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Protection of Shewanella oneidensis MR-1 by
manganese ferrite nanoparticles during chromate
bio-reductiony

Diana S. Raie, ©2° |oannis Tsonas, Stefanos Mourdikoudis, @ 2° Evangelia Delli, ®¢
Antonios Makridis, @< Lena Ciric® and Nguyen Thi Kim Thanh @®*r

Shewanella oneidensis (S. oneidensis) MR-1 is a metal-reducing bacterium that can bio-reduce the
carcinogenic hexavalent chromium (Cr®*) to a less toxic trivalent form (Cr®*). The bacteriocidal effect of Cr*
challenges the above bio-reduction process. This work aims to illustrate the protective role of manganese
ferrite nanoparticles (MngoFe,gO4 NPs) to S. oneidensis MR-1 bacteria during the bio-reduction of Cré*.
Nanostructures were characterised by transmission electron microscopy (TEM) and X-ray diffraction (XRD).
The interaction between S. oneidensis MR-1, Cr®* and Mng,Fe,gO, NPs was monitored by X-ray
photoelectron spectroscopy (XPS), which helped to unravel the oxidation states of Cr. The XPS analysis
provided key insights into the oxidation states of Mn and Fe, confirming the redox interactions facilitating Cr®*
reduction. Mng »Fe, sO4 NPs boosted the detoxification of the removed Cré* by 2.1 and 1.4 times compared
to using S. oneidensis MR-1 alone and NPs alone, respectively. Scanning electron microscopy (SEM) imaging
evaluated the changes in the morphology of bacterial cells. After exposure to Cr®*, S. oneidensis MR-1 cells
revealed their inability to produce nanofibers, which are electrically conductive bacterial appendages. Yet,
Mng,Fe, 804 NPs provoked the formation of bacterial nanofibers. These findings highlight the potential of
MngFe, 04 NPs for enhancing the bioremediation of Cr®* contaminated environments.

Carcinogenic hexavalent chromium leaks from industrial sites due to improper wastewater treatment into surface and groundwater, exposing flora and
fauna to danger. The metal-reducing bacterium, Shewanella oneidensis MR-1, can reduce Cr°" into less toxic Cr*’; bacteria lose their viability during
treatment due to the toxicity of Cr®. The novelty of this work is the discovery of a protective role of Mn-ferrite nanoparticles to S. oneidensis MR-1 bacteria
during Cr®" bio-reduction. We show that Mn,,Fe, 30, NPs induced bacterial cell elongation and promoted nanofiber formation. Such morphological
changes improve bacterial cell viability in response to the sub-lethal dose of Cr°" and enhance their detoxification capability. Our findings provide a

promising application of using nano-Mn, ,Fe, 4O, in the bioremediation of Cr®*-contaminated environments.

1. Introduction

Contamination of air, soil and water with heavy metals is
hazardous to human health and the environment due to their
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toxicity, even at low concentrations’ as they are non-
biodegradable materials.”> The Agency for Toxic Substances
and Disease Registry (ATSDR) ranked chromium (Cr) the 17th
on the substance priority list among many heavy metals.?

Cr mainly occurs in two valence states: hexavalent (Cr®")
and trivalent (Cr’*). Human exposure to Cr® can cause liver
damage, pulmonary congestion, oedema, skin irritation, ulcer
formation,” neurotoxicity,” and carcinogenesis.® U.S.
Environmental Protection Agency (EPA) and WHO guidelines
reported a permissible limit of Cr®" in drinking water of 50
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ppb.” According to the EU drinking water directive, the
regulation limit for the total Cr will be 25 ug L™ by 12
January 2036.° Since Cr’* has low mobility, limited bio-
absorptivity, and lower toxicity than Cr®",°> Cr®" should be
reduced to Cr’* for its safe removal.'”
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Bio-reduction of Cr®* is a cost-effective and environmentally
friendly method, attracting widespread interest."' Some bacteria
can reduce metals, acting as terminal electron acceptors under
anaerobic conditions.'* So, metal-reducing bacteria can be used
for the biotic reduction of heavy metals for detoxification
purposes. Such a natural process is applicable for the biological
reduction of the carcinogenic Cr®" into less toxic Cr** form."

