary, permitting some misclassifications to enhance the
ability of the model to generalize to unseen data. Both RF
(Table S6†) and SVM (Table S7†) favoured first-order derivative
PCA (87 PCs), enhancing peak resolution and capturing subtle
features related to xylazine, while KNN (Table S8†) selected the
0th derivative, opting for a less computationally intensive set
of variables (54 PCs).

High-level fusion models. The contributions of the standa-
lone models for xylazine detection and the corresponding
weights applied in the fusion models (Tables S12–S14†) were
used to evaluate the initial performance of the high-level data
fusion approach.

Weighted voting ensemble. Despite varying F1 scores, all stan-
dalone classification models consistently showed a preference
for SERS data, demonstrating its robustness in detecting xyla-
zine compared to IR (Tables S9–S11†). This finding aligns with
previous research, which highlights the superior performance
of SERS-based classifiers for identifying xylazine in complex
opioid matrices, while spectral overlap poses a significant
challenge for IR.43,66

High-level fusion of SERS and IR models evaluated F1
scores of all weight combinations summing to 1 during cross-
validation on the training set (Tables S12–S14†). The fused RF,
SVM, and KNN models, with optimal weights ([SERS, IR]),
achieved F1 scores of 0.754, 0.795, and 0.637, respectively.
These values were consistent with the initial predictive per-
formance results for each spectral model. Optimal weights
prioritized SERS information in all the final high-level fusion
models, with RF and SVM high-level models weighting their
SERS model contributions at 90% and KNN at 60%. The
optimal weights were then applied to the predicted probability
scores of the standalone SERS model and IR model on the test
set and combined for all high-level models.

3.2 Performance evaluation

While the cross-validated F1 scores are a good metric to deter-
mine initial performance on the training set folds, the results
of the fused models on unseen data is crucial to assessing
their performance. The performance of all models is evaluated
on the test set (n = 50) to identify the most effective data
fusion strategy and classification algorithm for the detection
of xylazine in complex opioid samples. A receiver operating
characteristic (ROC) curve was developed using the predicted
probability scores of the hybrid, mid-level and high-level
models on the validation set. Area under the curve (AUC)
values were calculated and used to evaluate model accuracy
across the range of threshold values. ROC curves are plotted
for all fused models using varying cut-off thresholds and are
illustrated in Fig. 4. Optimal thresholds were determined for
final prediction results of all models.

AUC values of 0.93, 0.85, and 0.68 were calculated for the
hybrid RF, SVM, and KNN models, respectively (Fig. 4a). Both
the RF and SVM hybrid models reflect high discriminatory
power across the range of thresholds. The hybrid KNN model
demonstrated a weaker performance across the range of pre-
dicted probabilities, likely due to the selected number of
neighbours, where k = 1 results in predictions that are highly
sensitive to the nearest neighbour (Table S5†). In scenarios
where the nearest neighbour clearly belong to one class (0 or
1), the predicted probability of a tested sample will reflect the
class and the scores for all tested samples will be either 0 or 1.
Consequently, setting a threshold becomes arbitrary and no
improvements can be made by changing it. Therefore, despite
relatively high initial performance within the training group,
the hybrid KNN model does not seem well suited to generalize
to unseen data or to assign meaningful probabilities.

The mid-level AUC values of 0.95 and 0.91 for RF and SVM
classifiers (Fig. 4b), respectively, represent some of the highest
performing models across the range of predicted probabilities
for the detection of xylazine. The mid-level KNN model
however, demonstrated similar complications as its hybrid
counterpart, with an AUC of 0.66, it performed the worst of all
fused models on the test set.

ROC analysis, threshold determination, and final evalu-
ation of the standalone models were conducted to compare
the performance of the isolated spectral models against the
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high-level fusion approach. While the standalone models for
both spectral techniques achieved relatively high AUC values
(Table S15†), with the highest being the SERS RF model (AUC
= 0.95), combining the weighted predictions of the standalone
models in the high-level fusion approach showed increased
model accuracy across the range of probability thresholds. The
AUC values for the high-level RF (0.95), SVM (0.86), and KNN

(0.80) models (Fig. 4c) demonstrate improved performance
across the predicted probability range compared to their
hybrid counterparts. Notably, the high-level KNN model
showed a significant enhancement in prediction accuracy
when integrating the high-level outputs from the individual
SERS and IR models.

