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Validating phosphoethanolamine modification as a
potential spectral marker of colistin resistance†
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Basavraj S. Hungund, c Nilkamal Mahantab and Surya P. Singh *a

The antibiotic colistin is regarded as the final line of defense for treating infections caused by Gram-negative

bacteria. The combination of Raman spectroscopy (RS) with diverse machine learning methods has helped

unravel the complexity of various microbiology problems. This approach offers a culture-free, rapid, and

objective tool for identifying antimicrobial resistance (AMR). In this study, we employed the combinatorial

approach of machine learning and RS to identify a novel spectral marker associated with phosphoethanola-

mine modification in the lipid A moiety of colistin-resistant Gram-negative Escherichia coli. The visible spectral

fingerprints of this marker have been validated using partial least squares regression and discriminant analysis.

The origin of the spectral feature was confirmed through hyperspectral imaging and K-means clustering of a

single bacterial cell. The chemical structure of the modified lipid A moiety was verified by employing gold

standard MALDI-TOF mass spectrometry. Our findings support the futuristic applicability of this spectroscopic

marker in objectively identifying colistin-sensitive and -resistant strains.

Introduction

Antimicrobial resistance (AMR) associated health crises are
increasing silently and require immediate attention. It is esti-
mated that if no proper actions are taken, it could cause
10 million deaths by 2050 and 58 000 sepsis deaths in India
alone.1 As per a 2020 report by the Department of
Biotechnology (DBT), India, and the World Health
Organization, colistin is the last resort antibiotic for tackling
Gram-negative resistant infections. Colistin, comprising of
cyclic decapeptides linked to a fatty acid chain, is used for
treating Gram-negative infections.2 The increased risk of anti-
biotic resistance towards colistin from critical priority patho-
gens, such as E. coli, poses a potential risk to public health.3

Lipopolysaccharides (LPSs), molecules embedded in the
outer membrane of E. coli, have three major components:
O-polysaccharide (O-antigen), core oligosaccharide, and a lipo-
philic anchor part “lipid A”. A wide variety of modifications, such
as acylation, phosphorylation, and alteration of phosphoethano-
lamine (PEA), in the lipid A of Gram-negative bacteria have been

reported.4 V. Sándor et al. reported different structures of lipid A,
which could be present in E. coli. The mobile colistin resistance
gene (mcr-1) codes for a transferase enzyme belonging to the
family of phosphoethanolamine (PEA) transferases. Resistance to
colistin primarily arises from the alteration of the lipid A moiety
of LPS. This modification leads to the replacement of phosphate
groups of lipid A with 4′-phosphoethanolamine (PEtN) and/or cat-
ionic 4-amino-4-deoxy-L-arabinose (L-Ara4N). It leads to a decrease
in the net negative charge of the LPS membrane due to blocking
of phosphate and carboxyl groups, where colistin binds for its
antibacterial action.5–7

The excessive use and misuse of antibiotics have led to
increased resistance to nearly all antibiotics, posing a significant
threat to last-resort antibiotics, such as carbapenems and colis-
tin/polymyxins.8–10 Conventional methods to identify anti-
microbial resistance usually take 2–3 days because of the involve-
ment of long incubation hours and labour-intensive antibiotic
susceptibility tests (AST), such as disk diffusion, e-test, or broth
microdilution.11 The long waiting time results in more suffering
for patients and increases the chances of contagion. This
prompts healthcare professionals to use inappropriate antibiotics
or sometimes prescribe broad-spectrum antibiotics, which
further add to the problem of misuse of antibiotics. E. coli is
known to be a highly evolved Gram-negative bacteria that tends
to become resistant to multiple classes of antibiotics, including
colistin.7 The successful identification of a marker that can help
discern sensitive and resistant strains in a non-destructive
manner can revolutionize the early screening of colistin resis-
tance, fundamentally altering the current workflow of ASTs.
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The utility of Raman spectroscopy (RS) for microbiology
applications such as identification, characterization, and track-
ing of metabolites is widely reported due to attributes such as
label-free, fast, culture-free, and objectivity.12,13 Since Raman
spectral data consists of a large number of variables, it can be
efficiently combined with different machine-learning (ML)
modules to help overcome the limitations of traditional decision-
making approaches and enable the forecasting of information
that would otherwise be beyond the capabilities of traditional
approaches. RS coupled with ML can provide fast, effective, and
objective analysis of high dimensional datasets and help in iden-
tifying complex information and relationships among the data
depending upon specific functional groups and compounds.13,14

