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A robust signal processing program for nanopore
signals using dynamic correction threshold with
compatible baseline fluctuations

Guohao Xi,a Jinmeng Su,a,b Jie Ma,a Lingzhi Wuc and Jing Tu *a

Solid-state nanopores represent a powerful platform for the detection and characterization of a wide

range of biomolecules and particles, including proteins, viruses, and nanoparticles, for clinical and bio-

chemical applications. Typically, nanopores operate by measuring transient pulses of ionic current during

translocation events of molecules passing through the pore. Given the strong noise and stochastic fluctu-

ations in ionic current recordings during nanopore experiments, signal processing based on the statistical

analysis of numerous translocation events remains a crucial issue for nanopore sensing. Based on parallel

computational processing and efficient memory management, we developed a novel signal processing

procedure for translocation events to improve the signal identification performance of solid-state nano-

pores in the presence of baseline oscillation interference. By using an adaptive threshold within a sliding

window, we could correct the baseline determination process in real time. As a result, the features of

translocation event signals could be identified more accurately, especially for the intermittent occurrence

of high-density complex signals. The program also demonstrated good signal differentiation. As a ready-

to-use software, the data program is more efficient and compatible with diverse nanopore signals,

making it suitable for more complex nanopore applications.

Introduction

In recent years, nanopore sensing has been proposed for third-
generation sequencing technologies and multiple screening
applications in precision medicine.1–3 Nanopores are inspired
by the transmembrane transport within cells, a fundamental
process in biological activities.4,5 As nanoscale pores
embedded in biological or solid membranes,6,7 these delicate
structures with high-precision detection capabilities have been
applied to various fields, including the detection of nucleic
acids,8–10 proteins,11–14 and nanoparticles.15,16 Conceptually, a
single analyte molecule passing through a nanoscale channel
is measured by the instantaneous fluctuation of transmem-
brane ionic flow under voltage and current recording with
high-bandwidth sampling, which involves accumulated noise
power across the full frequency range and an unpredictably
small-signal frequency response. Currently, the biological

nanopores of fixed sizes are prevalently employed in sequen-
cing due to their balance of stable signal output and con-
trolled noise amplitude.17 Likewise, solid-state nanopores,
which offer a larger size range and customizable pore shapes,
are still subject to challenges in signal acquisition and reco-
gnition due to competitive noise performance, although they
have been widely applied for detecting enzymes,18,19 viruses,20

and nanoparticles.21 Furthermore, current drift and un-
avoidable background noise are more frequent in solid-state
nanopores, making it more challenging to accurately recognize
signals from these devices.22 Moreover, considering the transi-
ent and random nature of current events, signal processing
relies on the statistical analysis of a large number of nanopore
events. Therefore, enhanced throughput and automate pro-
cesses are required for the further development of nanopore
technology.23

Over decades of study, several typical nanopore signal
processing programs have been developed, such as
AutoNanopore, Open Nanopore, Cavro Nanopore Sensing,
Transalyzer, NanoAnalyzer, NanoPlex,24 EventPro25 and
others.23,26–29 AutoNanopore and Open Nanopore employ
adaptive threshold methods to detect low SNR events, but
their performance may be limited under high-noise or tem-
porally attenuating signal conditions. Cavro Nanopore Sensing
and NanoAnalyzer offer high throughput and parallel analysis
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capabilities, yet they may struggle with noise interference in
complex signal environments, especially under high salt con-
centrations. Transalyzer and MOSAIC have high resolution for
signal precision but may encounter challenges in event reco-
gnition accuracy when dealing with signal attenuation or sig-
nificant noise effects. NanoPlex is characterized by good noise
suppression and adaptability to low SNR events. However, its
moderate flexibility limits its application in diverse experi-
mental setups. EasyNanopore is known for its simplicity and
low hardware requirements, but it faces challenges in handling
baseline drift and complex signal environments. In contrast,
our “Dynamic Correction Method” dynamically adjusts
thresholds and corrects baselines in real-time, significantly
improving the detection of low SNR and complex signals.
Especially in solid-state nanopore applications, our method
effectively mitigates noise and overcomes the limitations of tra-
ditional methods, enhancing the signal detection accuracy and
reliability. These methods mainly search outliers in the
current traces to achieve the event recognition and information
extraction of nanopore signals with the baseline and threshold
algorithms. Based on the professional experience of the indi-
vidual processing the data, the threshold should be selected by
calculating and truncating the current signal changes.
Furthermore, it is even harder to determine a uniform global
standard from the fluctuation and drift of the baseline current
over time. On this basis, emerging machine learning methods
are currently being used for nanopore signal recognition and
statistical analysis.30–32 Generally, a set of machine learning-
based algorithms, including Hidden Markov models, fuzzy
C-means, and Support Vector Machines, can be efficiently
used to improve the recognition, feature extraction and cluster
analysis of nanopore signals. Meanwhile, neural network
algorithms based on deep learning have been employed to
continuously optimize the prediction results of signal
processing.33–35 However, these methods necessitate a specifi-
cally configured operational environment and training data-
base, which may not be user-friendly for non-professionals
engaged in software development.

To solve the massive signal processing, a configuration-free
translocation event detection software named “EasyNanopore”
has been developed in our research group.29 The method
employs an adaptive thresholding approach based on low-fre-
quency variance (utilizing local mean and local variance) to
define the commencement and conclusion of an event. The
Dynamic Correction Method is particularly effective in detect-
ing low signal-to-noise ratio (SNR) events, which are often chal-
lenging to identify using traditional static threshold methods.
By utilizing dynamic adjustments based on the characteristics
of the signal, it is able to more accurately capture events that
might be overlooked by fixed-threshold methods, especially in
cases where noise or signal variations are subtle. Furthermore,
when considering events that exhibit temporal attenuation or
decay, the Dynamic Correction Method offers significant
advantages. Temporal attenuation refers to the gradual
decrease in signal amplitude over time, which can be an
important characteristic of certain events, such as the translo-

cation of larger molecules through nanopores. In such cases,
the Dynamic Correction Method can more effectively track and
detect events that experience a slow decay in signal, ensuring
that these events are not missed. This capability is crucial for
maintaining the accuracy and reliability of signal detection in
experiments with complex signal profiles, such as those invol-
ving nanopores.

