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Surface-enhanced Raman spectroscopy (SERS) holds remarkable potential for the rapid and portable

detection of trace molecules. However, the analysis and comparison of SERS spectra are challenging due

to the diverse range of instruments used for data acquisition. In this paper, a spectra instrument trans-

formation framework based on the penalized functional regression model (SpectraFRM) is introduced for

cross-instrument mapping with subsequent machine learning classification to compare transformed

spectra with standard spectra. In particular, the nonparametric forms of the functional response, predic-

tors, and coefficients employed in SepctraFRM allow for efficient modeling of the nonlinear relationship

between target spectra and standard spectra. In the leave-one-out training and test of 20 analytes across

four instruments, the results demonstrate that SpectraFRM can provide interpretable corrections to peaks

and baseline spectra, leading to approximately 11% error reduction, compared with original spectra. With

an additional feature extraction step, the transformed spectra outperform the original spectra by 10% in

analytes identification tasks. Overall, the proposed method is shown to be flexible, robust, accurate, and

interpretable despite varieties of analytes and instruments, making it a potentially powerful tool for the

standardization of SERS spectra from various instruments.

Introduction

Surface-Enhanced Raman Spectroscopy (SERS) has emerged as
a powerful tool for sensing and imaging, offering exceptional
sensitivity for the detection of molecules at low concen-
trations.1 The enhancement is achieved through the inter-
action of molecules with nanostructured metal surfaces, pro-
viding exquisite sensitivity, and allowing the detection of trace
amounts of substances.2–7 The field of SERS has witnessed sig-
nificant advancements since the 1990s, facilitating various
applications such as biomedical diagnostics, environmental
monitoring, security & defense, drug analysis, and many
others.8–12 However, the diversity in instrumentation and sub-
strates used for measuring SERS spectra across different lab-
oratories poses substantial challenges in spectral comparison

and analysis. Instruments vary in their response functions, res-
olutions, and step sizes, introducing discrepancies in acquired
spectra. On the other hand, SERS spectra measured by similar
instruments across different locations vary which highlights
the need for proper benchmarking.13,14 These variations
hinder the establishment of a standardized spectral database
and complicate the comparison of SERS data obtained from
different sources. Addressing these challenges is crucial for
achieving consistent and reliable SERS measurements. In
addition, the integration of machine learning techniques into
SERS spectra analysis introduces a novel dimension to the
field,15–17 but it raises critical challenges in cross-instrument
applicability. As researchers increasingly leverage machine
learning algorithms for classification and quantification, the
challenge emerges in adapting SERS spectra databases
obtained from one instrument for use with other instruments.
This requires careful consideration of the inherent variations
between instruments to ensure accurate and transferable
machine learning models.

So far, there are a few reports on instrument spectral
mapping, and in general, two different strategies have been
employed. One strategy focuses on Raman spectra transform-
ation via spectral standardization across different instruments.
Weatherall et al. performed spectral location correction and
amplitude scaling via linear regression to convert high-resolu-
tion laboratory Raman spectra to be compatible with the spec-
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tral library of a portable spectrometer.18 Rodriguez et al. pro-
posed a method that integrated established Raman shift cor-
rection and intensity normalization procedures with an
additional step for aligning spectral resolution.19 These
methods either impose potentially underfitting linear relation-
ship between wavenumbers and the shift in location and
amplitude, which may not be realistic under all circumstances,
or heavily rely on previously established Raman shift provided
by spectrometers vendors. The other strategy of instrument
spectral mapping is based on the classification of SERS
spectra from one instrument aided by knowledge learned from
the spectra of another. Mishra et al. introduced deep cali-
bration that transferred a deep learning model made on one
instrument to a new instrument.20 Ju et al. reported a machine
learning-based method capable of identifying chemicals by
calculating characteristic peak similarity that measured the
similarity between characteristics peaks of SERS spectra and
standard Raman spectra.21 Nevertheless, none of these papers
provide spectra transformation, which makes the models
difficult to interpret.

Nevertheless, the aforementioned works reflect the current
challenges associated with instrument-dependent variations in
SERS spectra and the need for standardized approaches for
cross-instrument identification. Standardizing measurement
protocols and creating a universal spectral database would
enhance the comparability of SERS data, yet the ability to map
SERS spectra from one instrument to another can take advan-
tage of a known spectral library, significantly saving time and
effort. Opportunities lie in the development of robust cross-
instrument standards, optimization of instrumentation para-
meters, and the integration of machine learning algorithms
tailored to accommodate instrument-specific variations.