Optimal probability thresholds for all models were deter-
mined using Youden’s J statistic76,77 and applied to the test
set. Xylazine prediction results for the hybrid, mid-level, and
high-level models (Table 2) were used to evaluate the perform-
ance of the three fusion strategies and classifiers.

Of the hybrid models (Table 2), Random forest correctly
identified 88% of both xylazine-positive samples and xylazine-
negative samples. Showing a balanced sensitivity and speci-
ficity towards detecting xylazine. Both SVM and KNN hybrid
models demonstrated a higher affinity towards identifying
negative classes than they did for correctly assigning positive
classes. Initial performance in the training group for SVM
showed the highest precision and recall scores, but the per-
formance on the validation set is indicative of overfitting of
the hybrid SVM model to the training data.

The hybrid KNN model performs poorly in correctly assign-
ing positive classes, likely due to an imbalance in the training
dataset, where the nearest neighbour is often from the
majority class (xylazine-negative). This leads to underpredic-
tion of the minority class (xylazine-positive), as the single
nearest neighbour may not accurately reflect the true class dis-
tribution. KNN’s effectiveness also decreases with high-dimen-
sional data, where the distance between points becomes less
informative.56 Concatenating SERS and IR data significantly
increases dimensionality, making the nearest neighbour less
representative of the true class. Additionally, the compu-
tational intensity required for large data sets78 further high-
lights the unsuitability of this model development strategy.

The hybrid data fusion method appears to best suit the RF
binary classifier, leveraging spectral information from both
platforms to achieve high accuracy (88%) and precision (88%)
compared to other supervised techniques (Table 3).

Among the mid-level models (Table 2), the KNN model per-
forms poorly, only identifying 48% of true positive samples.
However, the SVM model demonstrates the highest balanced
prediction success using the mid-level approach, correctly
identifying 80% of positive samples and 88% of negative
samples. Similarly the mid-level RF model performed well,
demonstrating a higher affinity towards the positive class (92%
TP) over the negative class (88% TN). The mid-level fusion
approach demonstrates the highest accuracy (90%) and pre-
cision (88%) when implementing RF classification on the test
set (Table 3).

Among the high-level models (Table 2), both RF and KNN
fusion models outperformed their standalone counterparts
when predicting xylazine on the test set (Table S16†). KNN,
with the most balanced SERS weighting ratio of 0.6 : 0.4,
showed a significant increase in identifying true positives
(80% TP), at a slight expense of true negatives (72% TN), estab-
lishing high-level fusion as the optimal approach for KNN

Fig. 4 A comparison between the RF model, SVM model and KNN
model prediction results of xylazine on the test set (n = 50) for the (a)
hybrid, (b) mid-level, and (c) high-level data fusion strategies. The ROC
curves illustrate the true positive rate and false positive rate across
various classification thresholds for xylazine detection. Optimal
threshold selection for balancing sensitivity and specificity, and area
under the curve (AUC) is highlighted for all models. A grey dashed line
illustrates the performance of a baseline classifier.

Analyst Paper

This journal is © The Royal Society of Chemistry 2025 Analyst, 2025, 150, 700–711 | 707

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Ja

nu
ar

y 
20

25
. D

ow
nl

oa
de

d 
on

 8
/2

7/
20

25
 1

0:
34

:3
9 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4an01496k


classification over standalone, hybrid fusion, and mid-level
fusion models. Both RF and SVM models prioritized SERS pre-
dictions (0.9 weighting) but benefited from increased sensi-
tivity on the test set by incorporating IR. The SVM fusion
model achieved an accuracy and F1 score of 78% (Table 3), out-
performing the standalone SERS model in identifying positive
classes and the standalone IR model in identifying negative
classes (Table S16†).

