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veraging large languagemodels to
construct an experimental NMR database from
open-source scientific publications†

Qinggong Wang,‡ab Wei Zhang,‡bc Mingan Chen,bde Xutong Li,bc Zhaoping Xiong,f

Jiacheng Xiong,*b Zunyun Fu*d and Mingyue Zheng *abc

Nuclear magnetic resonance (NMR) spectroscopy is crucial for elucidating molecular structures, but NMR

data extraction remains largely manual and time-consuming. We developed NMRExtractor, a locally

deployable tool using a fine-tuned large language model, to address this challenge. By processing 5 734

869 open-source scientific publications, we created NMRBank, a dataset containing 225 809 entries with

compound IUPAC names, NMR conditions, 1H and 13C NMR chemical shifts, data confidence levels, and

reference information. Our analysis reveals that NMRBank's chemical space significantly surpasses

existing public NMR datasets. The extraction process is highly scalable, allowing automatic processing of

new research papers and continuous updates to NMRBank. This approach not only expands the available

open NMR data space but also provides a foundation for AI-based NMR predictions and related chemical

research. By automating data extraction and creating a comprehensive, regularly updated NMR database,

NMRExtractor and NMRBank address the scarcity of publicly available experimental NMR data, potentially

accelerating progress in various fields of chemical research.
Introduction

In the era of articial intelligence (AI)-driven scientic research,
high-quality, large-scale datasets are crucial for the success of
machine learning models.1,2 In chemistry, comprehensive
databases like PubChem3 and ChEMBL4 provide extensive
information on compound structures, properties, and biolog-
ical activities. The USPTO dataset offers valuable data on
chemical reactions. These resources have enabled researchers
to apply machine learning techniques to discover new chemical
insights, optimize reaction conditions, and accelerate drug
discovery.5,6 However, despite the abundance of data on
molecular structures and reactions, there remains a signicant
deciency in publicly available spectral data,7 which is essential
for understanding the properties of substances.8
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Nuclear magnetic resonance (NMR) spectroscopy is one of
the most powerful and widely used techniques in chemical
research for investigating molecular structures and dynamics.9

By measuring the magnetic properties of atomic nuclei, NMR
provides detailed information about the molecular environ-
ment, which is sensitive to structure and atomic interactions.10

The most direct application of NMR spectral data is in the
structural identication of unknown compounds.11 Recent
advancements, such as the BART-based Conditional Molecular
Generation Network (CMGNet) proposed by Yao et al., demon-
strate the potential for automatic structural elucidation using
13C NMR data and prior knowledge.12 Beyond compound
identication,12–15 NMR chemical shis also reect the elec-
tronic environment of atoms, revealing their electrophilic
characteristics.16 This information has been applied to chemical
reaction prediction studies, such as enhancing the performance
of graph neural networks in predicting aldehyde oxidase (AOX)
metabolic sites17 and predicting the functionalization likeli-
hood of atoms.18

Over the past two decades, several databases have been
developed to store 1H and 13C NMR spectra of molecules.19–28

Notable examples include the Human Metabolome Database
(HMDB),19 NMRShiDB2,21,22 and the Natural Products
Magnetic Resonance Database (NP-MRD).24 However, the scale
of these databases remains limited. NMRShiDB2, the largest
open NMR database, contains only 53 954 experimentally
measured spectra for about 44 909 molecules. To address the
issue of data scarcity, Jia et al. developed SRCV, a machine
© 2025 The Author(s). Published by the Royal Society of Chemistry
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View Article Online
learning-based NMR spectrum recognition system.29 However,
this system is limited by its reliance on standardized NMR
images and inability to extract associated information such as
compound structures and measurement conditions.

Recently, large language models (LLMs) like ChatGPT have
demonstrated powerful text understanding and processing
capabilities, making them promising tools for text mining in
scientic literature.30–34 For instance, Zheng et al. used prompt
engineering to guide ChatGPT in extracting information about
metal–organic framework synthesis from scientic
literature.30 W. Coley et al. ne-tuned LLMs to extract reaction
information from organic synthesis texts into structured data
conforming to the Open Reaction Database (ORD) model.33 Our
previous work showed that ne-tuned large language models
achieved excellent performance on ve chemical text extraction
tasks.34 Additionally, we found that ne-tuning open-source
LLMs like Mistral-7b-instruct-v-0.2 provides a viable alterna-
tive for text mining, offering comparable performance with
reduced computational costs and increased exibility for
private deployment.

The application of LLMs is actively being explored for data
extraction in the eld of materials science.35–46 Polak et al.
developed ChatExtract by leveraging conversational LLMs and
prompt engineering to extract structured material property
Fig. 1 Schematic diagram of the NMR data extraction process and NMRB
steps: (1) using regular expressions to identify NMR paragraphs, and (2) em
data. After eliminating entries with empty IUPAC names, we established
entries successfully converted IUPAC names to SMILES notation.