In this paper, we leverage the power of penalized functional
regression22,23 to develop a novel framework, Spectra instru-
ment transformation via Functional Regression Model
(SpectraFRM), for cross-instrument mapping. SpectraFRM
enables robust and flexible spectra transformation that
accounts for the complicated nonlinear relationship between
spectra from a standard instrument and a target instrument.24

Functional regression is designed to conduct regression ana-
lysis between continuous curves (functional data) where
response, predictors, and coefficients are all represented by
functions.22 Moreover, the forms of functional coefficients that
depend on the choice of basis functions are flexible, allowing
functional regression to model the nonlinear transformation
between functional response and functional independent vari-
ables. Furthermore, the smoothness penalty enables the regu-
larization of coefficient functions to avoid overfitting.25

SpectraFRM transforms the spectra of target instruments to
pseudo-spectra of a standard instrument via penalized func-
tional regression with subsequent curve smoothing. The
method is validated by comparing pseudo-spectra with stan-
dard spectra via machine learning classification models. It is
shown that this transformation procedure can make correc-
tions in shifts of peak magnitude and locations in baseline
and fingerprint spectrum between two different instruments
which lead to about 11% decrease in MAE, compared with
original spectra. After applying the smoothening technique
and feature extraction on transformed spectra, compared with
the original spectra, around a 10% increase in classification
accuracy of analytes is achieved.

Experimental methods
SERS spectra collection

Silver nanorod (AgNR) arrays were prepared by the oblique
angle deposition, and the detailed preparation procedure can
be found in previous reports,26–29 see Section S1 in ESI.† The
SERS spectra were taken from bacterial biomarkers, endotox-
ins, and references for the SERS spectra collection. The
sources of above samples and corresponding abbreviations
can be found in Table S1 of ESI.† These samples were diluted
into 100 mg mL−1 using pure water (Sigma-Aldrich). 2 mL of
the diluted sample was dispensed onto the AgNR substrate
and air dried at 20 °C. SERS spectra were collected from 4
different Raman instruments: one laboratory-based system,
Renishaw, and three portable systems, Tec5, First Defender,
and Rapid ID (RID). The specifications of the 4 Raman systems
are outlined in Table S2 of ESI.† For the same analyte and the
same Raman instrument, 450 to 500 SERS spectra were col-
lected from multiple randomly selected locations from the
AgNR substrates. The detailed SERS measurement conditions
are listed in Table 1.

SERS preprocessing

Considering the variability in SERS spectra obtained from
different Raman instruments, SERS spectra preprocessing is
implemented. A typical preprocessing procedure includes
spectra despiking for cosmic rays and baseline correction
using airPLS.30 In addition, the SERS spectra from different
spectra wavenumber ranges and steps are cropped from 400 to
1800 cm−1 and interpreted with a 1 cm−1 step. Finally, area
normalization is applied for each spectrum for further
analysis.

Table 1 Measurement conditions for SERS spectra from different instruments

Raman instrument Laser wavelength (nm) Laser power (mW) Beam diameter (µm) Acquisition time (s) Lens Spectral step (cm−1)

Renishaw 785 9.0 75 × 25 µm2 10 5× Ununiform interval
Tec5 785 32.3 100 2 Default 1
First defender 785 15.2 100 5 Default Ununiform interval
Rapid ID (RID) 785 9.1 100 3 Default Ununiform interval
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Functional regression method (FRM)

In order to map and compare the SERS spectra from two
different instruments, a functional regression model plus sub-
sequent machine learning classification is proposed. The
entire procedure is shown in Fig. 1. The process begins by
selecting a set of training spectra from both a standard instru-
ment and a target instrument, measured on the same analytes
with known label information (total analytes: N). This dataset
is used to fit a functional regression model that maps spectra
from the target instrument to the standard instrument (Step
1). Using this model, test spectra of unknown analytes from
the target instrument (target testing spectra) are transformed
into pseudo-spectra as if measured by the standard instrument
(Step 2). Classification models, trained on normalized and
feature-extracted standard spectra (Step 3) as shown in Fig. 1,
are then used to compare the feature-extracted pseudo-spectra
from the target instrument against the standard instrument’s
spectral database to identify the analytes (Step 4). Notably,
label information for the test target spectra is only required for
comparing classification results in Step 4, not during spectra
transformation in Step 2.

In each cross-validation iteration, Steps 1 and 2 are repeated
to fit the functional regression model and generate pseudo-
spectra based on the current training and testing target
spectra. Since the standard spectra are always available, Step 3
(classification model training) remains unchanged regardless
of the training/testing split of the target spectra. Conceptually,
if the transformed spectra more closely resemble the standard
spectra than the original spectra do, the classification models
should achieve higher accuracy on the transformed spectra.
Therefore, in Step 4, the transformed spectra from each cross-
validation iteration are evaluated against the standard spectra
using the classification models from Step 3 to identify the
analyte type.