This exploratory study was conducted by utilizing the exquisite
molecular specificity of Raman spectroscopy in combination
with different machine learning techniques to identify the altera-
tions in the lipid A fragment of colistin-resistant E. coli as a novel
spectral marker. The numerical characteristics from RS profiles
were utilized to extract the features from colistin-resistant micro-
organisms and were complemented with gold-standard mass
spectrometry (MS).

Results and discussion
Molecular weight characterization

The extracted lipid from the outer membrane of colistin-resist-
ant and sensitive strains was analysed by MALDI-TOF-MS to
confirm the chemical modifications linked to colistin resis-
tance (mcr-1 positive) in comparison to the wild-type sensitive
strain. The typical mass-to-charge ratio (m/z) for lipid A from

E. coli generally falls within the range of 1700 to 2000
daltons.17 Fig. 1A represents the protonated molecular ion
[M + H]+ at 1746 Da, corresponding to hexa-acylated
monophosphorylated lipid A from the colistin-sensitive strain.
The proposed structure suggests the presence of a GlcN
disaccharide backbone having six acyl chains of 14 carbons
[C4×3-phosphate, C3′–C14:O(3-O-C14:O), C2′–C14:O(3-O-C14:
O), C3–C14:O(3-OH), C2–C14:O(3-OH), C1-OH] (3).18,19

Colistin-resistant pathogenic bacteria modify their lipid A to
survive antibiotic stress by appending phosphoethanolamine
(PEA) to it. Fig. 1B represents the protonated molecular ion [M
+ H]+ at 1871 Da from the resistant strain containing the modi-
fied phosphoethanolamine group at the C1 position of the
lipid A structure with a mass difference of 125 Da, which
corresponds to the mass of the PEA group. On comparison of
both the sensitive and resistant strain lipid A MALDI-TOF-MS
data, we saw that the addition of PEA in the resistant strain
imparts antibiotic-resistant activity. These results validated the
successful generation of mcr-1-positive colistin-resistant
strains.

Analysis of the average Raman spectral profiles of sensitive
and resistant strains

The primary focus of this study was to demonstrate the appli-
cability of Raman spectroscopy coupled with machine learning
to identify spectral markers associated with colistin resistance.
In the next step, Raman spectra from sensitive and resistant
cells were acquired. To avoid any spectral differences caused
by cell number and growth phase variations, spectra were
acquired by using an equal number of cells collected from the
same growth phase.20 Spectra were recorded for both colistin-

Fig. 1 Lipid-A structural difference between the sensitive (A) and resistant strains (B) using MALDI-TOF-MS; PEA addition in the resistant strain is
indicated by the red rectangle.
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sensitive and resistant strains, treated with colistin concen-
trations of 1.2, 3.9, 5, 6.5, and 7.8 µg mL−1. The normalized
average spectra from E. coli (sensitive) and resistant isolates
are shown in Fig. 2A. The shaded area indicates the standard
deviation across four independent experiments. Another strain
of colistin-resistant A. baumannii was also tested to establish
the generalized applicability of the proposed spectral markers,
Fig. 2B.

