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Challenges and opportunities in using Kinetic
Monte Carlo for battery research and innovation
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With the increasing reliance on batteries, particularly in electric vehicles, understanding the kinetics of

chemical reactions – especially undesired side reactions causing aging and failures – is crucial for improv-

ing safety and lifespan. Conventional macroscopic models used in battery management systems (BMS)

often face limitations due to inaccuracies and difficulties in determining parameters, which leads to large

uncertainties. In contrast, bottom-up approaches, like Kinetic Monte Carlo (KMC) simulations, offer more

precise modeling by bridging molecular-scale phenomena with macroscopic models, balancing compu-

tational cost and accuracy. Traditionally utilized in catalysis, KMC is now showing potential in battery appli-

cations, although it faces challenges related to the combined presence of evolving solid interfaces (e.g.,

solid electrolyte interphase), complex electrochemical reactions, ion/electron transport and mechanical

degradation during cycling. This perspective explores how KMC can assist computational and experimental

chemists in understanding and obtaining critical physical/chemical parameters from microscopic-level

insights, e.g., chemical composition and temporal concentration profiles. These insights can enhance BMS

at the macroscopic level, optimize battery performance, and inspire innovative mitigation strategies. The

perspective also highlights challenges in estimating rate constants, handling timescale disparities, and mod-

eling complex environments, concluding with future research directions for this evolving field.

Broader context
Understanding the kinetics of chemical reactions in batteries – especially undesired side reactions causing aging and failures – is crucial for improving safety
and lifespan. Macroscopic models used in battery management systems often face large uncertainties due to difficulties in determining parameters. Kinetic
Monte Carlo (KMC) simulations offer more precise modeling by bridging molecular-scale phenomena with macroscopic models, balancing computational
cost and accuracy. Traditionally utilized in catalysis, KMC is now showing potential in battery applications. This perspective explores how KMC assists compu-
tational and experimental chemists via microscopic-level insights and how KMC could enhance battery management systems at the macroscopic level and
thus optimize battery performance. Despite the achieved insights and successes of current KMC approaches, models and algorithms need further improve-
ments. The most important limitations identified by our perspective are: (i) the need for non-uniform lattices to account for the heterogeneity of battery
assemblies, i.e., evolving solid interfaces (e.g., solid electrolyte interphase) and mechanical degradation; (ii) better algorithms for dealing with timescale dis-
parities to focus the computational effort on slow (rare) events that are key for aging; (iii) more accurate rate constants and lateral interactions from molecular
simulations in representative environments.

1. Introduction

The battery technology market was valued at approximately
112 billion USD in 2021 and is projected to reach 424 billion
USD by 2030, reflecting an annual growth rate of around 17%.
Lithium-ion batteries (LIBs) are expected to remain the domi-

nant segment.1 With such rapid growth, understanding the
complex chemical reactions within these devices – particularly
at the electrode/electrolyte interface – is crucial, as these reac-
tions significantly impact both battery performance and
lifespan.2–6 Researchers are actively investigating these inter-
facial processes to uncover fundamental mechanisms and
develop more sustainable materials for next-generation energy
storage. Experimental studies have advanced our understand-
ing of these interfaces by providing insights into various pro-
perties e.g., chemical compositions, and oxidation state. This
approach can become frustrating when dealing with slow pro-
cesses where a single experiment could take years like in
battery aging. Furthermore, some interfacial processes (e.g.,
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thermodynamics and kinetics of side reactions at the electrode/
electrolyte interface) remain beyond the resolution of currently
used experimental instruments.7–10 Theoretical models can be
used to complement these experimental studies by providing
molecular insights.2 These models range from quantum mechan-
ical methods to kinetic Monte Carlo (KMC) and macroscopic
models fitted to experiment. Each model comes with its own set
of benefits and drawbacks in terms of accuracy and compu-
tational cost. First-principles quantum mechanical methods,
while highly accurate, are computationally expensive and limited
to small systems, making them inadequate for handling complex
interfacial environments. In contrast, fast traditional continuum
methods often lack detailed molecular insights and are plagued
by parameter uncertainties, which can severely affect their predic-
tive accuracy given that the uncertainty could vary over 4 to 5
orders of magnitude.11,12 These parameters are integral to what is
known as the Battery Management System (BMS) in electronic
devices. The BMS plays a crucial role in minimizing risks associ-
ated with overcharging, overheating, and short circuits, while sim-
ultaneously working to optimize battery performance and extend
its lifespan.11,12