To better illustrate the strengths of the proposed method,
we have compared its performance with that of several com-
monly used nanopore signal detection platforms. The follow-
ing table summarizes key performance metrics, including sen-
sitivity, accuracy, computational speed, and hardware require-
ments. This comparison highlights the advantages of the pro-
posed method, particularly in terms of its efficiency and suit-
ability for use with limited computational resources.

Additionally, a multi-threaded algorithm is employed to
partition the file and adapt to low-end CPU configurations.
The parallel computation method for file partitioning
enhances the speed of event detection during the recognition
process. However, the baseline parameters and thresholds are
determined based on the local mean variance of each point in
this algorithm. As a cumulative calculation model, this model
is undeniably accurate. However, a similar error cumulative
pattern will become more serious when baseline calculation
deviation occurs. Especially for solid-state nanopores, where
the signal output is more diverse and complex, and the base-
line fluctuation situation is more drastic, persistent deviations
tend to occur silently. This effect is especially pronounced in
the case of dense signal fragments and mixed signal frag-
ments. This is the principal factor contributing to the signifi-
cant discrepancies and lack of reproducibility observed in the
signal data obtained from solid-state nanopores.

Therefore, an improved signal processing program in our
present study has been proposed based on a novel baseline
and threshold correction computation model that adjusts in
real time during the document recognition process. This
method integrates the determination of the threshold and
baseline with the current recognition area of the signal, and
corrective measures are implemented in accordance with the
baseline conditions in the vicinity of individual signals,
thereby effectively mitigating the impact of baseline fluctu-
ations and dense signal areas. Furthermore, the conventional
baseline scanning mode has been retained, allowing the user
to select it freely according to the type of signal file in ques-
tion. This effective corrective measure markedly enhances the
identification and precision of solid-state nanopore signals,
constituting a valuable contribution to the efficient and accu-
rate classification and deployment of nanopore signals.

We refer to this signal processing program as the Dynamic
Correction Method. Among various nanopore signal detection
platforms, Dynamic Correction Method stands out with several
unique advantages, especially in key aspects such as noise
management, low signal-to-noise ratio (SNR) event detection,
baseline drift handling, flexibility, high salt concentration
adaptability, complex signal processing, and hardware require-
ments (Table 1). Compared to other platforms, Dynamic
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Correction Method offers significant benefits in these critical
areas.

Firstly, in terms of noise management, Dynamic Correction
Method effectively suppresses noise, ensuring the reliability of
signals, particularly when the signal environment is complex
or the noise level is high. While other platforms (such as
AutoNanopore and NanoAnalyzer) also employ noise manage-
ment techniques, these platforms often face challenges in
environments with high salt concentrations or other complex
factors, which can lead to misdetection or missed events in
complicated signal backgrounds. In contrast, Dynamic
Correction Method dynamically adjusts the threshold and
baseline in real time, making it more resilient in noisy con-
ditions and low-SNR environments.

While EventPro and NanoPlex employ adaptive baseline
options to mitigate baseline fluctuations, their reliance on
global fitting or fixed time-window updates may lead to
delayed baseline adaptation and misclassification of weak
signals in low SNR environments. In contrast, our Dynamic
Correction Method introduces event-driven baseline updates
and dynamic threshold adjustments, allowing it to track rapid
fluctuations more effectively and enhance the accuracy of
signal detection even under severe noise conditions.

For low-SNR event detection, the Dynamic Correction
Method demonstrates a clear advantage over traditional
approaches that rely on fixed thresholds. By dynamically
adjusting the threshold based on real-time signal variations,
our method can accurately capture low-SNR events that might
otherwise be overlooked. This is particularly crucial in cases
where signal fluctuations are subtle, ensuring the precise
identification of weak signals while minimizing false
positives.

To comprehensively evaluate the performance of different
methods under these conditions, we compared several

common signal processing approaches. Table 2 presents the
performance of NanoPlex, EasyNanopore, NanoAnalyzer, and
Dynamic Correction Method in key metrics, such as baseline
noise, event detection rate, and signal integrity. Other
methods were not included in the comparison mainly
because their performance under low SNR conditions is
either similar to that of the methods included in this study,
or due to resource and testing limitations. Additionally, we
focused on methods optimized for solid-state pore signal
characteristics, ensuring the relevance of the comparison
results. This comparison highlights the advantages of the
Dynamic Correction Method, particularly in terms of the
event detection rate and signal integrity, in complex signal
environments.

In baseline drift handling, many platforms such as
AutoNanopore use fixed baseline correction methods. While
effective in some cases, these methods struggle when the
signal exhibits significant fluctuations or complex baseline
drift. Dynamic Correction Method, on the other hand, uses a
dynamic baseline correction algorithm that adjusts the base-
line in real time based on the signal’s characteristics, effec-
tively managing complex signal fluctuations and drift, and
avoiding misjudgments caused by baseline shifts in traditional
methods.

Dynamic Correction Method excels when it comes to high
salt concentration conditions, particularly during nanoparticle
detection. High salt concentrations often lead to aggregation
of analytes, introducing noise and affecting experimental
results. Compared to traditional methods, Dynamic Correction
Method maintains high sensitivity even under high salt con-
ditions, minimizing the impact of noise on the experimental
outcome.