The above process is based on the general SERS measure-
ment principle. The SERS spectrum of any analyte from a par-
ticular instrument j can be written as31

IjSERS Δvð Þ ¼ βjin Δvð Þ IA Δvð Þ þ IM Δvð Þ þ IBS Δvð Þ½ �
þ Ijnoise Δvð Þ

ð1Þ

where βin(Δv) is the instrument response function, encompass-
ing the quantum efficiency of the detector and the spectral
response of each optical component in the instrument. IA(Δv)
and IM(Δv) denote the SERS intensity originating from analyte
and background molecules (including medium, solvent, etc.),
and both spectra change significantly with Δv, giving the fin-
gerprint characteristics of the overall spectrum. IBS(Δv)
accounts for the baseline of the spectrum, such as fluo-
rescence signals from the analyte, or any non-Raman contri-
butions from the SERS substrates, which can be treated as a
constant plus a slow-varying function of Δv. Ijnoise(Δv) is the
electronic noise inherent to the Raman instrument, indepen-
dent of the instrument’s optical response. It is expected that
for different instruments, IA(Δv), IM(Δv), and IBS(Δv) shall be
inherent and independent of the instrument, while both
βjin(Δv) and Ijnoise(Δv) are instrument-dependent, and are the
two most important factors we need to consider when
mapping spectra from one instrument to another. However,
βjin(Δv) and Ijnoise(Δv) are difficult to estimate since IA(Δv),
IM(Δv), and IBS(Δv) are typically unknown.

In this study, we propose remove the instrument effects via
functional regression. Instead of directly estimating βjin(Δv)
and Ijnoise(Δv) for a specific instrument j, we focus on estimat-
ing the difference of electronic noise between two instruments
and ratio of two instruments’ response functions. Let’s con-
sider the SERS spectra measured by Renishaw to be the stan-
dard. We aim to map the SERS spectra from other target
instruments, i.e., RID, First Defender, and Tec5, to the spectra
of Renishaw, and then carry out spectral/analyte identification.
Let IRSi (Δv) represents the average SERS spectrum of analyte i
measured by Renishaw, and Iji(Δv) is the average SERS spec-
trum of analyte i measured by a target instrument j, with j ∈
{RID, First Defender, Tec5}. Let βj1(Δv) = IRSnoise(Δv) − Ijnoise
(Δv)βRSin (Δv)/β

j
in(Δv) and βj2(Δv) = βRSin (Δv)/β

j
in(Δv) which rep-

resent the difference between adjusted instrument-dependent
electronic noise and ratio between standard and target instru-
ments response functions respectively, based on eqn (1), we
propose the functional regression model

IRSi ðΔvÞ ¼ βj1ðΔvÞ þ βj2ðΔvÞIjiðΔvÞ þ eiðΔvÞ; for i ¼ 1; 2;…;N

ð2Þ

where ei(Δv) is a mean-zero uncorrelated random spectrum,
which is assumed to have a constant variance σ2i . In this way,
instead of estimating βjin(Δv) and Ijnoise(Δv), we can directly esti-
mate βj1(Δv) and βj2(Δv) via least squares estimation.
Furthermore, in the results section, we show that these two
parameters together account for shifts in peak magnitude and
locations in baseline and fingerprint spectrum between two

Fig. 1 Workflow of spectra transformation and classification procedure.
Step 1: functional regression training. Step 2: pseudo-spectra transform-
ation. Step 3: classification models training in a standard spectral data-
base. Step 4: comparison between standard and transformed spectra.
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different instruments. The functional variables, βj1(Δv), β
j
2(Δv),

IRenishawi (Δv) and Iji(Δv), were either represented by weighted
summations of B-spline functions32 or constant functions.
Specifically, for constant basis functions, a weighted sum of
piecewise step functions represents the functional variable. If
B-spline basis functions are utilized, a functional variable is a
linear combination of a set of piecewise polynomial functions
whose order and number of polynomials in the set control the
smoothness of the fitted function. Please refer to Section 7 in
ESI† for detailed expressions of functional variables rep-
resented by B-spline functions. For simplicity, the number and
order of B-spline basis functions were chosen to be 400 and 4,
respectively, for all functional variables represented by the
B-spline basis of all three target instruments. As a large
number of basis functions or a high polynomial order may
lead to an overfitting of functional data, the number and order
of basis functions were intentionally set to be moderate. For
j = {RID, First Defender}, all functional variables IRSi (Δv),

βj1(Δv), β
j
2(Δv) and Iji(Δv) are represented by a B-spline basis.