Shewanella oneidensis MR-1 is a model metal-reducing
bacteria for detoxifying Cr®"."*"® S. oneidensis MR-1 can employ
Cr®" as a terminal electron acceptor under anaerobic
conditions."**>' The biosafety of S. oneidensis MR-1 is an
essential criterion for selecting bioremediation biological
agents. In contrast, Pseudomonas aeruginosa bacteria can be
used for Cr®" removal but are not preferred for bioremediation
because they cause diseases in humans and animals.>*" Yet,
the lethal effect of Cr®" on the microbes during their respiration
limited the bioremediation of Cr®".*?

Mn, ,Fe, 30, NPs showed a higher adsorption capacity for
Cr®" than Fe,O; NPs and other tested Mn,Fe;_,O, NPs.>* This
chemical structure improved the bacterial viability and
microbial detoxification of Cr®".>* The adsorption of Cr®" can
limit the availability of the toxic cations to cells, which could
improve their viability and bio-reduction efficiency.

Herein, to the best of our knowledge, we showed for the
first time the protective role of the Mng,Fe, 3O, NPs to S.
oneidensis MR-1 during the bio-reduction of Cr®". Raie et al.>*
primarily investigated the adsorption and bio-removal of Cr®
using Mn, ,Fe, 3O, NPs and S. oneidensis MR-1, respectively.

This article builds upon findings by Raie et al,”® and
elucidates the reduction process of Cr®* using XPS. In addition,
this work presents bacterial imaging to visualise morphological
changes in response to Cr®" and NPs, providing deeper insights
into the mechanism of Cr®* reduction.

XPS revealed the possible reduction of Cr®* to Cr*" due to
its interaction with Mn,,Fe, sO, NPs. This allowed us to
confirm the redox-based interaction among cr® and Mng »-
Fe, 30, NPs. In addition, SEM showed the morphological
change response of S. oneidensis MR-1 as a coping strategy in
response to the toxic Cr®" in the presence of Mn,,Fe; 30,
NPs. This article will advance the treatment of Cr® by
demonstrating its removal, unravelling its reduction
mechanism and the biological implications, thereby
contributing novel insights and practical advancements to
nanobiotechnology and environmental applications.

2. Materials and methods
2.1 NPs preparation and characterisation

Mn,,Fe, 30, NPs were prepared by an adapted polyol
solvothermal synthetic process*® at 250 °C as described in our
recent work.”® In 20 mL of tetraethylene glycol (TEG), 0.3 M of
iron(m) acetylacetonate (2.1 g) and 0.1 M manganese(u)
acetylacetonate (0.5 g) were added. The mixture was added into a
45 mL Teflon-lined stainless-steel autoclave after being
homogenised by vortex and sonication to be placed in an oven
(Memmert, model UFP400) and heated within 30 min up to 250
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°C for a 6 h hold at that temperature. In polyol synthesis, metal
precursors are reduced by TEG, which acts as a high-temperature
capping agent, solvent, and reductant. The formed metal nuclei
grow and controllably coalesce together to produce the desired
particles.”®” The produced black dispersion underwent
characterisation and functionalisation by tri-sodium citrate via
ligand exchange.”® A JEOL JEM 1200-EX microscope operating at
an acceleration voltage of 120 kv was employed to investigate the
shape and size of the produced particles. The polydispersity index
(PDI) is the ratio between the standard deviation and the mean
nanoparticle diameter. To determine the crystal phase and the
average crystallite size, we used XRD (PANalytical XPERT PRO
MPD) coupled with Co K,, radiation source (A = 1.789 A) and an
X'Celerator detector operated at 40 kV and 40 mA. An Optima
3100 XL Perkin Elmer Inductively Coupled Plasma Atomic
Emission (ICP-AES) spectrometer was employed to determine the
chemical composition of Mn,Fe;_,O, particles. To quantify the
iron content of the functionalised NPs dispersed in water, a
colorimetric phenanthroline method was applied for the acid-
digested NPs using a spectrophotometer (SpectraMax Mz2e,
Molecular Devices, UK).