The average spectra from E. coli cells resistant to the anti-
biotic ampicillin have been used as a control to verify the
molecular specificity of Raman spectroscopy. Like colistin, the
resistance mechanism for ampicillin also involves the
secretion of the enzyme ‘β-lactamase’, which interferes with
the binding of the antibiotic to the penicillin-binding proteins
(PBPs) involved in the cell wall biosynthesis. The spectral
peaks at 757 cm−1 (phosphoethanolamine), 1130 and
1181 cm−1 (C–C skeletal of the acyl backbone in lipids) were
observed exclusively in spectra collected from colistin-resistant
cells (both E. coli and A. baumannii), Fig. 2. Colistin resistance
is often accompanied by lipid A modifications and lengthen-
ing of the acyl backbone in highly resistant strains.15,23,24,26 In
addition to these exclusive features (associated with colistin re-
sistance), typical Raman signals such as 785 cm−1 (nucleic
acids), 1004 cm−1 (phenylalanine), 1094 cm−1 (DNA/RNA),
1245 cm−1 (amide III), 1337 cm−1 (DNA/RNA), 1440 cm−1 (C–H
stretch), 1580 cm−1 (DNA/RNA) and 1659 cm−1 (amide I) were
also observed.22,23 Most of the signals were found to be super-
impositions from similar compounds for each group.
Additionally, the spectral features corresponding to glycogen
and various amino acids (proline, valine, hydroxyproline) in
the below 1000 cm−1 region were found to be strong in resist-
ant cells.15,21 Colistin-resistant A. baumannii resistant isolates
showed minor changes in the spectra around 840 cm−1 to
890 cm−1 (acyl chain) and 941 cm−1 (polysaccharide), which
could be due to additional glycolipids present in the outer
membrane.21 As colistin resistance is known to be associated

with the thickening of bacterial capsules via the deposition of
polysaccharides, overproduction of the outer membrane vesi-
clesand additional lipopolysaccharides to change the charge
from anionic to zwitterionic.25–28 This is spectrally corrobo-
rated by the presence of strong features at 860, 928, and
1103 cm−1 (attributed to lipopolysaccharides). The visible
changes in the shape of the amide I band in the resistant
strains can be attributed to the structural modifications associ-
ated with the induction of resistance, which includes the
thickening of the cell wall and changes in the cell shape.29 Our
previous study has demonstrated that colistin-resistant E. coli
cells tend to acquire a circular shape in contrast to rod-shaped
sensitive strains. Also, the induction of resistance leads to a
reduction in the membrane fluidity and an increase in surface
roughness.20,29,30 The absence of bands associated with cell
wall modifications (lipid A) in sensitive and ampicillin control
strains supports the exquisite molecular specificity of Raman
spectroscopy in identifying chemical modifications associated
with colistin resistance.

Feature extraction and regression analysis

Any differences due to independent experiments were evalu-
ated for each strain using principal component analysis (PCA)
by combining the experiments into two sets. The PCA score
plot obtained from the first two PCs clearly demonstrated the
minimal variations across experiments, Fig. S5.† In order to
screen specific predictors that can assist in distinguishing
resistant and sensitive strains from the pool of spectral fea-
tures in the 600–1800 cm−1 spectral range, we performed
PLS-DA and PLS-regression. Fig. 3A and B show the scatter plot
generated from latent variables and the corresponding PLS-DA
coefficients, respectively. A clear separation of the sensitive
and resistance strains was observed in the scatter plot gener-
ated by the score of Factor 1 and Factor 2 of the PLS-DA
model. A few important spectral features that could be respon-
sible for the classification are marked in the coefficients

Fig. 2 The average Raman spectra of ampicillin-resistant (Amp), sensitive (control) and colistin-treated resistant isolates of (A) E. coli and (B)
A. baumannii.
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shown in Fig. S2†. The visible separation among the spectra
appears to be contributed by both factors. A minor misclassifi-
cation between sensitive and resistant strains treated with low
colistin concentration was observed, which could be due to
variability across the independent measurements. The spectral
features contributing to this classification were further con-
firmed by the coefficient plot, Fig. 3B. It suggests that the most
important variables that were positively correlated to the pre-
diction in the PLS model were the wavenumbers 757 cm−1