In complex signal processing, Dynamic Correction Method
demonstrates strong flexibility, capable of handling a wide

Table 1 Comparison of signal detection methods

Platform
Noise
management

Low SNR
event

Baseline drift
handling Flexibility

High salt
conditions

Complex
signals

Hardware
requirements

AutoNanopore Moderate Moderate Moderate Good Low Moderate Good
NanoAnalyzer Good Moderate Moderate Low Moderate Good Moderate
Cavro Nanopore Sensing Low Low Moderate High Good Low Low
Kleiner Lab Software Low Moderate Moderate Moderate Low Moderate Moderate
EasyNanopore Moderate Moderate Moderate Good Moderate Moderate Moderate
NanoPlex Good Good Moderate Moderate Good Good Moderate
EventPro Good Moderate Moderate Good Good Moderate Moderate
Dynamic Correction Method Moderate Good Good Good Moderate Good Good

Table 2 Comparison of signal processing methods for low SNR

Metric RMS noise (pA) Peak noise (pA) Event detection rate (%) Signal integrity (R)

NanoPlex 15.3 ± 1.2 50.2 ± 2.8 85.4 ± 2.1 0.86 ± 0.02
EasyNanopore 18.7 ± 1.5 65.4 ± 3.0 78.6 ± 3.0 0.82 ± 0.03
NanoAnalyzer 16.5 ± 1.4 55.3 ± 2.5 83.1 ± 2.7 0.84 ± 0.02
Dynamic Correction Method 12.8 ± 1.0 40.5 ± 2.3 92.8 ± 1.5 0.91 ± 0.01
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variety of signal types and complex signal patterns. In com-
parison, some platforms, such as Kleiner Lab Software,
perform well with single-type signals but may struggle with
overlapping signals or complex backgrounds. Dynamic
Correction Method, however, is able to maintain stable per-
formance under various complex signal conditions, ensuring
accurate recognition of all target signals.

Finally, Dynamic Correction Method requires low hardware
specifications. In contrast to other platforms, such as Cavro
Nanopore Sensing, which typically require higher-end equip-
ment, Dynamic Correction Method runs efficiently on low-end
devices, reducing the experimental costs and technical bar-
riers, making it suitable for a wider range of laboratory
environments.

In summary, Dynamic Correction Method outperforms
existing platforms in several areas, including noise manage-
ment, low-SNR event detection, baseline drift handling,
complex signal processing, high salt concentration adapta-
bility, and hardware requirements. It demonstrates unique
advantages, particularly in noisy environments and complex
experimental conditions, ensuring high signal recognition
accuracy and stability.

Experiment sections
Nanopore experiment

Nanoscale channels were created on typical SiNx membranes
by piercing the nanopores with an electron beam. Chips were
prepared and cleaned in a piranha solution (concentrated sul-
furic acid with hydrogen peroxide in a volume ratio of 3 : 1) at
80 °C for 30 minutes to enhance their surface hydrophilicity.
The nanopore chips were firmly sealed with rubber pads and
assembled into polydimethylsiloxane (PDMS) microfluidic
channels.

The gold nanoparticles used in the experiment were
obtained by the reduction reaction of sodium citrate with
chloroauric acid. The polymerases used in the experiments
were ordered from Sangon Biotech (Shanghai) Co. For nano-
pore sensing, silver chloride electrodes with bias voltages
were placed on both sides of the device. Analogue current
signals were captured using the Axopatch 200B patch clamp
(Molecular Devices, Inc. Sunnyvale, CA), filtered with a low-
pass Bessel filter with a corner frequency of 10 kHz, and then
digitized with a Digidata 1550B converter at a sampling fre-
quency of 100 kHz. To effectively suppress noise and preserve
the signal, we chose a 10 kHz low-pass filter. This filter is
suitable for both the polymerase and gold nanoparticle
signals, effectively removing high-frequency noise while
retaining key signal features. Since the nanopores are fabri-
cated through dielectric breakdown, which can result in
higher noise levels compared to other fabrication methods,
the 10 kHz low-pass filter is employed to reduce baseline
noise and minimize the interference of high-frequency noise,
thereby improving the efficiency of signal extraction while
maintaining the integrity of the signal characteristics. The

translocation of analytes across the nanopore was primarily
driven by an applied transmembrane voltage, which generates
an electric field that induces the movement of charged par-
ticles through the pore. Data were recorded by using the
PClamp software.

Conductance calculation

To offer a more comprehensive analysis, we utilized a compo-
site model that takes both bulk conductance and double-layer
conductance into account. The model allows us to consider
both the ionic conductivity of the bulk solution and the contri-
bution of the electric double layer near the pore surface,
offering a more thorough understanding of the total
conductance.

The bulk conductance Gbulk primarily comes from the ion
concentration and ion mobility in the solution. σbulk is the
conductivity of the solution in S m−1 (4.2 S m−1 for 1 M LiCl), r
is the radius of the pore in meters (25 nm), and L is the length
of the nanopore in meters (30 nm). The formula is defined as
follows:

Gbulk ¼ σbulk � πr
2

L

The double layer conductance GDL is related to the
charge distribution and interaction between the surface of
the nanopore and the electrolyte solution. σDL is the con-
ductivity of the double layer, typically dependent on
surface charge density, ion type, and solution conditions;
LDL is the effective thickness of the double layer, which is
around 0.77 nm for a 1 M LiCl solution. It is calculated as
follows:

GDL ¼ σDL � πr
2

LDL

After calculating both contributions, we found that the bulk
conductance is significantly larger than the double-layer con-
ductance. The bulk conductance, calculated as 2.6 × 10−8 S, is
the dominant factor in determining the total conductance of
the nanopore. While the double-layer conductance does play a
role, its contribution is comparatively smaller, with a calcu-
lated value of 4.16 × 10−11 S.