For j = Tec5, βj1(Δv) and βj2(Δv) are represented by constant

basis functions while IRSi (Δv) and Iji(Δv) are still made up by

B-spline functions. After obtaining B-spline estimates Î
RS
i Δvð Þ

and Î
j
i Δvð Þ, one can estimate βj1(Δv) and βj2(Δv) by minimiz-

ation of the following penalized least-square functional33

arg min
βj1 Δvð Þ; βj2 Δvð Þ

X
i[T

ð
Î
RS
i Δvð Þ � βj1 Δvð Þ � βj2 Δvð ÞÎ ji Δvð Þ

h i2
dΔv

þ λ

ð
L βj2 Δvð Þ
� �h i2

dΔvI j=Tec5f g

ð3Þ

Here T denotes the set of analytes selected for functional
regression fitting and |T| = N; L(βj2(Δv)) is the smoothness
penalty applied to βj2(Δv) to avoid overfitting, and the hyper-
parameter λ is chosen via grid search. Due to the high simi-
larity between the spectra of Tec5 and standard spectra, con-
stant basis functions without any smoothing penalty were
chosen to represent βj1(Δv) and βj2(Δv). In the above estimation,
N = 19 (other N situations were also studied, see Tables S3–S5
of ESI†), and only left spectra from one analyte for testing (this
is called leave-one-out training and testing). Such leave-one-
out training and testing were repeated 20 times in order to
obtain the average βj1(Δv) and βj2(Δv) and corresponding
variations.

Once both βj1(Δv) and βj2(Δv) are estimated, they will be
used to transform any spectrum Iji(Δv) of analyte i measured
by an instrument j to a pseudo-spectrum ĨRSi (Δv) for Renishaw,

ĨRSi Δvð Þ ¼ β̂
j
1 Δvð Þ þ β̂

j
2 Δvð ÞIji Δvð Þ: ð4Þ

After transformation, many ĨRSi (Δv) were still found to be
noisy and thus were further smoothened by fitting a cubic
smoothing spline. After normalization, ĨRSi (Δv) can be directly
compared to IRSi (Δv).

Machine learning (ML) models for validation

One way to validate SpectraFRM is to classify the pseudo-
spectra using the classification models trained with a standard
spectral database in Renishaw. If SpectraFRM correctly maps
spectra from a target instrument to the standard instrument,
the classification models trained by the standard spectral data-
base can easily predict the label of the pseudo-spectra. Here,
we employed both convolutional neural network (CNN)34 and
support vector machine (SVM).35,36 The CNN model architec-
ture used for all three instruments is illustrated in Fig. 2 and
includes the following components: an input layer, a residual
block with four 1-D convolutional layers, four additional 1-D
convolutional layers, a flatten layer, and a fully connected
layer. To allow a single CNN model, trained on the standard
instrument (Renishaw), to be applied across all three target
instruments, the CNN model structure is kept uniform.
Specifically, each convolutional layer in the residual block has
a kernel size of 3 and a filter size of 64, with a Rectified Linear
Unit (ReLU) activation function. The first convolutional layer
following the residual block has a kernel size of 7 and a filter
size of 64, while subsequent convolutional layers have a kernel
size of 3 and a filter size of 64. Additionally, each convolutional
layer after the residual block is followed by a batch normaliza-
tion layer. The fully connected layer contains 100 nodes, fol-
lowed by a dropout layer with a rate of 0.5.

As for the SVM model, a radial basis function (RBF) kernel
was chosen. The cost parameter was selected via a 10-fold
cross-validation to optimize the classification performance,
while the gamma parameter was set as default, which is the
reciprocal of the length of the input spectra.

Feature extraction and training of ML models

To shorten the processing time, capture the main spectra sig-
natures, and build a more reliable algorithm, before proces-
sing the spectral data with ML, we first extracted the spectral
features Δvf from the experimental spectra. In SERS spectra,
only the peak locations represent the fingerprint information
of the target analyte. Therefore, for limited analytes, we only
need the intensity information from the characteristic peaks

Fig. 2 The CNN architecture with one residual block.

Analyst Paper

This journal is © The Royal Society of Chemistry 2025 Analyst, 2025, 150, 460–469 | 463

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
D

ec
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 2

/5
/2

02
6 

2:
57

:0
3 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4an01177e


presented in the spectra. The following procedure was used to
determine the threshold values to select the characteristic
wavenumber features: based on the statistics, the mean of the
average normalized Renishaw spectra of 20 analytes equals to
0.2, and the corresponding standard deviation is also 0.2.
Therefore, the threshold value is determined as 0.4, i.e., the
mean of the average normal spectrum plus 1 standard devi-
ation. An intensity that is above the threshold value will be
detected as a peak if it is preceded by three ascending intensi-
ties and followed by three descending intensities.37 Fig. 3a–c
shows selected peaks on the normalized spectra of LTA, E. coli,
and P. aeruginosa, respectively. For spectra of LTA shown in
Fig. 3a, only the peaks at Δvf = 1335 and 1611 cm−1 are larger
than the threshold value (≈0.4). Therefore, these two peak
locations are characterized as Δvf. For E. coli (Fig. 3b), four
peaks at Δv = 1238, 1359, 1470, and 1611 cm−1 are identified
as Δvf; and for P. aeruginosa (Fig. 3c), Δvf = 418, 548, 1357,
1606, and 1621 cm−1. Fig. S5† summarizes all the featured
peaks from the SERS spectra of 20 analytes measured by
Renishaw. After going through all 20 spectra, a total of 77
feature peaks/wavenumbers are identified. A featured spec-
trum based on the 77 featured wavenumbers can be obtained
by extracting the corresponding spectral intensities on a nor-
malized spectrum, as shown in Fig. 3d for the average
β-carotene spectrum. These featured-extracted spectra are fed
into the classification model (Fig. 1 Step 2 and Step 3).