2.2 Sources for bacteria of interest

A freeze-dried culture of S. oneidensis MR-1 (LMG 19005) was
purchased from BCCM/LMG bacteria collection.

2.3 Viability of S. oneidensis MR-1 to Mn, >Fe, 30, NPs

The impact of Mng,Fe, 30, NPs on the viability of the S.
oneidensis MR-1 was assessed using Guava easyCyte® flow
cytometer (Merck, UK) following a protocol previously utilised
by Raie et al,”” under anaerobic conditions overnight. A
homogeneous bacterial cell suspension (10 pL with OD
measured at 4 = 600 nm equal to 0.1) was added to 80 uL of
M9 minimal salts (x2) medium, containing 20 mM sodium
lactate as a sole electron source, 5 mL L™* each of vitamins
and minerals and pH was adjusted to 7.2 by 10 mM 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic ~ acid (HEPES)
buffer.>**® Sodium fumarate (20 mM) was used as a terminal
electron acceptor.”>*® Mn, ,Fe, 0, NPs (10 pL) were added
to the mixture. The tested concentrations of NPs ranged from
1-60 mg mL~" with an approximate total Fe content from 0.7
mg mL™" to 40.6 mg mL™".

2.4 The exposure of S. oneidensis MR-1 to Cr°" and Mn, ,-
Fe, 3O, NPs

S. oneidensis MR-1 was exposed to cr®" and Mn, ,Fe, 3O, NPs
individually and also in a combined way overnight, in
conditions similar to that mentioned in Section 2.3. Cr®* (as
a terminal electron acceptor) and Mn,,Fe, 30, NPs were
added to this medium with concentrations of 50 mg L™ (sub-
lethal dose, as reported by Raie et al)*®* and 1 mg mL™’,
respectively.*

This journal is © The Royal Society of Chemistry 2025
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2.5 Analysis of oxidation state of Cr®*, Mn**, and Fe**

The oxidation states of Mn and Fe in Mn,,Fe, sO, NPs and
Cr were investigated after being incubated together or
separately with S. oneidensis MR-1 by XPS; a Kratos Analytical
AXIS Ultra®™® system with aluminium X-ray source (Ax.=
1486.6 eV) was used, operated under ultra-high vacuum
conditions (107° torr). The experimental curves were best
fitted by combining Gaussian (70%) and Lorentzian (30%)
distributions, while background subtraction was performed
using the Shirley equation. A normalised peak area of each
element is calculated by dividing its area by the sensitivity
factor.”* To determine the redox interaction between Cr®*
and Mng,Fe, 30, NPs, we compared the normalised peak
areas of Mn*' to Mn®", Fe?" to Fe*" and Cr*' to Cr®' in the
high-resolution Mn 2p, Fe 2p and Cr 2p spectra, respectively,
while only the ratios between that peak areas of Cr’* to Cr®"
were analysed in the case of applying bacterial cells. The
relative fold increase in Cr®" bio-reduction was calculated by
its equivalent atomic fraction to the reference values.

2.6 Imaging bacteria by SEM

To acquire SEM images, 50 puL from the untreated or Mn, ,-
Fe, O, NPs treated S. oneidensis MR-1 bacteria cell
suspension were deposited on a microscope cover glass
(Fisher, UK). The samples were imaged using Philips XL30
FEG SEM (FEI, Eindhoven, Netherlands), which operates at
an accelerating voltage of 5 keV. Cell fixation was performed
using glutaraldehyde (2.5% v/v in 0.01 M PBS) for 30 min at
room temperature. Samples were washed three times in
phosphate-buffered saline (PBS, 0.01 M) and dehydrated for 5
min in ethanol aqueous solutions. The concentrations of
ethanol aqueous solutions were 10% v/v, 30% v/v, 50% v/v,
70% v/v, 90% v/v, 100% v/v, sequentially. A double-sided
carbon tape (Agar Scientific, UK) was used to attach the glass
slide with the SEM specimens onto aluminium stubs.
Samples were then sputter-coated with gold-palladium at 20
mA and 1.25 kV for 90 s (Palaron E5000 sputter coater).