(phosphoethanolamine), 980 cm−1 (vCH bending from
lipids), and 1131 cm−1 (lipids). These peaks were found to be
strong in the case of high-concentration colistin-treated groups
(6.5 and 7.8 µg mL−1). The origin of these bands can be attrib-
uted to the earlier-mentioned phenomenon involving the
addition of phosphoethanolamine to lipid A or the deposition
of extra lipopolysaccharide in the outer membrane to block
the interaction between the free negatively charged phosphate
groups.31 The successful demonstration of the exclusive contri-
bution of the resistance-associated spectral peaks in the dis-
crimination of sensitive and resistant strains is important with
respect to the prospective adaptation of this method in the
form of an automated resistance monitoring system. In the
next step, to explore the relationship between the resistance-
induced spectral features and colistin concentration, a PLS

regression model was developed. The primary goal of this
model was to predict the antibiotic concentrations using
Raman spectra as an input. The model performance was evalu-
ated by different parameters, such as MSE (mean square
error), R2 score, RMSE, and MAE (mean absolute error). The
MSE measures the mean of the squared differences between
the predicted and actual values, quantifying the overall accu-
racy of the model. The lower the MSE, the better the perform-
ance of the predicted model. The RMSE provides the average
deviation between the predicted and actual values and helps to
interpret the overall model accuracy; MAE represents the
average of absolute differences between predicted and actual
values rather than squaring them, unlike RMSE. The R2 value
explains the proportion of variance in the response values
explained by the predicted values, indicating the goodness of
individual predictions. R2 value of 1 indicates perfect fit, and 0
indicates poor predictions.33,34 The value of these parameters
is shown in Table 1.

The regression model was also tested with independent test
data, as shown in Fig. 3C. The R2 score of 0.89 was obtained,
indicating a strong relationship between specific spectral vari-
ations and colistin concentrations. A closer look at the corre-
lation plot suggests that most of the wrong predictions of this
model belong to the low-concentration resistance group,

Fig. 3 (A) Partial least square discriminant analysis (PLS-DA) and (B) corresponding coefficients. (C) Comparison of actual and predicted colistin
concentrations through PLS regression. (D) Color coded heat map showing average spectra from all the spectra acquired from bacteria under
different groups. The top shows the regression vector from the prediction model. The vector plot was found to mimic the prominent spectral peaks
from the colistin resistant microbes.
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specifically, cells treated with the below MIC concentration
(1.2 µg mL−1) of colistin.

Removing this group from the regression analysis improves
the overall prediction accuracy of the model significantly (R2:
0.92; MSE: 0.81; RMSE 0.86; MAE: 0.80), Table 1. The primary
reason for this could be attributed to the fact that cells begin
to acquire specific morphological and biochemical characteristics
associated with resistance at higher concentrations. This leads to
the origin of specific spectral signatures that can help objectively
identify colistin-resistant strains. To unravel these spectral signa-
tures, a heat map was generated using pooled normalized
spectra obtained from each group of E. coli cells sensitive to colis-
tin, resistant to low colistin-treated concentrations (1.2, 3.9 µg
mL−1), and high colistin-treated concentrations (6.5, 7.8 µg
mL−1) in the 600–1800 cm−1 range. The heat map was compared
to the regression vector to analyse the presence or absence of re-
sistance-specific spectral signatures. As shown in Fig. 3D, peaks
such as 757 cm−1, 885 cm−1, 935 cm−1, 981 cm−1, 1095 cm−1,
1124 cm−1, and 1131 cm−1 were prevalent in resistant strains
(indicated by bright yellow color). Among these spectral features,
the features around 757 cm−1 and 1131 cm−1 were prominent for
colistin-resistant groups but were found to be minimal for the
sensitive group. These peaks were also present in the regression
vector, suggesting their direct involvement in accurately identify-
ing antibiotic concentrations. The findings suggest that the corre-
lation between the intensity of these bands and antibiotic con-
centrations is not spurious but is due to the spectral peaks
related to phosphoethanolamine modification in lipid A for colis-
tin resistant strains.