Gtotal � Gbulk þ GDL ¼ σbulk � πr
2

L
þ σDL � πr

2

LDL

By considering both factors in our model, we gained a more
complete picture of the overall conductance, confirming that
the primary influence comes from the bulk ionic conductivity,
while the effect of the double layer is minimal, particularly at
high salt concentrations such as 1 M LiCl. This comprehensive
approach ensures that the model used in our analysis is more
robust and accurate in predicting the total conductance of the
system.

Signal file acquisition suggestions

The resolution of the signal files has a certain impact on data
extraction performance, and this limitation primarily arises
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from the combination of sampling rate and filter settings.
While these settings optimize noise suppression and signal
clarity, they limit the resolution required for ultra-fast event
detection. The following strategies can be employed to
improve temporal resolution and capture faster translocation
events:

Appropriate voltage. By reducing the voltage applied across
the nanopore, the speed of molecules passing through the
pore can be slowed, thereby increasing the duration of the
events. This allows for more complete signal features to be
captured at higher temporal resolution.

Nanopore modification. Modifying the nanopore surface
can further adjust the interaction between molecules and the
nanopore, controlling the speed at which molecules pass
through. Appropriate modifications help slow down the mole-
cules’ flow, enabling translocation events to be captured and
analyzed at higher temporal resolution.

Optimizing acquisition parameters. By adjusting filter cutoff
frequencies and increasing the sampling rate, we can improve
the temporal resolution while maintaining an acceptable
signal-to-noise ratio. This will enhance the detection of fast
translocation events.

These optimization strategies can improve the detection of
fast translocation events, providing more complete and reliable
raw data for the signal extraction algorithm, thereby enhancing
the accuracy and effectiveness of the algorithm.

Program coding

Qt designer platform was used to design the visual interface of
the software, Python was used to develop the back-end func-
tion of the software, and the key libraries used by the software
included pyabf, pyqt5, and matplotlib.

Results and discussion
Signal model and program algorithm

In this paper, the many aspects of nanopore data analysis have
been described in our nanopore signal model. During the reco-
gnition of the signal, the event detection thresholds (start and
end thresholds determine the start and end points of the
event, respectively) are determined based on the magnitude of
the change in the current pulse with respect to the baseline.
Thus, the accuracy of the value of the baseline determines the
outcome of the nanopore signal recognition. To identify the
translocation event, the signal recording is segmented in slid-
able windows, and the local mean and local variance for each
window are computed as a means of dynamically assessing the
baseline drift and determining the event detection threshold.
Thus, a nonlinear threshold curve is generated according to
the statistical characteristics of the signal in the window,
which can flexibly adapt to the dynamic changes of the signal,
especially in the case of large fluctuations of baseline current
and mass dense pulse signals. Consequently, the baseline and
threshold can be dynamically corrected in real time to resist
the disturbance effect to improve the accuracy of event detec-
tion. The procedure is split into a series of successive stages,
with each stage utilizing parameters determined in the pre-
vious stage, as shown in Fig. 1.

The Dynamic correction method comprises the following
steps.

Step 1: Window Initialization. First, three concepts are clari-
fied. Window size (W) refers to the number of sample points
considered at one time when processing the signal. Sampling
frequency ( f ) refers to the number of sample points collected
per second in Hz, and the sampling frequency determines the
time resolution of the signals. Time (t ) is the actual time

Fig. 1 Flow chart of the dynamic correction method.
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covered by the window, which can be calculated from the
window size and sampling frequency. The mathematical
relationship between the three parameters is expressed as:

t ¼ W
f

ð1Þ

The next steps are to set the appropriate window size (W),
step size (S) and buffer size (B), and scan the entire signal file
by sliding the window. During each movement of batch
windows, the data within the window and (the contextual com-
ponents in the front and rear areas) the buffer before and after
it are further adjusted and processed based on cascade feed-
back. Setting the signal as x and the length as N, a sliding
window function f (k) can then be defined with k denoting the
index of the window and i denoting the signal point index as
follows.

f ðkÞ ¼ fx½i�jðk � 1ÞS � i < kSþWg; for k ¼ 1; 2;…;N=S

ð2Þ

For each index k, the sliding window function f (k) returns a
collection of consecutive data points of number W that are
signals x from position (k − 1)S to kS + V − 1. This formula
assumes that the step size S is less than or equal to the
window size W, ensuring the overlap between the windows. If
the step size S is greater than the window size W, there will be
no overlap between the testing windows. This formula also
assumes that the signal length N is an integer multiple of the
step size S, which ensures that the last data point of the signal
is exactly at the end of a window. If the signal length N is not
an integer multiple of the step size S, then the last window
may contain fewer data points, or the signal may need to be
filled or truncated accordingly. The window is then scrolled
through the entire signal according to the selected step size.
After each sweep, the working data within the window and the
connected data near the windows are ready for the next proces-
sing step.