© 2025 The Author(s). Published by the Royal Society of Chemistry
data.38 MatSci-NLP demonstrated how instruction tuning
enhances LLM performance,39 while LLaMat showed that
continued pretraining on materials science literature, followed
by instruction tuning, enables superior performance in
specialized tasks compared to general-purpose LLMs.40 LLMs
are also used for large-scale data extraction, Kim et al. developed
L2M3, a system that uses a ne-tuned LLM to extract MOF data
from over 40 000 scientic articles and organize it into a struc-
tured format.41 Meanwhile, retrieval-augmented generation
(RAG) and agent-based systems have gained attention, with
HoneyComb integrating a high-quality materials science
knowledge base (MatSciKB) and a specialized toolset (ToolHub)
to signicantly enhance LLM reasoning and computational
capabilities.43 PaperQA, leveraging RAG techniques, has out-
performed other LLMs and commercial products in answering
scientic literature-related queries, even surpassing human
experts in comparative evaluations.44 MaterialsBERT success-
fully identied and processed approximately 681 000 polymer-
related articles. The data of 24 properties of over 106 000
unique polymers extracted has been made publicly available to
the scientic community via the Polymer Scholar website.46

In this study, we present NMRExtractor, a high-precision and
easily extensible NMR data extraction tool utilizing LLMs. As
illustrated in Fig. 1, NMRExtractor extracts comprehensive
ank construction using NMRExtractor. The process involves two main
ploying a fine-tuned large languagemodel for batch extraction of NMR
the NMRBank dataset, comprising 225 809 entries. Of these, 156 621

Chem. Sci., 2025, 16, 11548–11558 | 11549
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information including the IUPAC name of compounds, NMR
conditions, and 1H and 13C NMR chemical shis. Using this
tool, we have created NMRBank, a dataset containing 225 809
experimental NMR data entries. This dataset encompasses
a wide range of NMR chemical information and covers
a chemical space signicantly larger than existing open-source
NMR libraries. Crucially, NMRExtractor's ability to automati-
cally process new research papers ensures that NMRBank can
be continuously updated and expanded, addressing the
ongoing need for comprehensive and up-to-date NMR data in
chemical research.
Methods
Workow of NMR data extraction with NMRExtractor

The process of extracting NMR data using NMRExtractor and
building NMRBank is shown in Fig. 2. In the rst and second
steps, we rst access all open-access TXT documents in
PubMed. To prevent potential parsing errors caused by encod-
ing format mismatch, we rst convert them to a unied UTF-8
encoding format and then use regular expressions to obtain
all text paragraphs that mention NMR data. In the third step,
aer extracting NMR data from the NMR paragraphs using
a large languagemodel, we only retain data whose IUPAC names
are not empty, and then further lter out data whose 1H and 13C
NMR chemical shis are not empty. In the fourth and h
steps, we convert the IUPAC names of the compounds into
SMILES and normalize the successfully converted SMILES. It is
important to note that the term “IUPAC name” here is used
broadly to include not only formal IUPAC names, but also
commonly used names that can be recognized and interpreted
by cheminformatics tools. A comprehensive example of NMR
data extraction using NMRExtractor is provided in ESI and
Fig. 2 The process of extracting NMR data from original research pape
purple parallelograms represent inputs and outputs, blue rectangles repre
in the pipeline.

11550 | Chem. Sci., 2025, 16, 11548–11558
Fig. S1†, demonstrating the practical application of this
streamlined process.
Extraction of NMR paragraphs

We downloaded open-access full-text articles in txt format from
the PubMed database,47 using the latest version updated in June
2024, which contains 5 734 869 articles. All articles were rst
converted to UTF-8 encoding. In the literature containing NMR
data, the IUPAC name is usually located in the rst sentence of
the paragraph or as an independent paragraph. 1H NMR and
13C NMR data are usually presented together, and 1H NMR data
are usually located between the IUPAC name and 13C NMR data.
Therefore, in order to obtain paragraphs containing NMR data
and eliminate common writing differences such as 13C-NMR,
13CNMR, and 13C NMR, we use the regular expression
13C.{0,3}NMR for paragraph matching, means matching 13C
followed by 0 to 3 arbitrary characters and then NMR. Aer the
match is successful, we further splice the previous and next
paragraphs to ensure that the obtained NMR paragraph
contains the complete IUPAC name, 1H and 13C NMR data
(Fig. S1†).
Fine-tuning and inference of LLMs