Localizing the origin of spectral signals

The origin of the spectral signals was validated through hyper-
spectral imaging of a single colistin-resistant bacterium. The
superimposed Raman and optical image is shown in Fig. S6.†
Fig. 4A shows the white light optical image of the scanned
area with multiple bacteria. The Raman image was constructed
after noise removal and putting an intensity filter at the C–H
signal (2954 cm−1) for visualization and marking the map
boundaries to verify the presence of the hidden biomolecular
signals, Fig. 4B. The K-means clustering (K = 3) was performed
on the scanned data to mine the biomolecular spectral com-
ponents. This algorithm performs the calculation for each
cluster using a centroid and averages the points within that
cluster. This process recalculates the centroids until the cen-
troids stop changing further, resulting in final clusters.38

The centroid spectral data extracted from each cluster were
evaluated for further understanding of the origin of spectral
signatures , Fig. 4D. In cluster 1 (green), it was observed that

the spectral wavenumber related to protein 1004 cm−1 and
1455 cm−1 (C–C skeletal stretching of the aromatic ring and
CH2/CH3 protein deformation) were found to be strong,
suggesting that cluster 1 primarily represents the cytoplasmic
region of the cells. However, in cluster 2, it was observed that
there was a drastic reduction of peaks at 1004 cm−1 and
1455 cm−1 (shown by an orange dotted line) and any other
protein-associated signals. In contrast to cluster 1 (green),
cluster 2 (red) had highly intense lipid bands at 1440 cm−1

and 1298 cm−1 (CH2 deformation from lipids and acyl chains)
(shown by a blue dotted line), confirming that cluster 2 is a
combination of mostly from the outer region of the bacterial
cells, which is dominated by lipid bilayer along with some
membrane proteins and glycoproteins.35,37

After careful observation of the spectral components of
clusters 1 and 2, it was confirmed that they correspond to the
cytoplasmic and cell boundary regions of the bacterium.
Further, the location for the peak of interest, 757 cm−1, was
evaluated. It was found that a highly intensified signal at
757 cm−1 was present in cluster 2 (marked in blue) and a negli-
gible signal in cluster 1 (marked in orange), indicating that
phosphoethanolamine is localized in the cell boundary region
(cluster 2) of the bacterial cells, Fig. 4D. Cluster 3 (black) has
spectral data from the background/substrate, as shown in sup-
plementary (Fig. S3†). Other prominent spectral peaks from
cluster 1 (cytoplasm) were at 785, 1094, 1250, and 1320 cm−1

from DNA/RNA molecules. In contrast, in the spectra from
cluster 2 (bacterial envelope), major peaks were observed at
1078, 1100, 1130, 1168, and 1298 cm−1, originating from the
phospholipids and acyl chains of lipid A.32 We also recorded
the Raman spectrum from commercially available purified
phosphoethanolamine. As shown in the supplementary
(Fig. S4†), a prominent band at 757 cm−1 was observed. These
findings further confirmed that the unique spectral features
associated with lipid A modifications were primarily localized
in the outer membrane of the colistin-resistant bacteria that
could be successfully identified using Raman imaging.

Optical spectroscopic approaches, specifically Raman-based
methods, have demonstrated significant potential as adjunct
tools for different kinds of microbiology applications. As colis-
tin resistance is associated with specific chemical changes in
the outer membrane of the bacterium, we aimed to identify
specific markers associated with these modifications. The
results indicate that Raman spectroscopy can specifically
detect spectral changes associated with phosphoethanolamine
appendage in lipid A for colistin-resistant strains.

Hyperspectral imaging revealed that the spectral features
specific to colistin resistance originated from the outer mem-
brane of the bacterial cells. At higher antibiotic concentrations,
the prediction accuracy of the regression models was found to be
very good (R2 = 0.92). However, the colistin resistance mechanism
also involves the overexpression of polysaccharides and charge-
based alteration in lipid A via 4-amino-L-arabinose (L-Ara4N) and
galactosamine.36 Theproposed approach using Raman spec-
troscopy opens the possibility to explore these resistance mecha-
nisms in future studies. The overall findings suggest the prospec-

Table 1 Performance evaluation of the PLS-regression model via a
independent test data set

PLS-R MSE RMSE MAE R2

All concentrations 1.35 1.16 0.97 0.89
Without 1.2 µg mL−1 0.81 0.86 0.80 0.92
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tive adaptation of this combinatorial approach of Raman spec-
troscopy and machine learning to monitor the specific markers
associated with colistin resistance.