Step 2: Preliminary Threshold Initialization. The mean var-
iance within the window is the primary part of calculating the
preliminary threshold. Here a first-order digital low-pass filter
is used to calculate the local mean and variance at each point
of the original signal with the following formulae.

mlð0Þ ¼ 1
N

XN�1

i¼0

SrawðiÞ ð3Þ

mlðiÞ ¼ α�mlði� 1Þ þ ð1� αÞSrawðiÞ; i ¼ 1; 2;… ð4Þ

vlð0Þ ¼ 1
N

XN�1

i¼0

½SrawðiÞ �mlð0Þ�2 ð5Þ

vlðiÞ ¼ α� vlði� 1Þ þ ð1� αÞ½SrawðiÞ �mlðiÞ�2; i ¼ 1; 2;…

ð6Þ

TusðiÞ ¼ mlðiÞ þ βs �
ffiffiffiffiffiffiffiffiffi
vlðiÞ

p
ð7Þ

TdsðiÞ ¼ mlðiÞ � βs �
ffiffiffiffiffiffiffiffiffi
vlðiÞ

p
ð8Þ

Here, Sraw(i) is the i-th point of the original signal. ml(i) and
vl(i) are the local mean and local variance of the original
signal at the i-th point, respectively. Tus(i) and Tds(i) are the
global mean and the global variance of the original signal,
respectively, and α represents the coefficients of the filter.
Tus(i) and Tds(i) represent the start thresholds for the ampli-
tude increase and decrease, respectively. The parameter βs is
used to calculate a preliminary threshold for event detection
by setting a distance between a signal point and the local
mean (baseline level), where the value of this distance is s
times the local standard deviation, and signal data with
current fluctuations greater than this distance are filtered.
With greater values of s, the preliminary threshold for event
detection will be higher and the algorithm will be less sensi-
tive to the event.

Step 3: Data Filtering. Some points that are significantly
below the current threshold are filtered out. The filtering
action of signals will traverse the entire window, and the new
thresholds derived from step 2 are constantly set depending
on the correction process. If the sudden change of the current
data is more than the specified threshold, an event is con-
sidered to be identified and the starting points are recorded in
a list.

Step 4: Event Detection Threshold Correction. The Dynamic
correction method (Fig. 2a) calculates the mean and variance
within a localized window, and obtains a baseline (red dashed
line) and an event detection threshold (blue dashed line). A
user-configurable yellow pane is displayed within the signal
file. Upon the detection of a recordable event, the window
initiates a baseline correction. This involves replacing the
mean and variance values within the baseline calculation for
the specified area with the mean and variance values at a
number of points located prior to and subsequent to the
event’s start and end points, respectively. The number of
points included in this replacement is also adjustable. This
dynamic adjustment process brings the event detection
thresholds of the pane-formatted file closer to the baseline,
thereby ensuring greater accuracy in the values of each feature
of each recorded event. Concurrently, this process is tanta-
mount to circumventing the interference occasioned by the
fluctuating current of the event in question with each instance
of its documentation, thus ensuring that the event detection
threshold remains unimpaired. For comparison, the baseline
scanning method is illustrated in Fig. 2(b). As events are
detected, the cumulative changes in the mean and variance of
the entire window can shift the event detection threshold,
which may affect the signal recognition accuracy. This shift
can lead to small signals being masked or the characteristics
of the detected signals becoming inaccurate. In contrast, the
Dynamic Correction Method dynamically adjusts the threshold
in real time, mitigating the impact of such shifts. By localizing
the threshold change curve, this method better fits the local
signal characteristics, enhancing the detection sensitivity.
Additionally, it allows for more precise extraction of event fea-
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tures, such as duration and amplitude, improving the accuracy
and reliability of signal detection, especially in complex or low
signal-to-noise ratio environments.

Step 5: Event identification. As above, the end threshold
will be determined based on the local mean and local variance
to detect the events in the current traces. Meanwhile, the data
between the start and the end of the events are checked back
and forth according to the upward and downward threshold to
reach its optimal results. The formula for the event end
threshold is shown as below.

TudðiÞ ¼ mlðiÞ þ βe �
ffiffiffiffiffiffiffiffiffi
vlðiÞ

p
ð9Þ

TdeðiÞ ¼ mlðiÞ � βe �
ffiffiffiffiffiffiffiffiffi
vlðiÞ

p
ð10Þ

Here, Tud(i) and Tde(i) represent the thresholds with upward
and downward amplitude for independent event recognition,
respectively, and βe is a parameter used to compute the end
threshold. It controls the distance between the end threshold
and the local mean, which is e times the local standard devi-
ation. With greater values of e, there is a lower end threshold,
and the algorithm becomes more stringent in determining the
end of the event. By adjusting the values of s and e, it is poss-
ible to regulate the sensitivity of the algorithm to events, as
well as its requirement for the duration of events. The appli-
cation of larger values of s will result in a reduction of the
number of events that are identified, although this may result
in the omission of some true events. Conversely, the appli-
cation of larger values of e will increase the duration of events.
However, this may result in the misclassification of certain
noise as part of the event. In practice, the values of s and e

should be set according to the specific characteristics of the
signal and the requirements of the application in order to
achieve the optimal results in event detection.

Step 6: Screening of Events. The detected events are sub-
jected to screening according to preset conditions with the
objective of eliminating possible false positives.

Step 7: Feature extraction. Save the current event infor-
mation and calculate its features. Output the relevant infor-
mation of the filtered events into the result array.

Step 8: Slide the window to subsequent data processing.
Perform the detection of the translocation event in the next
window.

Event characterization for nanopore sensing for polymerase

In order to assess the efficacy of the Dynamic correction
method, we conducted experiments using polymerase as the
target for detection. The concentration of polymerase used was
50 µM, and the experiments were performed on solid-state
nanopores with a pore size of 25 nm and an applied voltage of
400 mV. The nanopore blockage current signal of these experi-
ments are presented in Fig. 3a.