Based on our previous research,34 we found that ne-tuning the
open-source Mistral-7b-instruct-v-0.2 model for NMR data
extraction works almost as well as ChatGPT and can be
deployed locally. We ne-tuned all parameters of Mistral-7b-
instruct-v-0.2 and Llama3-8b-instruct on a 4 × 40GB A100,
and Q-LoRA ne-tuned Llama2-13b-instruct on a 1 × 40GB
A100.48 For inference phase, we used vLLM to boost speed,49

achieving an average inference speed of 2 records per second on
a single 40GB A100. Examples of prompts used for ne-tuning
rs using NMRExtractor. Grey boxes represent starting and end points,
sent processing flows, and orange diamonds represent decision points

© 2025 The Author(s). Published by the Royal Society of Chemistry
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and inference can be found in Fig. S2†. The hyperparameters
used in this study are consistent with our previous work and
provided in Table S1†. Details on hardware resources, memory
cost, and runtime for both model ne-tuning and inference are
provided in Table S2†.

Evaluation of the performance of the LLMs

To enhance the performance of the model in extracting NMR
data frommillions of papers, we expanded our training set from
300 to 1000 samples. We added 700 NMR paragraphs from
articles published before 2023 to the original Paragraph2NMR
task dataset.34 For a more comprehensive evaluation, we created
a new test set of 1022 unique texts, by randomly selecting 1–2
paragraphs from NMR articles published in 2023. All data are
manually annotated by chemistry experts, the annotations
include the compound IUPAC name, 1H/13C NMRmeasurement
conditions and chemical shi. The 1H NMR chemical shi also
retains information such as coupling constants, and N/A is used
to ll in the non-existent content (Fig. S3†). We report results on
two test sets: (1) test set 1, derived from our previous publica-
tion, serves as a benchmark for comparison with existing
methods; (2) test set 2, newly constructed for this study,
contains more diverse chemical structures and NMR data
formats, including challenging cases not present in test set 1.
The two test sets are completely non-overlapping, enabling
a robust assessment across different data distributions and
annotation styles. This dual evaluation provides both a direct
comparison to prior work and an assessment of the model's
generalization to real-world NMR data.

We used exact match accuracy as our evaluation metric, and
we also recognized that this is a particularly strict standard.
Some failures under this metric were merely slight rephrasings
by the model that would be considered correct by human
evaluators (Fig. S4 and S5†).

Post-processing

Post-processing is essential for information extraction, partic-
ularly when dealing with inconsistent and diverse scientic
data. In the research on standardized datasets in the eld of
materials science, aer successfully extracting named entities
related to materials science, Leigh Weston et al. used
a normalization method combining rules and look-up tables to
convert synonymous entities into a standardized name.50 Pra-
nav Shetty et al. focused on the normalization of polymer
named entities and trained a supervised clustering model with
Word2Vec and fastText word vectors to classify named entities
referring to the same polymer.51 Similarly, as an optimized
multi-algorithm mapping method, ChemProps can unify poly-
mer name expressions through API calls.52

In our work, aer extracting the NMR data using NMREx-
tractor, we standardized the output by: (1) to enhance the
success rate of IUPAC-to-SMILES conversion, all non-standard
characters in the IUPAC names were standardized. (2) Con-
verting IUPAC names to SMILES using ChemDraw; (3) Using the
Open Parser for Systematic IUPAC nomenclature (OPSIN) online
service53 for IUPAC names ChemDraw couldn't convert; (4)
© 2025 The Author(s). Published by the Royal Society of Chemistry
standardizing SMILES with RDKit to ensure data consistency
and usability (Fig. S6†).54
Results
Data preparation

We analyzed 5 734 869 open access articles from the PubMed
database and identied 380 220 paragraphs mentioning NMR
passages from 58 795 articles using rule-based method. The
proportion of articles with NMR messages in the PubMed
database is relatively small (Fig. 3a). Of these 380 220 para-
graphs, approximately 260 000 paragraphs contain NMR data,
originating from 35 270 articles (Fig. 3b).

To enhance our evaluation, we expanded upon our previous
work's 300 training and 300 test data items (test set 1) by
creating a diverse test set of 1022 NMR data paragraphs (test set
2). This new set ensures comprehensive coverage across various
journal types and allows for a thorough assessment of model
performance. We identied a total of 10 958 NMR paragraphs in
NMR articles published in 2023.