Experimental
Microbial strains

The laboratory-grown colistin-resistant strains of E. coli were
created by mobile colistin resistance (mcr-1) gene transform-
ation. This was followed by treating the transformed strains
with serially higher concentrations of colistin till a stable clone
was obtained. The minimum inhibitory concentration (MIC) of
1.9 µg mL−1 determined by the broth microdilution method
for the wild-type E. coli Fig. S1†. Raman spectra were collected
from concentrations below, intermediate and above the MIC
value to monitor the spectral variations associated with colis-
tin resistance. A single colony of colistin-resistant and sensitive
strains was inoculated in an LB-broth culture medium with
appropriate antibiotic concentrations of 1.2, 3.9, 5, 6.5, and
7.8 µg mL−1.15 The same procedure was followed to generate
colistin-resistant A. baumannii strains. An equal number of
cells (determined by OD600 value) in the same growth phase
were collected for all spectral measurements.

Lipopolysaccharide (LPS) extraction and MALDI-TOF-MS
analysis of lipid A

E. coli colistin-sensitive and resistant strains were initially
plated on the agar medium and incubated for 18 h at 37 °C. A
single colony was picked from the sensitive and resistant

strains and inoculated in 100 ml of LB-broth overnight with
and without antibiotics, respectively. At the OD600 of 0.6, the
bacterial cells were pelleted by centrifugation at 5000 rpm for
10 minutes, and the supernatant was discarded. Cell pellets
were washed with cold PBS (pH 7.2), and then the weight of
the cells was measured. LPS was extracted from E. coli colistin
sensitive (wild type) and resistant (mcr-1 positive) strains using
an LPS extraction kit (MAK339) purchased from Sigma Aldrich.
Briefly, the extraction process consisted of treatment with lysis
buffer (100 µl lysis buffer for 10 mg of cells pellet), followed by
sonication for complete lysis of the cells at 20 seconds (3×) in
continuous pulse at 10 watts followed by 10 min incubation on
ice. Then, the samples were centrifuged at 5000 rpm for 10 min
at 4 °C. The lysate was collected in a new tube, and 5 µl of pro-
teinase K (1 µl proteinase K for 20 mg of cell mass) was added to
each tube and incubated at 60 °C for 1 h. This was followed by
centrifugation (5000 rpm, 10 min at 4 °C) and then transferring
the supernatant (total LPS) to a new 1.5 mL micro-centrifuge
tube. This extracted total LPS was subjected to hydrolysis with
10 µl of 1% acetic acid, followed by heating the samples at
100 °C for 1 hour to obtain lipid A. Finally, lipid A extraction was
done using chloroform, methanol, and water in a 3 : 2 : 0.25 ratio.
The samples were centrifuged, and the chloroform layer (bottom)
containing lipid A was collected.16 Lipid A was concentrated
using a vacuum concentrator until completely dry. Finally, the
lipid A samples were dissolved in chloroform, mixed with the
2,5-dihydroxybenzoic acid (DHB) matrix and were analysed using
a RapifleX Matrix assisted laser desorption ionization (MALDI)-
time of flight (TOF)-mass spectrometry (MS) instrument (Bruker
Daltonics, Germany). The spectra were obtained in the reflectron

Fig. 4 Localization of resistant specific spectral signatures: (A) White light image of the bacterial cells. (B) Visualization and understanding of the
overall bacterial map using the signal at 2954 cm−1. (C) K-means clustering analysis (cluster 1 green and cluster 2 red). (D) The centroid spectra
extracted from cluster 1 (green) and cluster 2 (red); the presence of spectral features is shown with blue dotted lines, and orange dotted lines rep-
resent reduced signals.
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positive ion mode. The analyses were performed at the mass
spectrometry facility, Division of Biological Sciences, IISc,
Bangalore, India.