ML models were then trained on featured extracted normal-
ized spectra from the standard instrument. Due to variations
in sample sizes among analytes, models trained with all the
spectra of each analyte may find it more difficult to classify
analytes with smaller sample sizes compared to those with
larger samples. Thus, to avoid using an imbalanced training
dataset, 144 spectra from the Renishaw instrument were ran-
domly selected for each analyte, matching the number of the
least represented analyte in the dataset. This approach yielded
a training set comprising 20 distinct classes, each with 144

feature-extracted spectra of length 77, and a total of 2880
spectra. The CNN and SVM models were then trained with this
pre-processed spectral training set.

For the CNN models, an exponential decay learning rate
schedule was adopted, starting with an initial rate of 0.005,
and including a decay factor of 0.96 applied every 1500 train-
ing steps. The Adamax optimizer38 was chosen for its adaptive
learning rate properties. Training employed the sparse categ-
orical cross-entropy loss function, which is suitable for multi-
class classification tasks. The training strategy involved strate-
gically adjusting the learning rate to guide optimization while
utilizing an adaptive optimizer and an appropriate categorical
loss function, ultimately contributing to the model’s conver-
gence and performance in classification tasks.

Results and discussion
Spectral comparison for different instruments

By comparing the spectra of the same analytes measured by
four instruments, we observe that while there is a relatively
consistent global pattern among spectra of the same analyte
measured by different instruments, variations in the locations
and magnitudes of peaks are commonly observed in local
regions. In moderate cases, a few peaks significantly differ
among measurements by various instruments. The variations
of SERS spectra can be attributed to two main factors. First,
different instruments may vary in their setup, including the
gratings, detectors, and optical components they use, all of
which influence the quality and characteristics of the collected
spectral data. Variations in grating types (e.g., groove density)
impact spectral dispersion and intensity, with higher-density
gratings typically enhancing spectral resolution. This increased
resolution allows for better separation of closely spaced
Raman peaks, which may be less distinguishable in instru-
ments with lower resolution. Detectors, such as CCDs, also
vary in sensitivity, affecting how efficiently signals are captured
and the associated noise levels. High-quantum-efficiency
detectors are more effective at specific wavelengths, enhancing
detection at those points. Additionally, differences in lenses,
mirrors, and optical path designs impact the efficiency of scat-
tered light collection, where misalignments can lead to signal
loss and distortions in spectral profiles. Second, the measure-
ment conditions may vary for different instruments. Variations
in laser power, for instance, can alter the intensity of the
Raman signal and slightly affect the spectral shape. Similarly,
differences in laser spot size and focus impact the number of
molecules excited, which in turn influences signal strength
and can potentially modify the spectral profile. Choices in
data acquisition, such as integration time, also impact signal
quality. While longer integration times boost signal intensity,
they can also amplify noise, affecting the final spectra. For
instance, the E. coli O128B12 spectra of all four instruments
shown in Fig. 4a present multiple peaks between Δv =
400–1800 cm−1, and the overall spectral patterns for all instru-
ments are quite similar. Yet some detailed patterns of these

Fig. 3 (a)–(d). The feature peak location extraction from Renishaw
spectra of (a) LTA, (b) E. coli, and (c) P. aeruginosa, and (d) union of
selected peaks on spectra of β-carotene. The dashed lines in (a)–(c) indi-
cate the threshold value and red dots represent Δvf locations.
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peaks vary: the First Defender and Tec5 each show only one
peak around the Δv = 1600 cm−1, whereas the other two instru-
ments display two, resulting in a total mismatch of peak
locations and magnitude (indicated with dashed lines). In
more severe cases, many peaks of the same analyte display
notable deviations in both location and magnitude when
measured by four different instruments. For instance, take the
Δv ≈ 1400 cm−1 peak of the analyte M. catarrhalis shown in
Fig. 4b as an example. This peak is presented in all the
spectra; however, the normalized intensity of the peak
measured by the RID, Tec5, and First Defender is much
smaller than that of the peaks recorded by Renishaw.
Furthermore, this peak of Tec5 and First Defender appears at a
slightly lower wavenumber, thereby indicating a disparity in
the position of the spectral peaks. Many other peaks also show
both the amplitude change and the shifts of the peak wave-
numbers, as shown in Fig. 4b when measured by different
instruments.