3. Results and discussion
3.1 Characterisation of NPs

3.1.1 Morphology of NPs. Regarding the obtained spherical
Mn,Fe; O, NPs (Fig. 1A), our results agree with Raie et al,”
vamvakidis et al,”® and Garcia-Soriano et al,*® who used the
polyol solvothermal technique for producing spherical Mn,Fe;_,-
0, NPs.>**?° The mean size of Mn,Fe,_,O, NPs is 7.4 + 1.3 nm.
The PDI is 0.18, which indicates a relatively narrow size
distribution.®" Similarities in spherical shape and small size
range (approximately 7-9 nm) are attributed to the specific
procedure where sole polyols were used to prepare the NPs.>*>>°

3.1.2 Crystal structure of NPs. Powder XRD patterns for
the prepared Mn,Fe;_,O, NPs recorded at room temperature
are illustrated in Fig. 1B. All the diffraction peaks show the
presence of the face-centred cubic (FCC) crystal structure,
while no impurity phase was observed. So, the formation of

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 MngFe, 504 NPs prepared at 250 °C for 6 h: (A) TEM images
and (B) XRD patterns, and XRD reference for MnFe,O,4 (PDF card no
00-010-0319).
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Mn,Fe; O, NPs was obtained through a facile polyol
solvothermal process with reaction times of 6 h.

3.1.3 Elemental analysis of Mn,Fe;_,O, NPs. The formed
Mn,Fe;_,0, NPs have a low Mn content (x = 0.2), based on
ICP-AES results. Etemadi & Plieger,>* Oberdick et al.,** and
Raie et al.>® reported similar results of low Mn doping levels
because Mn(acac), is more thermally stable than Fe(acac),.**

3.2 Interaction of Cr*® with Mn, ,Fe, 30, NPs

Mn,,Fe, O, NPs adsorbed 16.8 + 1.6 mg g ' (around 61%) of
Cr®".** The possible reduction of the adsorbed Cr®" by Mn, -
Fe, 304 NPs was explored here by studying the oxidation state of
Mn, Fe, and Cr of the adsorbent and adsorbate by XPS, as
shown in Fig. 2A.

3.2.1 Oxidation state of Mn in Mn, ,Fe, 30, NPs after Cr®"
adsorption. In Fig. 2B, the position of binding energy (BE) for
Mn 2p was slightly shifted from 640.45 eV** to higher BE
(641.80 eV), which could be attributed to the possible oxidation
of Mn*" into Mn®" upon interacting with Cr®*. The dissolved
Mn®* could generate manganese oxide (MnO,), which provides
more adsorption sites for Cr®" removal.*

Environ. Sci.. Nano, 2025, 12, 3035-3046 | 3037
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Fig. 2 MngFe, 30,4 NPs treated by Cré*: (A) wide scan XPS spectrum, and high-resolution XPS spectra of (B) Mn 2p, (C) Fe 2p, and (D) Cr 2p.

In Mn,,Fe, sO, NPs,*® Mn 2p peak, in Fig. 2B, was fitted
by 5 contributions at 640.3 eV, 642.2 €V, 644.61 eV, 652.2 eV
and 654.8 eV. Mn 2p3,, was deconvoluted into 640.35 eV and
642.25 eV peaks, representing Mn>" and Mn*", respectively,
as shown in Fig. 2B. The peak of Mn 2p,,, was fitted into two
contributions of Mn*" and Mn®" at 652.15 eV and 654.6 eV,
respectively.**° The fifth small satellite peak at 645.2 eV was
assigned to Mn*" of MnO.*® Since stoichiometric MnFe,0O,
can be expressed as MnO-Fe,O;, this pointed to the
formation of Mn,Fe;_,O, NPs.

3.2.2 Oxidation state of Fe after Cr®" interaction with
Mn, ,Fe, ;04 NPs. After Cr®" adsorption on Mn, ,Fe, ;O NPs,
XPS (in Fig. 2C) showed the position of BE for Fe 2p at 711
eV. A peak of Fe 2p;, was spotted at 710.75 eV, and the
asymmetric peaks are situated at 723.9 eV, attributed to
2p1/2.>2"° The observed signals at these BE positions probably
correspond to the formation of iron oxide phase, ie.,
hematite or maghemite phase.** Unlike untreated Mn, ,Fe, g-
0,4 NPs,*® Fe 2p missed the satellite peak at 718 eV as shown
in Fig. 2C, which was due to the presence of Fe;0,.*° The
ratio between Mn and Fe was doubled from 0.24 to 0.44 (as
was reported by XPS and range based on elemental analysis
by ICP in our recent work) compared to untreated Mn, ,Fe, s-
0, NPs,?* which can be ascribed to the release of iron in the
medium.