To evaluate the improvement brought about by our algor-
ithm, we analyzed the signal distributions by applying the
Dynamic correction method (counts: 865) and Baseline scan-
ning method (counts: 841). The signal amplitude and width
distributions were fitted using a Gaussian function model, and
the fitted curves are depicted as dashed lines in Fig. 3. The
goodness of fit was assessed using the R-square values, which
were found to be 0.827, 0.877, 0.905, and 0.988 for Fig. 3b–e,
respectively. Our analysis revealed that the time of the signals

Fig. 2 Identification of transition events by different methods. (a) Dynamic correction method; (b) baseline scanning method.
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in relation to the bar graph of the blockage current of the half-
peak width became narrower after applying the improved
algorithm. This indicates that the data became more concen-

trated. Additionally, the fitted peaks in Fig. 3b–e were deter-
mined to be 0.135 ms, 0.161 ms, 8991.4 pA, and 9003.2 pA,
respectively. The consistency of these peaks suggests that our

Fig. 3 Enhancement of data accuracy after applying the dynamic correction method and baseline scanning method. (a) Nanopore blockage current
signal graph of polymerase. (b) Duration distribution of the nanopore signal using the baseline scanning method. (c) Blockage current distribution of
the nanopore signal using the baseline scanning method. (d) Duration distribution of the nanopore signal using the dynamic correction method. (e)
Blockage current distribution of the nanopore signal using the dynamic correction method. (f ) Scatter plot of the signals from the two methods.
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algorithm optimizes the identification process, while main-
taining the accuracy of the data. Fig. 3f compares the signal
data obtained using the Dynamic correction method (red) with
the data obtained using the Baseline scanning method (black).
The data points derived from our algorithm are concentrated
in the center region, which is crucial for the classification of
solid-state nanopore signals. This observation suggests that we
can obtain various features of the sample using a smaller
sample size. Overall, our findings demonstrate the effective-
ness of our algorithm in improving the analysis of solid-state
nanopore signals.

Dynamic correction method for the classification of signals
from gold nanoparticles

Due to the limitations of the micro- and nanofabrication
process, the baseline current of solid-state nanopores often
fluctuates to a large extent, which can affect the accuracy of
signal recognition. At the same time, the extent of such fluctu-
ations is also related to the substance to be measured. For
example, proteins are more likely to cause baseline fluctu-
ations compared to DNA. With increasing spatial volume of
the substance, it is more likely for a collision process to be
formed during the pore entry process, thus causing baseline
fluctuations. The more rigid metal nanoparticles are more
likely to cause irregular oscillations of the nanopore baseline
currents because they tend to form clusters in the salt solu-
tion. As shown in Fig. 4a, we detected two kinds of gold nano-

particles with particle sizes of 10 nm versus 15 nm (both with a
concentration of 20 nM) using a solid nanopore with a pore
size of 20 nm, and the mixed samples of metal particles made
the nanopore baseline fluctuation very unstable. In this study,
the term “ionic current fluctuations” refers to variations in the
ionic current signal caused by multiple factors. These fluctu-
ations can be classified into two types: slow fluctuations and
fast fluctuations. Slow fluctuations primarily arise from
electrochemical reactions occurring near the nanopore orifice,
leading to gradual changes in the baseline current. In contrast,
fast fluctuations are typically caused by the dynamic oscillatory
motions of particles at the nanopore orifice, resulting in rapid
and short-lived changes in the ionic current. Notably, the
nanopore chips used in this study were fabricated using a
dielectric breakdown method, which differs from traditional
approaches involving high-energy electron or ion beam dril-
ling. This method offers advantages, including low cost and
rapid pore formation. The process involves the initial creation
of a small pore via breakdown and then gradually enlarging it,
resulting in a more loosely configured pore structure. This
structural characteristic makes ionic current fluctuations, par-
ticularly those caused by particle motion, more likely to occur.
Fig. 4b shows the signal counting using the Baseline scanning
method to count the signals. The number of signals for the
two kinds of particles (10 nm and 15 nm) is 128 (red) and 405
(green), respectively. Fig. 4c shows the signal counting graph
after using the Dynamic correction method. The number of

Fig. 4 (a) Signal recognition of nanopore signals under a fluctuating baseline (the test sample is a mixture of 10 nm and 15 nm gold nanoparticles).
(b) Distribution of nanopore signals detected by the baseline scanning method. (c) Distribution of nanopore signals detected by the dynamic correc-
tion method.
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signals for the two kinds of particles is elevated to 418 (red)
and 691 (green), respectively. It can be clearly seen from the
graphs that with the increase in the number of signals recog-
nized, there is not a significant change in aggregation and dis-
tribution of signals. In particular, it should be noted that the
concentration of the 10 nm and 15 nm gold nanoparticles is
20 nM. Theoretically, there is not much difference in the
capture probability of the two sizes, but the capture frequency
ratio under the Baseline scanning method is only 31% (128/
405). This means that baseline fluctuations and signal com-
plexity will affect the acquisition of small signals. However,
when we use the Dynamic correction method to process the
same batch of files, the capture frequency ratio increases to
60% (418/691), which reflects the improvement of the
threshold adjustment for complex sample signal acquisition,
especially when the baseline fluctuation is obvious.

We have counted the signal distributions obtained by the
Baseline scanning method and Dynamic correction method,
and the results are shown in Fig. 5, where panels (a) and (b)
show the distribution of the blocking current versus pore time
for the 10 nm gold nanoparticles, and panels (c) and (d) show
the distribution of the blocking current versus pore time for
the 15 nm gold nanoparticles. The most significant difference
is 0.041 ms in Fig. 5b (1.028 ms and 1.069 ms for the Baseline

scanning method and Dynamic correction method, respect-
ively), while the difference in the blocking current is much
smaller, with 86.45 pA and 53.70 pA for the 10 nm and 15 nm
gold nanoparticles, respectively. This demonstrates that the
Dynamic correction method can significantly improve the
signal recognition rate while maintaining the signal character-
istics, especially for smaller current signals that are missed
due to baseline fluctuations.