KMC-based methods have become increasingly popular for
bridging the gap between quantum and continuum scales as they
offer a good balance between accuracy and computational cost.
For example, KMC methods have been extensively used in the lit-
erature to model various processes mostly in the context of
heterogeneous catalysis such as oxidative catalytic dehydrogena-
tion of light alkanes (e.g., ethane/propane over PtNi(111)13,14), the
water–gas shift reaction which produces high-purity H2 from H2O
and CO over Cu(111)15 and Pd(100),16 the Ostwald process,17 and
many others.18,19 Such KMC studies provide insightful details
about the possible reaction pathways, selectivity and catalyst long-
evity aligning with experimental findings. In the last decades, the
state of KMC has matured in the field of computational catalysis,
as indicated by the rise of several user-friendly software packages,
as discussed in recent reviews.18,19 In this perspective, we shed
light on the rapidly growing field of KMC applied to energy
storage (mainly batteries).20–51 We are convinced that KMC will
continue to play a pivotal role in accurately modeling these
systems not only to improve our understanding, but also to opti-
mize designs, enhance performance, and ensure safety.52–56

2. The principles of KMC

KMC-based methods perform simulations through repeated
random sampling. In general, for a kinetic Monte Carlo
method, the description of the evolution of any physical/
chemical processes is described by a an equation called the
Markovian Master equation:57

dPαðtÞ
dt

¼ �
X
β=α

kαβPαðtÞ þ
X
β=α

kβαPβðtÞ ð1Þ

where t is time, and Pα and Pβ is the probability for the con-
figuration to be at states α and β respectively at time t, and kαβ

and kβα are the transition probabilities (rate constants) per
unit time that specify the rate of changes due to reactions, i.e.,
kαβ is the rate at which the system transitions from state α to β.
Section 6 gives more details on how to estimate the rate con-
stant k. KMC assumes that the probability distribution pαβ, i.e.,
to go from α to β is a Poisson process:

pαβðtÞ ¼ kαβe�kαβ ðtÞ ð2Þ
where kαβ is the corresponding rate constant to go from α to β,
and t is the time for the first transition.

Once the rate constants for all processes in the system of
interest are obtained (experimentally or theoretically), KMC
can perform the simulation of the system. One of the most
used algorithms in KMC is the variable step size method in
which the KMC starts with a particular configuration of the
system and then predicts subsequent events. To elaborate, let
us consider all possible processes w for the system to escape
the current state, with associated rate constants kw. The total
rate constant for the system is given by:

ktot ¼
X
w

kw ð3Þ

Let us consider process q, occurring after q − 1 previous
events. The probability of q to occur is determined via:

Xq�1

w¼1

kw � ρ1ktot �
Xq
w¼1

kw ð4Þ

Note that the left-hand side and right-hand side define an
interval that corresponds to the combined rates of events up to
a certain number of iterations. By generating a random
number (ρ1[0,1)) and multiplying it by the total rate, we pick a
value between zero and the sum of all event rates. The event q
is then selected so that this value lies between the sum of the
rates of all earlier events and the sum including event q. This
method ensures that events with higher rates have a propor-
tionally greater chance of being chosen, accurately reflecting
the physical likelihood of each process. Once the process is
chosen and executed, the time is updated according to the fol-
lowing equation:

t ! t� lnðρ2Þ
ktot

ð5Þ

where ρ2 is a random numbers [0,1). This equation is derived
from the exponential distribution of time intervals between
events in a Poisson process, where the time between events is
not fixed but varies randomly—meaning each waiting interval
can differ. As a result, the equation advances the simulation by
a stochastically correct amount of time, capturing both the
randomness and the average frequency of events as they occur
in real systems.