Raman spectra acquisition and pre-processing

To prepare the samples for Raman spectra acquisition, the
resistant strains were inoculated in the presence of appropriate
colistin concentration, and the sensitive strains were inoculated
without antibiotics and incubated at 37 °C until O.D600 reached
0.6–0.8. The cells were pelleted via centrifugation at 10 000 rpm
for 3 min, followed by washing with chilled PBS to remove traces
of culture media. The experiments were repeated four times
under the same experimental conditions. The washed microbial
pellets were transferred to a sterilized CaF2 window, and spectra
were obtained using the WITec alpha300 Raman microscope.
The system is equipped with a 532 nm laser, grating 600 gr
mm−1, cooled charged coupled device, and a 100× objective with
0.8 numerical aperture. The spectra were acquired at a power of
10 mW with an exposure time of 5 s and averaged over 3 accumu-
lations. The Raman spectra were imported to MATLAB software
for data analysis in the fingerprint region 600–1800 cm−1. The
background contributions from the substrate and culture media
were removed. Data from each group were pre-processed by
removing cosmic spikes, polynomial fitting for baseline correc-
tion, and unit normalization.

Data analysis

After pre-processing, the spectra were divided into three
groups: sensitive, combining colistin-treated isolates with a
low concentration (1.2, 3.9 µg mL−1) and high concentration
(6.5, 7.8 µg mL−1). To visualize the spectral differences, the mean

spectra were calculated by averaging the variables on the Y-axis,
keeping the same X-axis (wavenumber). Then, PLS-DA was utilized
to reduce the dimensions of the data by extracting the latent vari-
ables to obtain the maximum variations in the spectra.36 The first
step of PLS-DA modeling was the construction of PLS components
for dimensionality reduction. As a result of this algorithm, the
original data were rearranged to a low-dimensional subspace as
scores (PLS-DA score) with the highest covariance with class
labels. The regression coefficient evaluates the performance of the
PLS-DA model. The positive coefficient indicates a strong influ-
ence of the corresponding variables on the discrimination
between the classes. Then, the relationship between the Raman
spectra collected from different groups, sensitive, colistin-treated
resistant strains 1.2, 3.9, 6.5, and 7.8 µg mL−1, was established
using a partial least squares regression (PLS-R) model. The model
performance was validated based on regression coefficients,
mean squared error (MSE), root-mean-square error (RMSE), and
R2 score for the independent test data. These parameters provide
insights into the accuracy, precision, and goodness of fit of
regression models. The data analysis was performed using Python
(scikit-learn package). Each group had a series of recorded spectra
collected on four independent experimental replicates, consider-
ing possible variations while keeping the same instrumental and
Raman configuration parameters. The entire analysis pipeline
employed in this study is shown in Fig. 5.

Single-cell hyperspectral imaging for localization of the
phosphoethanolamine signal

Microbial cells were spread on a CaF2 window to obtain a
single cell, and imaging was performed using the previously
mentioned WITec alpha 300 microscope equipped with Zeiss

Fig. 5 Illustration of the generalized pipeline employed in this study.
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epiplan 100× objective (NA 0.8, WD 1.3 mm). The average laser
excitation power was 10 mW with an exposure time of 2 seconds.
The total scan area was 25 × 25 µm (width × height), consisting
of 100 points per line and 100 lines per image, with a step size of
0.25 µm. Routine pre-processing steps, such as cosmic removal
and Savitzky–Golay smoothing, were performed on the Raman
images. The image outline was confirmed using a filter on the
2954 cm−1 signal. This was followed by K-means cluster analysis
(CA) to partition the data into the nearest centroids-based dis-
tance matrix. The Euclidean distance clustering algorithm was
used to create the final clusters.

Conclusions

In this exploratory study, label-free identification of lipid A
modification associated with colistin resistance was demon-
strated. Prospective adaptation of the proposed approach can
provide an adjunct tool for identifying antibiotic resistance in
a short and clinically implementable time.
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