3038 | Environ. Sci.: Nano, 2025, 12, 3035-3046

3.2.3 Reduction of Cr®* by Mny,Fe,30,. In Fig. 2D, XPS
spectra of Cr 2p showed two different peaks, corresponding to
the Cr 2p3, (576.0 eV-578.0 €V) and Cr 2p,, (585.0 eV-587.0 €V)
orbits. After fitting peaks with the use of the Gauss-Lorentz
algorithm, two peaks arised with the BE of 577 eV relating to
Cr*" 2ps), and 586 eV belonging to Cr’* 2p;5,**** which mainly
corresponds to the precipitation of insoluble Cr’* species,
Cr(OH); and Cr,0;. The adsorbed [CrO4]*~ on NPs*” explained
the presence of peaks at BE of 579.6 eV and 589 eV, representing
Cr®" 2ps), and 2py,,, respectively.”® The ratio of [Cr**]/[Cr®*] was
estimated to be equal to 2.56. Our results point out a significant
finding: the interaction between cr® and Mn,,Fe, 4O, NPs
involved a redox reaction in addition to what was stated in our
recent work regarding adsorption.*® Raie et al. reported that the
oxidation state of Mn in Mny,Fe, sO, was mainly Mn** with a
minor fraction of Mn*', and that of Fe was a mixture of Fe*"
and Fe**.** In the present study, the possible oxidation of Mn**
to Mn®" and Fe** to Fe**, besides the iron release, is due to the
redox reaction between Mn, ,Fe, 3O, NPs and Cr®'. The absence
of Mn*" XPS related peak after interaction with Cr®" was
attributed to the ability of Fe** to reduce Mn*', yielding Fe**
and Mn>".** In addition to being a stabilising agent, citrate can
act as a chelating agent” and as a reductant for Cr®",*® due to
its ability to donate electrons through ligand-metal electron
transfer.*® Mn”* catalyses the reduction reaction.””

This journal is © The Royal Society of Chemistry 2025
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3.3 Mn, ,Fe, ;0, NP-assisted bacterial respiration of Cr®*

S. oneidensis MR-1 can respire Cr®" under anaerobic
conditions.***° The adsorption of Cr®" (9 + 1.5 mg g™, i.e. 30 +
0.5% of removal) by Mn,,Fe, 0, NPs supported microbial
survival in media supplemented by the tested S. oneidensis MR-
1.”* The mechanism of bio-removal of Cr®" can be attributed to
the respiration of Cr®" into Cr*" (ref. 48-50) or bio-sorption®">>
by bacterial cells. Examining the oxidation state of Cr element
via XPS analysis determines the interaction between Cr®", Mn, ,-
Fe, 30, NPs and S. oneidensis MR-1, as illustrated in Fig. 3,
which positively related to the enhanced Cr®" bio-reduction by
2.7-3.6 fold.* The reported significant drop in the XPS revealed
the presence of peaks related to both Cr®* and Cr*" after
exposing S. oneidensis MR-1 to Cr°",

Peaks of Cr 2p XPS were observed at BE 576.7 eV and 585.9
eV, which were related to Cr*", while peaks at 579.2 eV and
588.6 eV were assigned to Cr’, as presented in Fig. 3A. S.
oneidensis MR-1 can reduce Cr®" into Cr*", as confirmed by
our XPS results in Fig. 3A and supported by the literature.*®>?