Coefficient functions and transformed spectra

In general, according to eqn (2), the coefficient function β1(Δv)
moves the spectral intensity up or down based on whether its
value is positive or negative, so it affects the amplitude and
baseline of the transformed spectrum; and β2(Δv) is the slope
of a linear correction, it mainly changes the spectral peak
location, as well as the amplitude. β2(Δv) can move the spectral
data points to larger or smaller Δv when it has a positive or
negative value. The average estimated coefficient functions
β̂1 Δvð Þ, β̂2 Δvð Þ and associated error bars from various target
instruments (RID, Tec5 and First Defender) to the standard
instrument (Renishaw) are shown in Fig. 5 based on 20 replica-
tions of leave-one-out training and testing. Both β̂1 Δvð Þ and
β̂2 Δvð Þ contribute to the global and local transformation of
spectra. For example, we can observe that most β̂1 Δvð Þ values
are above 0, while most β̂2 Δvð Þ are below 1, which indicates

that the effects of β̂1 Δvð Þ and β̂2 Δvð Þ on spectral mean may
cancel out so that the transformation does not affect the
global spectral mean. In local regions, the amplitude of a peak
is reduced if β̂1 Δvð Þ and β̂2 Δvð Þ are smaller than 0 and 1,
respectively, or one of the values is significantly small. A
peak’s location is likely to be shifted if the nearby peaks of
β̂1 Δvð Þ and β̂2 Δvð Þ mismatch near the corresponding peak of
the original spectra. Overall, we can observe from Fig. 5 that
the spectra of First Defender and Tec5 received comparable
levels of corrections in peak amplitude and locations, as evi-
denced by the similarity in their respective β̂1 Δvð Þ and β̂2 Δvð Þ.
The narrow error bars of β̂1 Δvð Þ and β̂2 Δvð Þ of the three instru-
ments further demonstrate the robustness of SpectraFRM.

Fig. 6 illustrates the efficiency of SpectraFRM with the com-
parison of the transformed spectra Ĩ0i (Δv) of E. coli O128B12
and M. Catarrhalis for the three target instruments and the
standard spectra I0i (Δv) for Renishaw. The spectra before trans-
formation (original average) Iji(Δv) are also plotted to see the
differences. After transformation, the average mean absolute
error (MAE) of the transformed spectra from three instruments
against standard spectra for E. coli O128B12 and M. Catarrhalis
dropped 18% compared with original spectra. One can observe
from Fig. 6 that the overall trend of the original spectra was
mostly kept in transformed spectra, while some local peaks
were modified to align with Renishaw’s spectra. Specifically,
for Tec5, the peaks of E. coli O128B12 and M. catarrhalis
around Δv ≈ 1000 cm−1 (marked with dashed lines) were
reduced to match the intensity of Renishaw spectra. The afore-
mentioned corrections lead to a reduction in MAE by 22% of
transformed spectra, compared with original spectra of the
two analytes of Tec5. Similarly, the three over-shooting peaks
of First Defender around Δv ≈ 750 and 1000 cm−1 of E. coli
O128B12 and M. catarrhalis were corrected to have intensity
closer to the spectra of Renishaw. The corrections reduce the
MAE of transformed spectra of First Defender by 21% com-

Fig. 5 The stacked average β̂1 Δvð Þ and β̂2 Δvð Þ for RID, Tec5, and First
Defender. For clarity, the curves of β̂1 Δvð Þ of First Defender and RID are
stacked with offsets 0.24 and 0.52 while the curves of β̂1 Δvð Þ of First
Defender and RID are stacked with offsets 1.6 and 2.8. Thirty spectral
points of each curve are plotted. The error bars show the one standard
deviation range of β̂1 Δvð Þ and β̂2 Δvð Þ.

Fig. 4 (a) and (b). Baseline-removed, normalized, and average spectra
of (a) E. coli O128B12 and (b) M. catarrhalis measured by Renishaw
(black), RID (red), Tec5 (blue), and First Defender (green) after baseline
removal. The dashed lines indicate the representative difference among
the spectra.