The high-level RF model maintained strong true negative
performance (88% TN) similar to the SERS model, while cor-
rectly identifying one additional true positive sample (3.17%
w/w) through IR, underscoring its robustness and demonstrat-
ing effective integration of SERS and IR predictions. The
fusion of high-level RF and KNN classifier outputs enhanced
overall accuracy and F1 scores compared to the standalone
spectral models, illustrating the compatibility of combining
two techniques in fused model development. Both RF and
KNN high-level models show a more meaningful balance of
correctly assigned predictions, achieving the best true positive
performance over their hybrid and mid-level fusion counter-
parts. The RF high-level model, despite misidentifying one
trace (0.79% w/w) xylazine sample (Table S17†), delivered the
best overall performance, correctly classifying 24 true positives
and 22 true negatives, with 96% sensitivity and 88% specificity
(Table 3).

The performance of RF, SVM, and KNN models varied
across different data fusion strategies. The mid-level SVM
achieved the highest F1 score (83%) compared to its hybrid
and high-level counterparts, suggesting that margin maximiza-

tion was best suited for lower-dimensional data. In contrast,
KNN consistently exhibited weaker precision and recall scores
across all fusion approaches, likely due to its sensitivity to
high-dimensional spaces and the increased complexity and
computational demands that come with combining two spec-
tral datasets.78 However, the highest performing models were
those using random forest classification, which showed a well-
balanced trade-off between sensitivity and specificity across all
fusion strategies for detecting xylazine, with robust AUC
values. RF models achieved high precision and recall, with the
hybrid (F1 score = 88%), mid-level (F1 score = 89%), and high-
level (F1 score = 92%) models outperforming all other classi-
fiers developed (Table 3).

RF binary classification demonstrated high predictive
success for all data fusion strategies, effectively prioritizing
SERS contributions for xylazine detection. In the context of
drug checking, where the consequences of misclassifying a
psychoactive sedative can be severe, prioritizing sensitivity is
crucial. As such, the superior sensitivity (96%) and F1 score
(92%) of the high-level RF model indicate that it is the most
effective strategy for detecting xylazine in complex opioid
samples.

3.3 Implications for point-of-care drug checking

Predictive models utilizing both SERS and IR spectroscopy in a
high-level data fusion approach offer a promising solution for
automated differentiation of compounds in complex, real-
world opioid samples. The high sensitivity of SERS enables
detection of low concentration adulterants, while incorporat-

Table 2 Xylazine prediction results of the test set (n = 50) for the RF, SVM, and KNN models developed using the hybrid, mid-level, and high-level
SERS–IR data fusion methods. Fractional values indicate the ratio between model prediction and the number of samples in the true class (n = 25)

Hybrid Mid-level High-level

RF SVM KNN RF SVM KNN RF SVM KNN

True positive 0.88 (22) 0.68 (17) 0.48 (12) 0.92 (23) 0.80 (20) 0.48 (12) 0.96 (24) 0.76 (19) 0.80 (20)
True negative 0.88 (22) 0.92 (23) 0.88 (22) 0.88 (22) 0.88 (22) 0.84 (21) 0.88 (22) 0.80 (20) 0.72 (18)
False positive 0.12 (3) 0.08 (2) 0.12 (3) 0.12 (3) 0.12 (3) 0.16 (4) 0.12 (3) 0.20 (5) 0.28 (7)
False negative 0.12 (3) 0.32 (8) 0.52 (13) 0.08 (2) 0.20 (5) 0.52 (13) 0.04 (1) 0.24 (6) 0.20 (5)

Table 3 Performance metrics summary for RF, SVM, and KNN models using all SERS–IR data fusion strategies for xylazine detection. Summary of
the area under the curve (AUC), optimal threshold, accuracy, precision, sensitivity, specificity, and F1 score for opioid samples (n = 50) tested with
RF, SVM, and KNN models

Model AUC Optimal threshold Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1 score (%)

Hybrid
RF 0.93 0.30 88 88 88 88 88
SVM 0.85 0.46 80 89 68 92 77
KNN 0.68 0.50 68 80 48 88 60
Mid-level
RF 0.95 0.32 90 88 92 88 90
SVM 0.91 0.28 84 87 80 80 83
KNN 0.66 0.50 66 75 48 84 59
High-level
RF 0.95 0.28 92 89 96 88 92
SVM 0.86 0.34 78 79 76 80 78
KNN 0.80 0.38 76 74 80 72 77
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ing IR data in a weighted fusion approach allowed for the
identification of an additional xylazine-positive sample, out-
performing the results of the standalone SERS RF model.