Our findings reveal an extracellular interaction between Cr°*
and S. oneidensis MR-1 bacteria. A portion of Cr®" was reduced

A

1200 1000 800 600 400 200 0
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1200 1000 800 600 400 200
Binding Energy(eV)

0
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to Cr*, resulting in a [Cr*')[Cr®] ratio of 1.7, while the
remaining 41% of Cr®" is adsorbed on the bacterial cell surface.
The extracellular reduction of Cr®" can occur via direct contact
of Cr®" with the metal-reducing protein complex on the cell
surface and nanofiber. Also, S. oneidensis MR-1 can produce
electron shuttles to promote mediated electron transfer between
the cell and Cr®. S. oneidensis MR-1 can uptake Cr®" to be
reduced inside the cell to Cr’’, but our results could not
confirm the intracellular reduction of Cr®" due to the depth
limitation of XPS (7-10 nm).

Our XPS results revealed peaks related to both Cr®" and Cr**
after being incubated with S. oneidensis MR-1 in the presence of
Mny,Fe, g0, NPs. Peaks of Cr 2p XPS observed at BE 576.7 eV
and 585.9 eV denote the presence of Cr’". Cr®" is represented by
one peak at 579.2 eV,*® as illustrated in Fig. 3B. Similar results
were reported due to using Cr®" as a terminal electron acceptor
during the respiration process of S. oneidensis MR-1.**>* The ratio
between extracellular Cr** and Cr®" was equal to 3.5. Bacteria can
reduce Fe®* to Fe*’, and biogenic Fe*" can detoxify Cr®* to
Cr’'.>* The affinity of MnFe,O, NPs to proteins on the bacterial
outer membrane can improve the contact area between a single
bacterium and Cr®" as an external electron acceptor.*®™°

Cr’*2p
Cr>* 2p

590/585 580 575 570

600 595

Binding Energy(eV)
600 595 590 585 580 575 570
Binding Energy (eV)

Fig. 3 Wide scan and high-resolution XPS spectra of (A) Cr 2p treated by S. oneidensis MR-1 alone, (B) Cr 2p after incubation of S. oneidensis MR-

1and MnoAzFezlgo‘; NPs.

This journal is © The Royal Society of Chemistry 2025
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In this work, the presence of both S. oneidensis MR-1 and
Mn, ,Fe, s04 NPs removed Cr®* 1.37 times more than using the
NPs alone. Some possible scenarios could explain how NPs
enhanced the bio-reduction of S. oneidensis MR-1 from Cr®" to
Cr’'. By adsorption, NPs can bridge the bacterial cell and Cr®
to promote electron transfer. Cr®" is adsorbed onto the MnFe,O,
NPs via partial chemisorption®>®* and partial physisorption.’”
The Mn in MnFe,0, can interact via ionic bonding with the O
atoms of HCrO,_/CrO,>, facilitating Cr®" adsorption.®”*" Mn*
can reduce Cr®" to Cr*" and be oxidised to Mn®*". The
disproportionation of oxidised Mn®*" produced Mn*', causing
Mn** to continue participating in the Cr®" reduction. Cr*" is
deposited on the MnFe,0, surface as Cr(OH); colloids.*>®*

The limited availability of adsorbed Cr®" improved the
efficiency of microbial respiration,*®>* as was indicated by our
results. Since MnFe,0O, NPs have electrochemical properties,®>®
metal oxides can link S. oneidensis MR-1 with Cr®" to promote
direct electron transfer and act as an electron mediator from
the cell to Cr®", a terminal electron acceptor.®®

In addition, NPs can act as physical shields for bacterial
surfaces from Cr®’, which could reduce the direct damage to
bacteria caused by heavy metals. Encapsulating S. lothica by
biochar reported that it could avoid the lethal effect of Cr®".%
In addition, Mn,,Fe, 3O, NPs can sustain bacterial viability,
as shown in Fig. S11 and supported by the literature.®* The
Mn content in the chemical structure of Mn,,Fe, sO, NPs
improved the anti-oxidant activity of NPs and, in turn, cell
viability.®> Substituting Fe*" by Mn** in Mn,,Fe, ;0, NPs
decreased the lethal effect of Fe*" on bacterial viability. This
explains how Mn,,Fe, 3O, NPs improved the viability of S.
oneidensis MR-1 under the sub-lethal concentration of Cr®* by
3.3 times.>

3.4 Boosting the bacterial tolerance to Cr®" by Mn, ,Fe, s0, NPs

SEM imaging monitored the alterations in the morphology of
bacterial cells following the bio-reduction.