Analyst Paper

This journal is © The Royal Society of Chemistry 2025 Analyst, 2025, 150, 460–469 | 465

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
D

ec
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 2

/5
/2

02
6 

2:
57

:0
3 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4an01177e


pared with original spectra of the two analytes. The trans-
formed RID’s spectra of E. coli O128B12 and M. catarrhalis,
maintain the overall trend but exhibit a smoother profile with
less noise compared to the original spectra which results in a
11% decrease in MAE. Besides corrections of peak magnitude
made by SpectraFRM, the spectra of Tec 5 and First Defender
were shifted a little bit to the right, as we can observe from
Fig. 6 that the transformed spectra (blue curve) are slightly
ahead of the original spectra. This reduces the disparity
between peak locations mentioned in the previous section
regarding Fig. 4b that the peaks of Tec5’s and First Defender’s
spectra tend to appear at smaller wavenumbers. Additionally,
Table 2 shows that in the leave-one-out tests of 20 analytes, the
transformed spectra of RID, Tec5, and First Defender reduced
the MAE by 13%, 11%, and 11%, respectively, compared to the
original spectra without any transformation. We also compare
SpectraFRM with Weatherall’s method which mainly utilizes
amplitude scaling to perform spectra transformation.
Weatherall’s method fits the ratio between spectra intensities
from two instruments as an order-3 polynomial of wavenum-
bers.18 This method can be seen as a simplified version of
SpectraFRM which not only takes the ratio of two instrument

response functions into account via βj2(Δv) but also considers
shifts of instrumental electronic noise through βj1(Δv). For a
fair comparison, we replaced SpectraFRM with Weatherall’s
method while keeping all other steps fixed. As shown in
Table 2, SpectraFRM significantly outperforms Weatherall’s
method in terms of MAE, suggesting that Weatherall’s method
may suffer from underfitting due to insufficient model com-
plexity, whereas SpectraFRM provides a more accurate fit.
Overall, we demonstrate that SpectraFRM was able to achieve
significant and interpretable corrections when mapping
spectra from one instrument to another.

Cross-instrument spectra classification

Fig. 7 compares the average testing classification accuracies of
CNN and SVM for mapping spectra of RID, Tec5, and First
Defender to those of Renishaw. The CNN and SVM models are
trained using preprocessed Renishaw spectra and tested on
original individual spectra without feature extraction (OIS),
original individual spectra with feature extraction (OISFE),
transformed individual spectra with feature extraction (TIS),
and transformed individual spectra without feature extraction
(TISNFE) in a leave-one-out training and testing scheme. The
original spectra are fed into classification models after normal-
ization, serving as the benchmark standard. Since the training
accuracies and validation accuracies of both CNN and SVM
models are all close to 1, either with original Renishaw spectra
or feature-extracted Renishaw spectra as training data, both
models are optimally tuned. As displayed in Fig. 7, the accu-
racies of CNN models on original individual spectra are
boosted from about 87% to 92% on average, compared with
transformed individual spectra across three target instru-
ments, illustrating the effectiveness of SpectraFRM. The

Fig. 6 Stacked average original spectra (blue) and transformed average
spectra (red) of RID, Tec 5, and First Defender of E. coli O128B12 and
M. catarrhalis in testing sets. Average standard spectra (Renishaw
spectra) are shown in black. The MAE is computed by averaging the
absolute error of transformed and original spectra against standard
spectra.

Fig. 7 The comparison of average classification accuracies resulted
from CNN and SVM models for spectral mapping from RID, Tec 5, and
First Defender to Renishaw based on original individual spectra without
feature extraction (OIS), individual spectra with feature extraction
(OISFE), transformed individual spectra with feature extraction (TIS) and
transformed individual spectra without feature extraction (TISNFE). The
values are averaged from 20 repetitions of leave-one-out training and
testing. The training accuracies of individual Renishaw spectra with and
without feature extraction are displayed in the last two bars.

Table 2 Comparison of MAE in leave-one-out tests

Instrument

Mean absolute error

Original
spectra

Transformed
spectra

Weatherall’s
method

RID 0.060 0.052 0.349
Tec5 0.066 0.059 0.352
First defender 0.091 0.081 0.355
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feature extraction method further increases the accuracy of
CNN models on transformed individual spectra to an average
accuracy of 98%. Specifically, for the CNN model, comparing
original and feature-extracted transformed spectra, the accu-
racy increases from 0.872 to 0.979 for RID, from 0.957 to 0.994
for Tec 5, and from 0.803 to 0.975 for First Defender. Similarly,
for the SVM model, SpectraFRM and feature extraction method
together improve the accuracy from 0.888 to 0.976 for RID,
from 0.95 to 0.988 for Tec 5, and from 0.862 to 0.954 for First
Defender. The combination of spectral transformation and
feature extraction enhances spectral distinctions, making
them more interpretable and peak distinctions more recogniz-
able. Rather than any single method dominating, it is this
synergy that drives improved classification accuracy, as trans-
formed spectra with feature extraction consistently outperform
spectra with only feature extraction or only transformation. In
addition, based on the confusion matrix of transformed
spectra of Tec5 shown in Fig. 8, one can observe that the pre-
diction results for 15 out of 20 analytes is nearly perfect, with
a score of 1 while the prediction accuracies of the rest analytes
are all above 0.94. The spectra of different analytes measured
by the same instrument can be highly different or similar. We
calculated the Pearson correlation coefficients (PCC) of the
average SERS spectra of different analytes obtained from the
same instrument as shown in Fig. S2–S4.† The PCCs vary from
0 to 0.95. The small PCC value indicates high difference
between two spectra while the near unity PCC refers to high
similarity. For instance, the spectra of LTA measured on the
Tec5 instrument have correlation coefficients greater than 0.95
with those of H. pylori GU2 and F. tularensis from the same
instrument. Despite these high similarities, the CNN model
has successfully distinguished the transformed spectra of LTA
from those of the other two analytes. This phenomenon is
observed across other pairs of similar analytes as well,
suggesting that SpectraFRM enhances the differentiability of