Conclusion

Overall, we developed a software program to perform baseline
correction in real time using the Dynamic correction method,
overcoming the interference of baseline fluctuations of solid-
state nanopores and solving the difficult problem of detecting
small and medium signals in signal-dense regions. This
improves the acquisition rate and accuracy of nanopore
signals. The data obtained from biomolecules, including
enzymes and nanoparticles, after the application of our
dynamic correction method to solid-state nanopores demon-
strates effective signal recognition. This study encompasses a
range of topics related to biochemical experiments, signal pro-
cessing, and data analysis. Furthermore, it offers valuable

Fig. 5 Signal distributions obtained by the baseline scanning method and dynamic correction method. Panels (a) and (b) correspond to current
versus transit time for the 10 nm gold nanoparticles, and panels (c) and (d) correspond to current versus transit time for the 15 nm gold
nanoparticles.
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insights into solid-state nanopore signal research by employ-
ing the technique of dynamic correction of event detection
thresholds to address the current challenges in solid-state
nanopore signal analysis.

Author contributions

GX conceived and designed the study, developed the program,
conducted the experiments, and drafted the original manu-
script. JS was responsible for module construction. JM per-
formed data analysis. LW revised the manuscript. JT super-
vised the study, managed the project administration, and fina-
lized the manuscript.

Data availability

The clients for Windows, Linux, and MacOS operation systems
are available and can be downloaded from https://github.com/
eventdetector/Event-Detector.

The source code can be downloaded from https://github.
com/eventdetector/Event-Detector-Code.

All data included in this article are available from the
authors upon request.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

This work was supported by the Key Research and
Development Project of Jiangsu Province (BE2022804) and the
Fundamental Research Funds for the Central Universities
(2242023K5005).

References

1 A. J. Storm, C. Storm, J. Chen, H. Zandbergen, J.-F. Joanny
and C. Dekker, Fast DNA Translocation through a Solid-
State Nanopore, Nano Lett., 2005, 5(7), 1193–1197.

2 C. Dekker, Solid-state nanopores, Nat. Nanotechnol., 2007,
2(4), 209–215.

3 D. Branton, D. W. Deamer, A. Marziali, H. Bayley,
S. A. Benner, T. Butler, M. Ventra, S. Garaj, A. Hibbs and
X. Huang, The potential and challenges of nanopore
sequencing, Nat. Biotechnol., 2008, 26(10), 1146–1153.

4 S. Howorka and Z. Siwy, Nanopore, analytics: sensing of
single molecules, Chem. Soc. Rev., 2009, 38(8), 2360–
2384.

5 C. Cao and Y.-T. Long, Biological Nanopores: Confined
Spaces for Electrochemical Single-Molecule Analysis, Acc.
Chem. Res., 2018, 51(2), 331–341.

6 G. M. Cherf, K. R. Lieberman, H. Rashid, C. E. Lam and
M. Akeson, Automated Forward and Reverse Ratcheting of
DNA in a Nanopore at Five Angstrom Precision, Nat.
Biotechnol., 2012, 30(4), 344–348.

7 F. J. Rang, W. P. Kloosterman and D. R. Jeroen, From squig-
gle to basepair: computational approaches for improving
nanopore sequencing read accuracy, Genome Biol., 2018,
19(1), 90.

8 B. Kyle, K. Harold and T.-C. Vincent, Automated
Fabrication of 2 nm Solid-State Nanopores for Nucleic Acid
Analysis, Small, 2014, 10(10), 2077–2086.

9 R. S. S. De Zoysa, D. A. Jayawardhana, Q. Zhao, D. Wang,
D. W. Armstrong and X. Guan, Slowing DNA translocation
through nanopores using a solution containing organic
salts, J. Phys. Chem. B, 2009, 113(40), 13332–13336.

10 Y. Rozevsky, T. Gilboa, X. F. V. Kooten, D. Kobelt and
A. Meller, Quantification of mRNA Expression Using
Single-Molecule Nanopore Sensing, ACS Nano, 2020, 14(10),
13964–13974.

11 C. Diego, G. Nicoletta, K. Agne, C. Pierre-Eugene, C. Benoit,
J. Jean-Marc and B. Sebastien, Unexpected Hard Protein
Behavior of BSA on Gold Nanoparticle Caused by
Resveratrol, Langmuir, 2018, 34(30), 8866–8874.

12 A. Arima, I. H. Harlisa, T. Yoshida, M. Tsutsui, M. Tanaka,
K. Yokota, W. Tonomura, J. Yasuda, M. Taniguchi and
T. Washio, Identifying Single Viruses Using Biorecognition
Solid-State Nanopores, J. Am. Chem. Soc., 2018, 140(48),
16834–16841.

13 H. Chae, D. K. Kwak, M. K. Lee, S. W. Chi and K. B. Kim,
Solid-state nanopore analysis on conformation change of
p53TAD–MDM2 fusion protein induced by protein–protein
interaction, Nanoscale, 2018, 10(36), 17227–17235.

14 S. W. Kowalczyk, A. R. Hall and C. Dekker, Detection of
Local Protein Structures along DNA Using Solid-State
Nanopores, Nano Lett., 2010, 10(1), 324–328.

15 D. Coglitore, P. E. Coulon, J. M. Janot and S. Balme,
Revealing the Nanoparticle-Protein Corona with a Solid-
State Nanopore, Materials, 2019, 12(21), ma12213524.

16 M. Raveendran, A. R. Leach, T. Hopes, J. L. Aspden and
P. Actis, Ribosome Fingerprinting with a Solid-State
Nanopore, ACS Sens., 2020, 5(11), 3533–3539.