3.4.1 Morphology of untreated bacterial cells. The untreated
tested S. oneidensis MR-1 demonstrated their viability under
anaerobic redox conditions, as shown in Fig. 4A. In the absence
of both Cr®" and Mn,,Fe, O, NPs, bacterial cells of .
oneidensis MR-1 were observed as rod-shaped with smooth
surfaces as commonly described.”*****%®% The formation of
the division ring (Z-ring) at the division site at the mid-cell on
the bacteria was an indicator of cell division, as depicted in
Fig. 4A. Parker et al®* reported that the delay in separating
daughter cells could be ascribed to the minimum availability of
nutrients in the media.*” The presence of bacterial nanofibers
as extensions of the outer membrane and periplasm (Fig. 4A)
was demonstrated to be increased under oxygen-limited
conditions.®® Nanofibers were reported to have the multiheme
cytochromes responsible for the extracellular electron transport
pathway for linking the respiratory chain of bacteria to an
external electron acceptor.®® Electrons are transferred along
nanofibers of S. oneidensis MR-1 between the close cytochromes
via an electron-hopping mechanism.®”%®

3040 | Environ. Sci: Nano, 2025, 12, 3035-3046

View Article Online

Environmental Science: Nano

3.4.2 Rupture of S. oneidensis MR-1 cells in response to a
sub-lethal dose of Cr®. The impact of exposure of .
oneidensis MR-1 to Cr®" was observed on the rupture on one
pole of a cell, as shown in Fig. 4B. A shrunken surface and
crack formation in bacteria cells were also observed after the
reaction with Cr®".?>*>% As in the case of untreated cells,
attempts of cell division were still observed for cells exposed
to Cr®', as demonstrated in Fig. 4B. The presence of cell
division septa was an indicator for the initial phase of cell
division of S. oneidensis cells.*> SEM images of S. oneidensis
MR-1 revealed the inability to produce nanofibers after
exposure to Cr®", The variation in the length of cells exposed
to Cr*" is presented in Fig. 4B. Bacterial cells modified their
shape as a coping strategy for tolerating the stress induced
by bt 5563

3.4.3 Cellular compatibility of Mn, ,Fe, gO, NPs. Fig. S1f
shows the biocompatibility of different concentrations of
Mn, ,Fe, 3O, NPs towards S. oneidensis MR-1. Our findings
were supported by Desai et al., who reported that MnFe,O,
NPs showed no antimicrobial activity against some
pathogenic bacteria.”’ Shewanella can survive upon exposure
to 50 mg mL ™" of magnetite (Fe;0,) with approximately 36.2
mg mL ™" of total iron content under anaerobic conditions.
Such tolerance to high iron concentrations was due to the
cellular attachment to magnetite for Fe** acquisition.”* The
tolerance of S. oneidensis MR-1 to such concentrations of
Mn,,Fe, 30, NPs could be attributed to the presence of
Mn?* in the chemical structure of NPs, which improved the
antioxidant activity, cell viability, and ability to respire
metal.®® In addition, the Mn?" content in Mn,,Fe, 3O, NPs
lowered Fe*' concentration, which could decrease the lethal
effect of Fe** on the viability of the tested bacterial strain.
The presence of Fe*' in Mng ,Fe, 3O, NPs** has less toxicity
than Fe*" under physiological conditions.”> The resistance of
S. oneidensis MR-1 to Fe*" depends on the CIpXP protease
complex, which removes the mis-metallated protein. ClpX is
an unfoldase, and CIpP is a peptidase that degrades
damaged or misfolded proteins.”?

The capability of Shewanella to produce nanofibers in the
presence of Mn, ,Fe, 3O, NPs is shown in Fig. 4C. The poles
of Shewanella cells were reported to be attractive to the metal
oxide/hydroxides under both aerobic and anaerobic
conditions,”*”> which explains the polar rupture of some
cells in Fig. 4C.