While high-level data fusion cannot fully overcome the
inherent spectral limitations of IR with overlapping and low-
concentration detection of xylazine in opioid mixtures,43,66

integrating weighted predictions of IR with SERS improved
overall model sensitivity. This multi-instrumental approach
leverages the strength of SERS in xylazine detection while pre-
serving valuable compositional information from IR, creating
a more comprehensive and robust model.

Reliance on a single technique often fails to meet the
diverse demands of community-based drug checking, where
usability, cost-effectiveness, and thorough mixture analysis are
paramount. SERS excels in trace detection but faces challenges
with reproducibility and bulk analysis, while IR offers reliable
detection of major components but lacks sensitivity for low-
concentration compounds. The high-level RF fusion model
bridges these gaps, combining the sensitivity of SERS with the
broader compositional analysis of IR and outperforming other
machine learning models, such as SVM and KNN.
Additionally, RF classification combined with high-level data
fusion has the added benefit of allowing for feature impor-
tance analysis to highlight key spectral contributions, support-
ing intuitive data interpretation for drug checking sites and
reducing the ‘black-box’ effect of many classification
models.43,79

As shown in Table 4, RF classification models developed
using the high-level fusion approach detailed in this study
effectively prioritize contributions from the higher-performing
spectral-based model when differentiating several common
illicit components within the test set. All RF models developed
with the high-level fusion approach for xylazine, bromazolam,
fluorofentanyl, caffeine, and erythritol show improved F1
scores and sensitivity over standalone models. In particular, IR
aids in identifying sugars and high concentration actives, with
the model leveraging IR contributions for caffeine and fluoro-
fentanyl, while heavily relying on SERS predictions to detect
low concentration adulterants like xylazine and bromazolam.

This fusion approach coupled with RF classification using
SERS and IR data demonstrates a viable strategy to expanding
the range of identifiable components in complex opioid

samples using field-portable technologies. By automating
results, it eliminates the need for extensive spectral interpret-
ation and thereby simplifies decision-making for both service
users and providers, creating an accessible and comprehensive
tool for community drug checking.

4 Conclusions

We have demonstrated the trace detection of xylazine in
complex illicit opioid samples using random forest classifi-
cation trained on three data fusion strategies incorporating
SERS and IR spectral data. In all strategies, the performance of
the random forest models surpassed that of the SVM and KNN
models. Given the known interferences and challenges of iden-
tifying xylazine using IR alone, implementing a high-level data
fusion technique with random forest model development
maintained specificity while improving sensitivity utilizing
both platforms. This approach effectively prioritized the sensi-
tivity of SERS for trace xylazine detection while preserving valu-
able predictive information from IR, without compromising
performance. The integration of multiple analytical tech-
niques, supported by advanced data fusion and machine learn-
ing approaches, represents a promising strategy for advancing
drug checking. This holistic approach ensures that rapid,
affordable, and portable spectroscopic devices are utilized to
their full potential, ultimately leading to more reliable and
comprehensive compound identification in various settings.
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Table 4 Performance metrics summary for SERS, IR, and high-level SERS–IR data fusion RF models for compound identification. Summary of the
area under the curve (AUC), sensitivity (abbreviated as Sen.), specificity (Spe.), and F1 score for opioid samples (n = 50) tested with RF models.
Standalone model weight contributions are included for all high-level fused RF models

Analytes

SERS IR SERS–IR

AUC
Sen.
(%)

Spe.
(%)

F1
(%) AUC

Sen.
(%)

Spe.
(%) F1 (%)

Weights
[SERS, IR] AUC Sen. (%) Spe. (%) F1 (%)

Xylazine 0.95 92 88 90 0.82 92 56 78 [0.9, 0.1] 0.95 96 88 92
Bromazolam 0.90 84 88 86 0.83 68 92 77 [0.7, 0.3] 0.95 92 88 90
Fluorofentanyl 0.90 79 88 85 0.90 85 82 88 [0.3, 0.7] 0.92 88 82 89
Caffeine 0.43 96 20 93 1.00 100 100 100 [0.0, 1.0] 1.00 100 100 100
Erythritol 0.65 76 52 68 0.87 72 92 80 [0.5, 0.5] 0.86 80 84 82
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