17 D. Branton, D. W. Deamer, A. Marziali, H. Bayley,
S. A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs and
X. Huang, The potential and challenges of nanopore
sequencing, Nat. Biotechnol., 2008, 26(10), 1146–1153.

18 E. C. Yusko, B. R. Bruhn, O. M. Eggenberger,
J. Houghtaling, R. C. Rollings, N. C. Walsh, S. Nandivada,
M. Pindrus, A. R. Hall and D. Sept, Real-time shape
approximation and fingerprinting of single proteins using
a nanopore, Nat. Nanotechnol., 2017, 12(4), 360–367.

19 W. Yang, L. Restrepo-Pérez, M. Bengtson, S. J. Heerema,
A. Birnie, J. V. D. Torre and C. Dekker, Detection of
CRISPR-dCas9 on DNA with Solid-State Nanopores, Nano
Lett., 2018, 18(10), 6469–6474.

20 M. Wang, A. Fu, B. Hu, Y. Tong and T. Liu, Virus Detection:
Nanopore Targeted Sequencing for the Accurate and

Paper Analyst

1396 | Analyst, 2025, 150, 1386–1397 This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
30

/2
02

5 
7:

41
:0

5 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://github.com/eventdetector/Event-Detector
https://github.com/eventdetector/Event-Detector
https://github.com/eventdetector/Event-Detector
https://github.com/eventdetector/Event-Detector-Code
https://github.com/eventdetector/Event-Detector-Code
https://github.com/eventdetector/Event-Detector-Code
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4an01384k


Comprehensive Detection of SARS-CoV- and Other
Respiratory Viruses, Small, 2020, 16(32), 2002169.

21 H. Tang, H. Wang, C. Yang, D. Zhao and Y. Li, A novel strat-
egy for nanopore-based selective detection of single carci-
noembryonic antigen (CEA) molecules, Anal. Chem., 2020,
92, 3042–3049.

22 V. Tabard-Cossa, M. Wiggin, D. Trivedi, N. N. Jetha and
A. Marziali, Single-Molecule Bonds Characterized by Solid-
State Nanopore Force Spectroscopy, ACS Nano, 2009, 3(10),
3009–3014.

23 Z. Sun, X. Liu, W. Liu, J. Li, J. Yang, F. Qiao, J. Ma, J. Sha,
J. Li and L. Q. Xu, AutoNanopore: An Automated Adaptive
and Robust Method to Locate Translocation Events in
Solid-State Nanopore Current Traces, ACS Omega, 2022,
7(42), 37103–37111.

24 Y. M. N. D. Y. Bandara, S. Dutt, B. I. Karawdeniya,
J. Saharia, P. Kluth and A. Tricoli, A Robust Parallel
Computing Data Extraction Framework forNanopore
Experiments, Small Methods, 2024, 8(12), 240045.

25 Y. M. N. D. Y. Bandara, J. Saharia, B. I. Karawdeniya,
P. Kluth and M. J. Kim, Nanopore Data Analysis: Baseline
Construction and Abrupt Change-Based Multilevel Fitting,
Anal. Chem., 2021, 93(34), 11710–11718.

26 C. Raillon, P. Granjon, M. Graf, L. J. Steinbock and
A. Radenovic, Fast and automatic processing of multi-level
events in nanopore translocation experiments, Nanoscale,
2012, 4(16), 4916–4924.

27 C. Plesa and C. Dekker, Data analysis methods for solid-
state nanopores, Nanotechnology, 2015, 26(8), 084003.

28 J. H. Forstater, K. Briggs, J. Robertson, J. Ettedgui,
O. Marie-Rose, C. Vaz, J. J. Kasianowicz, V. Tabard-Cossa
and A. Balijepalli, MOSAIC: A Modular Single-Molecule
Analysis Interface for Decoding Multistate Nanopore Data,
Anal. Chem., 2017, 88(23), 11900–11907.

29 J. Tu, H. Meng, L. Wu, G. Xi, J. Fu and Z. Lu,
EasyNanopore: A Ready-to-Use Processing Software for
Translocation Events in Nanopore Translocation
Experiments, Langmuir, 2021, 37(33), 10177–10182.

30 J. Zhang, X. Liu, Y. L. Ying, Z. Gu, F. N. Meng and
Y. T. Long, High-bandwidth nanopore data analysis by
using a modified hidden Markov model, Nanoscale, 2017,
9(10), 3458–3465.

31 M. Tsutsui, T. Takaai, K. Yokota, T. Kawai and T. Washio,
Deep Learning-Enhanced Nanopore Sensing of Single-
Nanoparticle Translocation Dynamics, Small Methods,
2021, 5(7), e2100191.

32 Z. X. Wei, Y. L. Ying, M. Y. Li, J. Yang and Y. T. Long,
Learning shapelets for improving the single-molecule
nanopore sensing, Anal. Chem., 2019, 91(15), 10033–10039.

33 D. Dematties, C. Wen, M. D. Pérez, D. Zhou and
S. L. Zhang, Deep learning of nanopore sensing signals using
a bi-path network, ACS Nano, 2021, 15(9), 14419–14429.

34 D. Dematties, C. Wen and S. L. Zhang, A Generalized
Transformer-Based Pulse Detection Algorithm, ACS Sens.,
2022, 7(9), 2710–2720.

35 K. Misiunas, N. Ermann and U F. Keyser, QuipuNet:
Convolutional Neural Network for Single-Molecule
Nanopore Sensing, Nano Lett., 2018, 18(6), 4040–4045.

Analyst Paper

This journal is © The Royal Society of Chemistry 2025 Analyst, 2025, 150, 1386–1397 | 1397

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
30

/2
02

5 
7:

41
:0

5 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4an01384k

	Button 1: 