From these, we randomly sampled 1022 paragraphs from
115 different journal types, which were then manually anno-
tated by chemistry experts (Fig. S7†). We classied the 1022
NMR paragraphs into standardized and non-standardized
descriptions based on the presentation format of the NMR
data in the research paper (Fig. 3c). This classication resulted
in 788 standardized NMR data descriptions (test set 2_stan-
dard) and 244 non-standardized descriptions (test set 2_non-
standard). To further augment our dataset, we randomly
selected and manually annotated 700 NMR paragraphs pub-
lished before 2023, increasing our training set to 1000 samples.
Model performance

As shown in Fig. 4a, the performance of the ne-tuned Mistral-
7b-instruct-v-0.2 model improves and gradually converges as
the training set size increases. Optimal results across different
test sets were achieved with a training set of 800 samples, out-
performing both Llama3-8b-instruct and Llama2-13b-chat
(Tables S3 and S4†). The model attained an accuracy
exceeding 0.96 for various element extractions in test set 1 (300)
and over 0.85 in test set 2 (1022). Further analysis of test set 2
(1022), categorized by text description methods, revealed an
accuracy surpassing 0.9 for element extraction in test set
2_standard (778). However, test set 2_non-standard (244) posed
challenges due to non-standardized NMR data descriptions.
These natural language descriptions, characterized by diverse
expressions and complex grammatical structures, oen con-
tained incomplete or missing information, hindering NMR data
extraction and slightly reducing model performance. To further
demonstrate the model's accuracy and data usability, we
examined instances where both the IUPAC name and NMR
chemical shi terms were correctly extracted. A prediction is
deemed correct only when both components were accurate;
otherwise, it was classied as incorrect. As the training set
expanded to 800, the accuracy of correctly extracting both the
IUPAC name and 1H NMR chemical shi could reach 0.78 in
Chem. Sci., 2025, 16, 11548–11558 | 11551
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Fig. 3 Article counts and NMR data description formats. (a) Total open-access papers in PubMed (grey) versus papers mentioning NMR (blue) by
year. (b) Papers mentioning NMR (blue) and those including NMR data (red) in PubMed. (c) Examples of standardized (test set 2_standard) and
non-standardized NMR (test set 2_non-standard) data descriptions in papers. Note: while this data reflects PubMed's June 2024 update, papers
from 2023 and 2024 are underrepresented due to incomplete updating.

Fig. 4 (a) The performance of the fine-tuned Mistral-7b-instruct-v-0.2 on different test sets varies with the number of training sets changes. (b)
The exact match accuracy of both the IUPAC name and 1H/13C NMR chemical shifts on different test sets with the number of training sets
changes. Error bars represent the standard deviation across three runs with independently sampled training data.
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test set 2 (1022). And the accuracy of correctly extracting both
the IUPAC name and 13C NMR chemical shi could reach 0.804
in test set 2 (1022) (Fig. 4b).

Data condence and accuracy

To objectively evaluate NMRExtractor's performance, we
assessed both the overall accuracy of extracted data and the
model's condence score for each data point. The condence
score ranges from 0 to 1. The condence of the model predic-
tions is computed based on the cumulative log probability of
the predicted tokens. For detailed on how condence levels are
calculated, please refer to the ESI.† In test set 1 (300) and test set
2 (1022), when condence exceeds 0.6, the accuracy of extract-
ing all elements reaches over 86%. When condence exceeds
0.8, the complete accuracy surpasses 97% (Fig. 5a and b).
Results from three-fold cross-validation on the training set
further conrm that model performance improves with
increasing condence (Table S5†). According to earlier
studies,55 the error rate in manually curated bioactivity data-
bases (such as ChEMBL and WOMBAT) is around 5%. This
suggests that high-condence predictions (condence >0.8) of
our model may achieve human-level accuracy, supporting its
reliable large-scale deployment.

For test set 1 (300), 261 entities have a condence score
above 0.6, with 209 entities scoring above 0.8 (Fig. 5a). In the
test set 2 (1022), 594 entities score above 0.6, and 386 entities
above 0.8 (Fig. 5b). Test set 1 (300) and test set 2_standard (778)
Fig. 5 NMRExtractor's performance across different test sets and confide
shown below it. (a) The performance of test set 1 (300) with different con
confidence intervals. (c) The performance of test set 2_standard (778) wit
standard (244) with different confidence intervals. Error bars represent
training data.

© 2025 The Author(s). Published by the Royal Society of Chemistry
show a high number of high condence values and good model
performance (Fig. 5a and c). While test set 2_non-standard (244)
shows poorer model performance overall, when the condence
score exceeds 0.8, the accuracy of element extraction still
exceeds 88% (Fig. 5d). The consistently high accuracy of high-
condence data across different data description formats
allow us to lter data based on model condence aer batch
data extraction, thereby improving overall data quality.