The algorithm continues the simulation through choosing
subsequent events and evolving the time until the maximum
simulation time or number of iterations is reached. This sto-
chastic nature and coarse-graining approach of KMC make it
uniquely powerful in extending simulation times far beyond
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those achievable by other atomistic models. At the same time,
it surpasses macroscopic models by maintaining atomic or
molecular resolution. It is important to note that numerous
KMC packages are available, each optimized for different
applications. Recent reviews18,19 have provided detailed com-
parisons between these software tools.

KMC comes in two main forms: lattice KMC and off-lattice
KMC. Lattice KMC has gained popularity and is frequently
used to model reactions at interfaces and surface growth pro-
cesses due to its relative speed compared to the off-lattice
models. Hence, it will be discussed in this review. The main
benefit of the lattice KMC is that it simplifies the molecular
representation of the system by representing species (atoms/
molecules) as points occupying discrete lattice sites. Fig. 1
shows a representation of the lattice KMC model highlighting
diffusion and energetic interactions events. For the rest of the
article and for convenience, we will be refereeing to the lattice
KMC as just “KMC”, unless stated otherwise.

3. Insights from KMC for battery
systems

Stability in battery systems strongly depends on the nature of
the electrode interface, where the reactions of various chemical
species on the electrode surface lead to the formation of solid/
solid or solid/quasi-solid (porous) interfaces, with the most
famous one being the solid electrolyte interphase (SEI). These
interfaces play a crucial role in determining battery perform-
ance and stability. KMC methods have been used to model
these layers, providing valuable insights into aspects such as
composition, surface growth thickness, and structural pro-
perties. An example is the study by Yin et al.59 where a KMC
model was developed to simulate the growth process of Li2O2

thin films during the discharge of Li–O2 batteries. The dis-
charge process in Li–O2 battery initiates with the reaction
between the dissolved O2 and Li+ and an electron on the elec-
trode surface, resulting in the formation of LiO2 (ion pairs).
Subsequently, LiO2 (ion pairs) undergoes further reduction to
produce Li2O2. As the Li2O2 layer grows over the electrode
surface, it reduces the reaction rate due to its passive nature,

i.e., Li+ and electron-transport is limited. When modeling this
process using KMC, the reaction’s rate constant prefactors
were obtained theoretically as k0 = νcP°, where νc represents
the normalized frequency of the reactant particles colliding
with the pore wall surface, and P° is the probability of electron
transfer upon a single collision at open circuit potential.60 The
diffusion events were obtained from the Stokes–Einstein
equation. To include the effect of the passive layer during the
simulation, Yin et al.59 implemented a modification of the
Butler–Volmer equation where they introduced a multiplicative
factor to modify the rate constant, see eqn (6).

k ¼ k0
1� erfðδ� dmÞ

2
exp

αaFη
RT

� �
� exp � αcFη

RT

� �� �
ð6Þ

where δ is the thickness of the Li2O2 film, and dm is the
maximum distance at which the discharge reaction remains

active. When δ ≫ dm, the term
1� erfðδ� dmÞ

2
goes to zero,

implying that there is no electrochemical event anymore. In
the study, two electrodes were investigated: a bare carbon
nanofiber air electrode and a catalyst coated carbon nanofiber
electrode. In this case the oxygen-reduction catalyst is typically
made of a noble metal or metal oxide nanoparticles. Fig. 2A
and B illustrate schematic representations of Li2O2 film for-
mation on carbon nanofibers and catalyst-coated carbon nano-
fibers in Li–O2 batteries. The KMC results revealed that the
ordering of the Li2O2 thin film is governed by the interplay
between diffusion and reaction kinetics. In the case of the
carbon nanofiber air electrode, an ordered crystalline for-
mation of Li2O2 is observed, while the catalyst-coated carbon
nanofibers lead to an amorphous structure.