distinct analytes with closely similar spectra. The classification
results also demonstrate the robustness of the proposed trans-
formation procedure since, for most analytes, high accuracies
of transformed individual spectra were achieved by the CNN
model even though different analytes were tested in each iter-
ation of leave-one-out training and test. In addition, the CNN
confusion matrices of transformed individual spectra from RID
and First Defender presented in Fig. S6 and S7 of ESI† show that
for both instruments, more than 12 analytes exhibit almost
perfect prediction scores of 1 with a few analytes having small
proportions of misclassified spectra. The corresponding spectra
number of the confusion matrices are shown in Fig. S8–S10.†
Also, as presented in Tables S6–S8 of ESI,† the precision, sensi-
tivity, specificity and F1 score for CNN models of individual
transformed spectra of the three target instruments in the 20 iter-
ations of leave-one-out training and test approach 1 for most ana-
lytes. These results demonstrate the significant impact of
SpectraFRM model on machine learning model performance,
with featured extracted transformed spectra achieving consist-
ently higher classification accuracies than the original spectra for
both the CNN and SVM classifiers.

Conclusions

To make spectra from diverse instruments comparable, we pro-
posed a transformation method, i.e., SpectraFRM, based on
penalized functional regression, to transform spectra from the
target instrument to the pseudo-spectra of the standard instru-
ment. To align the spectra of the target instrument to that of
the standard instrument, both the shifts in peak magnitude
and locations of original spectra were corrected by the pro-
posed SpectraFRM. We further compared the transformed
spectra with the original spectra across three target instru-
ments using machine learning classification algorithms. In
the leave-one-out training and testing across 3 instruments,
compared with original spectra, the method achieves about
11% error reduction in the MAE between transformed spectra
and standard spectra and roughly 10% increase in the classifi-
cation accuracy for cross-instrument classification. The results
demonstrate that SpectraFRM provides consistently accurate,
flexible, robust, and interpretable transformations despite of
wide varieties of target instruments and analytes. In the bur-
geoning field of instrument spectral mapping, traditional
approaches have predominantly hinged on linear spectral stan-
dardization techniques or Raman shift correction with instru-
ment-specific domain knowledge, such as those employed by
Weatherall et al.18 and Rodriguez et al.15,39 On the other hand,
classification strategies that often transfer deep learning
models from one instrument to another, such as those pro-
posed by Mishra et al.20 and Ju et al.,21 become popular
recently. While the former approaches are feasible for their
simplicity and direct application, they often impose a simplis-
tic linear model that may fail to encapsulate the intrinsic non-
linear variances present in spectral data. This could lead to
underfitting, diminishing the model’s utility in diverse analyti-

Fig. 8 The CNN confusion matrix of transformed spectra from Tec5
over 20 repetitions of leave-one-out testing.
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cal scenarios. The classification-based strategies, despite their
innovative use of deep learning paradigms, do not facilitate a
transformation of spectra, thereby curtailing the interpretabil-
ity of the results and potentially confounding the identifi-
cation process in complex matrices.

On the other hand, SpectraFRM stands out as a robust solu-
tion by addressing these limitations through penalized func-
tional regression. As shown in the Results section, SpectraFRM
has not only achieved superior classification accuracy, which is
indispensable for downstream analytical tasks, but also
retained the interpretability of transformed spectra without
the aid of prior domain knowledge. Furthermore, SpectraFRM
can be applied to spectra from various instruments and
various analytes, as the model has no instrument-specific or
analyte-specific parameters. The ability of SpectraFRM to
provide a coherent and comprehensive transformation of spec-
tral data, respecting the nonlinear intricacies therein, marks a
significant advancement over its predecessors. It offers two
advantages: enhanced adaptability to spectral data from
various instruments and an augmented interpretability that
facilitates scientific insight. The model’s proficiency is
expected to escalate concomitantly with the richness of the
dataset it is trained on; hence, the addition of a broader spec-
trum of training data could further refine its accuracy and
robustness.
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