Data extraction methods comparison

Before using a ne-tuned large language model for NMR data
extraction, we explored a variety of methods to extract NMR data
from text. Initially, we attempted to extract NMR data from
research papers using a traditional rule-based approach. Based
on the standardized description of NMR data in research
papers, we developed regular expressions to locate NMR para-
graphs, isolated the sections containing NMR data, and then
applied additional rules to obtain the required NMR data
(Fig. S8†). For IUPAC names, we compiled a list of 618 common
compound group words (Fig. S9†) and scanned the text for these
words to extract relevant information. However, the rule-based
extraction of NMR data from research papers presented chal-
lenges. To accommodate the diversity of text, the rules required
constant modication and renement. We discovered that even
with continuous addition of new rules, it was impossible to
cover all scenarios. Moreover, the presence of reactants and
solvents in the text interfered with the extraction of IUPAC
nce intervals. The number of data points in each confidence interval is
fidence intervals. (b) The performance of test set 2 (1022) with different
h different confidence intervals. (d) The performance of test set 2_non-
the standard deviation across three runs with independently sampled

Chem. Sci., 2025, 16, 11548–11558 | 11553
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Fig. 6 Performance comparison of rule-based method (blue) and
NMRExtractor (red) on (a) test set 1 (300 samples) and (b) test set 2
(1022 samples).
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names, resulting in both missed NMR data and errors in the
extracted information. In comparison to NMRExtractor, which
is based on large language models, the traditional rule-based
method performed poorly on both test set 1 (300) and test set
2 (1022) (Fig. 6a and b). Furthermore, in batch data extraction,
the large language model-based method can lter data
according to the condence level of each entry, whereas the
rule-based method lacks the ability to assess the accuracy of the
extracted NMR data.
Fig. 7 (a) Distribution of confidence values for data in the NMRBank.
(b) Molecular weight distribution of molecules from NMRBank and
NMRShiftDB2. (c) TPSA distribution of molecules from NMRBank and
NMRShiftDB2. (d) Distribution of calculated log P of molecules from
NMRBank and NMRShiftDB2.
NMR data extraction and analysis

We employed NMRExtractor to process 380 220 NMR para-
graphs in batch. Aer removing entries with empty 13C NMR
chemical shis, we obtained approximately 260 000 entries.
Further ltering out entries with both empty IUPAC names and
NMR chemical shis yielded 225 809 entries. To standardize
these data, we converted IUPAC names to SMILES using
ChemDraw and OPSIN, successfully converting 156 621 entries.
We then standardized the SMILES using RDKit (Fig. S6†), ulti-
mately constructing the NMRBank dataset. During standardi-
zation, stereoisomer details are preserved in the SMILES string.
Of these entries, the total number of unique SMILES strings is
149 135, representing approximately 66% of our total records.
This normalization process ensures that structural duplicates
are properly accounted for, providing a more accurate
comparison with existing databases.

Our detailed analysis of the 156 621 records containing
SMILES revealed 2906 compounds with multiple entries. The
frequency distribution follows a power-law pattern, which is
characteristic of chemical databases and reects the prevalence
of commonly studied compounds in the literature. We have
visualized this distribution in Fig. S10† and provided
a comprehensive list of the most frequently occurring
compounds in Table S6†. For applications requiring the highest
11554 | Chem. Sci., 2025, 16, 11548–11558
data quality, we identied 91 707 unique SMILES records within
our highest condence interval (0.8–1.0). This subset represents
our most reliable data points and is particularly valuable for
experimental validation and machine learning applications.

We also analyzed the data distribution of the public
NMRshiDB2 dataset to compare it with NMRBank. As shown
in Fig. 7, the distribution of physicochemical properties in
NMRBank, including molecular weight, log P, and TPSA,
signicantly differs from that of NMRShiDB2. Moreover, the
property ranges observed in NMRShiDB2 are fully contained
within those of NMRBank, while NMRBank demonstrates
a broader spread across all examined properties. These results
indicate that NMRBank covers a more diverse and expansive
chemical space. Based on the condence level, we further
assessed the accuracy of the data in NMRBank data. A rule-
based approach was used to check whether the chemical shi
values appeared sequentially in the paragraphs from which they
were extracted and whether any modications had occurred.
Within the high-condence interval, the 1H and 13C NMR
chemical shi values and their order in NMRBank exhibited
a high degree of consistency with the paragraphs in the original
paper (Fig. S11†).

To illustrate typical extraction errors, we conducted case
studies onmissed NMR paragraphs caused by regex limitations.
We employed the regular expression “13C.{0,3}NMR” as our
primary method to identify NMR-relevant paragraphs. While
this approach proved highly effective for standard NMR nota-
tion formats, we acknowledge its inherent limitations. Through
comprehensive analysis, we identied several variant notations
such as “C13 NMR”, “13 C-NMR”, or “C13-NMR” that could
© 2025 The Author(s). Published by the Royal Society of Chemistry
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potentially be missed (Fig. S12†). Our thorough investigation of
5.7 million articles revealed that these variant notations
appeared 1962 times, representing approximately 0.5% of the
total 380 220 identied NMR paragraphs. This small percentage
demonstrates the robustness of our chosen regular expression
pattern while acknowledging room for future optimization.