3.4.4 Enhanced tolerance of Shewanella to Cr®* by Mn, ,-
Fe, 304 NPs. In the presence of Mn,,Fe, sO, NPs, the surface
of the treated S. oneidensis MR-1 cells by Cr®" retained a
smooth surface but with an elongated morphology (see
Fig. 4D). Such stretching in the shapes of cells was observed
by 8. loihica PV-4 in response to Cr®" in a mixture containing
biochar and o-Fe,O; together.> The morphological changes
observed in the bacteria are adaptive strategies for coping
with environmental stresses like the presence of toxic Cr®".
Inhibiting cell division while maintaining cell growth leads
to increased cell length’® and boosts the extracellular
electron transfer by S. oneidensis MR-1.””
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Mn, ,Fe, 3O, NPs provoked the formation of bacterial
nanofiber in the presence of Cr®', as depicted in Fig. 4D.
Nanofibers are extensions of the outer membrane and
periplasm, which are the extracellular electron transport
components.®® Nanofibers are important for long-range
extracellular electron transfer.”>®® The ability of NPs to
regenerate bacterial nanofiber production agrees with the
findings reported by Yu et al.>® Such observation in response
to the interaction between Mn,Fe; ,O, NPs and cells was
confirmed in the present work by electron microscopy.

So, Fig. 5 summarises the protective role of Mn, ,Fe, 3O, NPs
to S. oneidensis MR-1 bacterial cells during Cr®". The use of
Mn, ,Fe, g0, NPs improved the viability of S. oneidensis MR-1
under a sub-lethal concentration of Cr®* by 3.3 times, as shown
in our previous report.23 Employing Mn, ,Fe, 30, NPs as the
adsorbent can limit the availability of Ct®* to S. oneidensis MR-1,
boosting the tolerance to Cr°".'®®° The positive adsorptive
effect of NPs on Cr®" concerning the viability of bacteria has
been reported in the presence of goethite, humic acid,*
and ferric oxyhydroxide mediators.'®*® As reported in our
recent investigation,23 Cr® was adsorbed on Mng,Fe, 0,
NPs following the Langmuir adsorption isotherm model.
Based on this model, the adsorption and desorption rates
should be equal. Adsorption is the separation of molecules
from the aqueous solution by being attached to the surface

Shewanella oneidensis MR-1

Mllo_zFe2_804 NPs

Fig. 5
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of the adsorbent. The desorption is inversely related to
adsorption processes, where adsorbates are transferred from
the adsorbed state to bulk solution.”® This possible
continuous adsorption-desorption rate of Cr®* can sustain a
release of Cr®" from the surface of NPs, which makes the
exposure of cells to Cr®" occur at a gradual rate.

Furthermore, Mn,,Fe, 30, NPs reduce Cr®" into Cr**, as
shown in Fig. 3B. Cr*" is less toxic than Cr®" towards S.
oneidensis MR-1.>> Bacterial cells exposed to Cr*" experienced
viability loss but maintained some enzymatic activity and
cellular integrity,” which explains the morphological response
of S. oneidensis MR-1 to Cr®" in the presence of MnyFe; 30,
NPs, as shown in Fig. 4B.

4. Conclusion

This study describes a possible protecting role of manganese
ferrite nanoparticles (Mn, ,Fe, 3O, NPs) to Shewanella oneidensis
(S. oneidensis) MR-1 during hexavalent chromium (Cr®") bio-
reduction. Mn, ,Fe, sO, NPs can reduce the highly toxic Cr®* to
less toxic Cr’*. Under anaerobic conditions, we found that
Mn,,Fe, g0, NPs induced the elongation of the bacterial cells
and promoted the formation of nanofibers. Such morphological
change could improve the viability of S. oneidensis MR-1 cells in
response to the sub-lethal dose of Cr®" and, in turn, enhance

Fer*

Mn,Fe O, NPs

1~ bio-reduction.
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their detoxification ability. Integrating both S. oneidensis MR-1
and Mn,,Fe, O, NPs enhanced Cr®" detoxification by 2.1-fold
compared to S. oneidensis MR-1 alone and 1.4-fold compared to
NPs alone. Therefore, the present article provides evidence of
Cr®" bio-reduction and the bacterial response to Cr®* and Mn, ,-
Fe, 30, NPs. This study will open a venue for applying
nanotechnology in the bio-remediation of highly contaminated
sites by heavy metals.
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