We conducted a systematic analysis of the conversion gap
between IUPAC names and SMILES strings. We implemented
a multi-tool approach, rst using ChemDraw and then OPSIN
for failed cases, to maximize conversion success. However,
some structures remained challenging for both tools. Among
the approximately 226 000 records, around 70 000 (∼31%) could
not be successfully converted to SMILES strings. This gap can be
attributed to several factors: (1) complex molecular structures:
some compounds, particularly natural products and complex
synthetic molecules, contain challenging structural features
that exceed the current capabilities of conversion tools. As
shown in Fig. S13,† even accurately extracted IUPAC names like
2-[2-(2,6-dichlorophenyl)amino]benzyl-3-(2-
Table 1 Summary of major NMR databases

Dataset name
Number of
NMR spectra

Number of
compounds

Compound
types

HMDB5.0 (ref. 19) 4149 — Metabolites
BMRB20 1200+ — Small molecule

metabolites
NMRShiDB2
(ref. 21 and 22)

53 954 — Not specied

SDBS23 15 218 (1H)
13 457 (13C)

900+ Natural products

NP-MRD24 1290 — Natural products
NAPROC-13 (ref. 25) 6000+ — Natural products
CH-NMR-NP26 30 500 926 Natural products
Spektraris-NMR27 466 250 Taxanes
C6H6 (ref. 28) — 506 Not specied
Ilm-NMR-P31
(ref. 56)

14 250 13 730 Not specied

KnowItAll NMR57 1 280 000+ — Not specied
Micronmr58 1 000 000+ — Not specied
NMRBank 225 809 149 135 Not specied

Table 2 NMRBank dataset overview

Data description

Dataset name
Data introduction
Types of NMR technique covered
Total number of NMR data
The number of NMR data with SMILES
The number of NMR data with SMILES and condence greater than 0.8
The number of NMR data with SMILES and condence greater than 0.6
The number of NMR data with unique SMILES
The number of NMR data with unique SMILES and condence greater th
The number of NMR data with unique SMILES and condence greater th
URL
Available

© 2025 The Author(s). Published by the Royal Society of Chemistry
hydroxyphenylacrylamido)-6,8-dibromoquinazolin-4(3H)ones
could not be converted due to their structural complexity; (2)
common names: some compounds are referred to by common
or trade names rather than systematic IUPAC names, such as
Telisatin A. These names oen lack the structural detail
required by conversion tools like ChemDraw and OPSIN
(Fig. S13†); we are actively working on improving our conversion
pipeline and exploring additional chemical structure parsing
tools to reduce this gap in future updates.

Existing NMR database

In addition to analyzing statistical properties, we compared
NMRBank to the most common NMR databases (Table 1). Our
ndings revealed that NMRBank contains signicantly more
entries than any existing open-source NMR database. Moreover,
our NMR extraction process offers excellent scalability. By
utilizing our NMRExtractor, we can quickly and automatically
process new literature, greatly facilitating the continuous
updating of the NMRBank database.
NMR
technique URL Available

1H/13C https://hmdb.ca Open-source
1H/13C https://bmrb.io Open-source

1H/13C https://nmrshidb.nmr.uni-koeln.de Open-source

1H/13C https://sdbs.db.aist.go.jp/
Disclaimer.aspx

Open-source

1H/13C https://np-mrd.org Open-source
13C https://c13.materia-medica.net Open-source
1H/13C https://ch-nmr-np.jeol.co.jp/en/nmrdb Open-source
1H/13C http://langelabtools.wsu.edu/nmr/ Open-source
1H/13C https://www.c6h6.org Open-source
31P https://github.com/clacor/Ilm-NMR-P31 Open-source

1H/13C https://sciencesolutions.wiley.com Commercial
13C https://www.nmrdata.com Commercial
1H/13C https://github.com/eat-sugar/

NMRExtractor
Open-source

Data value

NMRBank
Contains NMR data from 5.7 million PubMed articles
1H/13C NMR
225 809
156 621
94 675
127 402
149 135

an 0.8 91 707
an 0.6 123 174

https://github.com/eat-sugar/NMRExtractor
Open-source
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Table 3 Example entry from the NMRBank dataset

Data description Data value

PubMed ID (PMID) 35 601 446
PubChem CID 35 960
NMR paragraph 4.2.1.4. 2,6-Dimethoxy-4-vinylphenol 2d yellow oil, yield 94%. IR (KBr plate): nmax 3144, 2938, 2844, 1605,

1462, 1213, 1115, 837. 1H NMR (600 MHz, CDCl3) d 6.65 (s, 2H), 6.61 (dd, J = 17.5, 10.9 Hz, 1H), 5.60 (d, J =
17.5 Hz, 1H), 5.56 (s, 1H), 5.15 (d, J = 10.8 Hz, 1H), 3.90 (s, 6H). 13C NMR (151 MHz, CDCl3) d 147.06, 136.83,
134.76, 129.18, 111.87, 102.9, 56.26

IUPAC name of compound 2,6-Dimethoxy-4-vinylphenol
SMILES C]Cc1cc(OC)c(O)c(OC)c1
1H NMR conditions 600 MHz, CDCl3
1H NMR chemical shi 6.65 (s, 2H), 6.61 (dd, J = 17.5, 10.9 Hz, 1H), 5.60 (d, J = 17.5 Hz, 1H), 5.56 (s, 1H), 5.15 (d, J = 10.8 Hz, 1H),

3.90 (s, 6H)
13C NMR conditions 151 MHz, CDCl3
13C NMR chemical shi 147.06, 136.83, 134.76, 129.18, 111.87, 102.9, 56.26
Condence in data given by large
language models

0.927

Article citation R. Soc. Open Sci.; 9(4): 220014

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
0/

20
26

 1
2:

18
:4

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Data records

The NMRBank dataset constructed in this work is available at
https://github.com/eat-sugar/NMRExtractor, a public data
repository providing open code and data for researchers,
research projects/teams, journals, institutions, universities,
etc. Each data entry in the NMRBank dataset includes: article
PMID, NMR paragraph, compound IUPAC name, SMILES, 1H
NMR conditions, 1H NMR chemical shis, 13C NMR conditions,
13C NMR chemical shi, condence, and other metadata such
as article information. Table 2 provides an overview of the
information items in the NMRBank dataset, while Table 3
presents examples from the NMRBank dataset.

Conclusions

NMR data contains crucial chemical properties, yet it is scat-
tered across complex scientic literature in various forms.
Extracting experimental NMR data from these documents is
a challenging but vital task. In this study, we leveraged large
language model technology to mine and construct an NMR
database. We developed NMRExtractor and used it to batch-
extract NMR data from over 5.7 million public documents in
the PubMed database. This effort resulted in the NMRBank
dataset, containing 225 809 NMR entries, with 156 621 entries
including SMILES descriptors. Each entry comprises the
compound's IUPAC name, SMILES descriptor, 1H NMR, 13C
NMR, model-assigned condence score, and source metadata
such as article number and journal name.

Comparative analysis reveals that NMRBank is currently the
largest open-source experimental NMR dataset available, which
covers a wide range of chemical space. This comprehensive
resource is poised to signicantly advance NMR data-driven
deep learning and its applications in chemistry. NMREx-
tractor's ability to automatically process new research papers for
NMR data extraction ensures efficient updates to the NMRBank
dataset. Moving forward, we plan to continually rene
NMRExtractor and expand the NMRBank dataset. This research
not only broadens the scope and accessibility of experimental
11556 | Chem. Sci., 2025, 16, 11548–11558
NMR data but also introduces a versatile data extraction
method applicable to chemical research and drug design. Ulti-
mately, these advancements will accelerate the discovery and
development of new drugs.
Data availability

All data and code of this work are available at GitHub: https://
github.com/eat-sugar/NMRExtractor. The model weights of
NMRExtractor can be downloaded from https://
huggingface.co/sweetssweets/NMRExtractor. We also provide
an online demo of NMRExtractor on https://huggingface.co/
spaces/sweetssweets/NMRExtractor.
Author contributions

M. Y. Z., Z. Y. F., and J. C. X. conceived the idea. Q. G. W., W. Z.
andM. Y. Z. designed the research. Q. G. W., W. Z. implemented
the codes. Q. G. W., W. Z., M. A. C. collected, annotated, and
processed training data. Q. G. W., W. Z., Z. Y. F. checked the
data. Q. G. W., W. Z., Z. P. X. benchmarked the models. Q. G. W.
wrote the initial dra. M. Y. Z., Z. Y. F., J. C. X., and X. T. L.
reviewed and rened the article. All authors contributed to the
analysis of the results. All authors read and approved the nal
manuscript.
Conflicts of interest

There are no conicts to declare.
Acknowledgements

We extend our gratitude to PubMed for offering a wealth of
open literature, as well as to the open-source communities and
tools like LLM and OPSIN for their invaluable contributions.
This work was supported by the National Natural Science
Foundation of China (T2225002 and 82273855 to M. Y. Z. and
82204278 to X. T. L.), the National Key Research and
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://github.com/eat-sugar/NMRExtractor
https://github.com/eat-sugar/NMRExtractor
https://github.com/eat-sugar/NMRExtractor
https://huggingface.co/sweetssweets/NMRExtractor
https://huggingface.co/sweetssweets/NMRExtractor
https://huggingface.co/spaces/sweetssweets/NMRExtractor
https://huggingface.co/spaces/sweetssweets/NMRExtractor
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D4SC08802F


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
0/

20
26

 1
2:

18
:4

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Development Program of China (2022YFC3400504 to M. Y. Z.),
the SIMM-SHUTCM Traditional Chinese Medicine Innovation
Joint Research Program (E2G805H to M. Y. Z.), the Shanghai
Post-doctoral Excellence Program (2023693 to Z. Y. F. and
2024707 to J. C. X.) and the Shanghai Municipal Science and
Technology Major Project.
References

1 D. Zha, Z. P. Bhat, K.-H. Lai, F. Yang, Z. Jiang, S. Zhong and
X. Hu, Data-centric Articial Intelligence: A Survey, ACM
Comput. Surv., 2025, 57, 1–42.

2 L. Budach, M. Feuerpfeil, N. Ihde, A. Nathansen, N. Noack,
H. Patzlaff, F. Naumann and H. Harmouch, arXiv, 2022,
preprint, arXiv:2207.14529, DOI: 10.48550/arXiv.2207.14529.

3 S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu,
A. Gindulyte, L. Han, J. He, S. He, B. A. Shoemaker,
J. Wang, B. Yu, J. Zhang and S. H. Bryant, PubChem
Substance and Compound databases, Nucleic Acids Res.,
2015, 44, D1202–D1213.

4 A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies,
A. Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-
Lazikani and J. P. Overington, ChEMBL: a large-scale
bioactivity database for drug discovery, Nucleic Acids Res.,
2011, 40, D1100–D1107.

5 M. Staszak, K. Staszak, K. Wieszczycka, A. Bajek,
K. Roszkowski and B. Tylkowski, Machine learning in drug
design: Use of articial intelligence to explore the chemical
structure–biological activity relationship, Wiley Interdiscip.
Rev.: Comput. Mol. Sci., 2022, 12, e1568.

6 A. C. Mater and M. L. Coote, Deep Learning in Chemistry, J.
Chem. Inf. Model., 2019, 59, 2545–2559.

7 N. Norori, Q. Hu, F. M. Aellen, F. D. Faraci and A. Tzovara,
Addressing bias in big data and AI for health care: A call
for open science, Patterns, 2021, 2, 100347.

8 I. V. Tetko, O. Engkvist, U. Koch, J.-L. Reymond and H. Chen,
BIGCHEM: Challenges and Opportunities for Big Data
Analysis in Chemistry, Mol. Inform., 2016, 35, 615–621.

9 P. R. L. Markwick, T. Malliavin and M. Nilges, Structural
Biology by NMR: Structure, Dynamics, and Interactions,
PLoS Comput. Biol., 2008, 4, e1000168.

10 H. Günther, NMR spectroscopy: basic principles, concepts and
applications in chemistry, John Wiley & Sons, 2013.

11 X. Xue, H. Sun, M. Yang, X. Liu, H.-Y. Hu, Y. Deng and
X. Wang, Advances in the Application of Articial
Intelligence-Based Spectral Data Interpretation: A
Perspective, Anal. Chem., 2023, 95, 13733–13745.

12 L. Yao, M. Yang, J. Song, Z. Yang, H. Sun, H. Shi, X. Liu, X. Ji,
Y. Deng and X. Wang, Conditional Molecular Generation Net
Enables Automated Structure Elucidation Based on 13C
NMR Spectra and Prior Knowledge, Anal. Chem., 2023, 95,
5393–5401.

13 Z. Huang, M. S. Chen, C. P. Woroch, T. E. Markland and
M. W. Kanan, A framework for automated structure
elucidation from routine NMR spectra, Chem. Sci., 2021,
12, 15329–15338.
© 2025 The Author(s). Published by the Royal Society of Chemistry
14 Z. Yang, J. Song, M. Yang, L. Yao, J. Zhang, H. Shi, X. Ji,
Y. Deng and X. Wang, Cross-Modal Retrieval between 13C
NMR Spectra and Structures for Compound Identication
Using Deep Contrastive Learning, Anal. Chem., 2021, 93,
16947–16955.

15 M. Alberts, F. Zipoli and A. C. Vaucher, ChemRxiv, 2023,
preprint, DOI: 10.26434/chemrxiv-2023-8wxcz.

16 C. P. Gordon, C. Raynaud, R. A. Andersen, C. Copéret and
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