We now turn our discussion to another battery technology,
i.e., Li–S batteries, where KMC simulations have been
employed to model the evolution of the carbon/sulfur mesos-
tructure during the discharge process.62 The adopted model
was inspired by previous studies59,60 where the rate constants
were obtained from the Butler–Volmer equation and the
diffusion rates were calculated using the Stokes–Einstein
equation. Their KMC simulation provides insights into key
aspects such as the concentration profiles of dissolved species,
the population of solid sulfur-based particles, and changes in
mesostructure porosity. Specifically, the simulation of dis-
charge curves reveals that the porosity of mesostructured
carbon/sulfur (C/S) cathodes evolves dynamically.62 During the
sloped phase, the porosity increases as long-chain S8 reduces
to medium-chain polysulfides (S4

2−). As the discharge pro-
gresses into the flat phase, the porosity decreases along with
the reduction of S4

2− to S2
2− and the precipitation of Li2S,

aligning with various theoretical and experimental
observations.

KMC simulations have also been employed to model the
critical process of battery aging, which refers to the gradual
decline in battery performance over time.9,63 Battery aging
occurs through two primary mechanisms: cyclic aging, which
takes place during use, and calendar aging, which occurs even
when the battery is idle. One of the most significant challenges

Fig. 1 A representation of lattice KMC events (represented by the letter
e) where SB, 1NN and 2NN denotes single-body interactions, first
nearest-neighbor interactions, and second nearest-neighbor inter-
actions respectively. Reprinted (adapted) with permission from ref. 58
Copyright 2020 American Chemical Society.
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in experimental investigations of battery aging is the slow
nature of these processes. To overcome this challenge,
researchers often accelerate aging by conducting experiments
at high temperatures. While effective in reducing time require-
ments, this approach can distort the actual kinetics that occur
under standard operating conditions, trigger side reactions,
and compromise the reliability of the kinetic data. Together,
these distortions might misrepresent the battery’s true long-
term behavior. Another challenge lies in the variability of
experimental capacity loss patterns, which range from non-
linear behaviors (e.g., square root dependence8) to linear
trends7 and mixed patterns.64 These patterns stem from
various physical phenomena, such as diffusion, charge trans-
fer, mechanical cracking, or a combination of these processes.
A lack of understanding of the origins of these patterns
hampers progress in interpreting battery behavior and opti-
mizing future designs. Additionally, the variability in time
scales – spanning months to years even under similar experi-
mental conditions – highlights the complexity of battery
systems and the uncertainties arising from experimental
setups and material compositions. In the context of LIBs,
aging is predominantly governed by the formation and growth
of the solid electrolyte interphase (SEI) layer. The SEI is a
heterogeneous, nanometer-thin layer that forms at the inter-
face between the negative electrode and the electrolyte due to
the reduction of the electrolyte by electrons from the anode.

Initially, the SEI acts as a protective passive layer, preventing
further reduction of the electrolyte. However, over time, the
SEI undergoes various chemical and physical changes, contri-
buting to capacity loss and, ultimately, battery failure. As such,
SEI growth is widely regarded as the primary aging mechanism
in LIBs.6,10

In view of the critical role of the SEI layer, the majority of
KMC-based studies have concentrated on understanding its
formation and growth. Most importantly, KMC models have
investigated the effects of parameters such as temperature and
charging rate on charging time and SEI thickness.9,10,52,61,65–68

In a key study, Mukherjee and co-workers found that both
charging time and SEI thickness decrease with the increase in
activation energy of the solvent’s molecules diffusing through
the SEI layer, see Fig. 2C.61 However, the SEI thickness was
found to increase with temperature due to the increase of
diffusion. At lower temperatures, a high Li reduction rate was
observed, but also a higher resistance of the SEI (due to
increased current density), diffusion mostly being the limiting
process (see Fig. 2D). On the other hand, at higher tempera-
tures, a low Li reduction rate causes increased total charging
time. Recent KMC models have investigated the SEI structure
and predicted the formation of a multi-layered SEI in agree-
ment with the experimental findings.56,65,69 For example, in
our recent study,65 we have investigated how the inorganic
species of the SEI influence both its composition and the kine-

Fig. 2 Panels A and B represent a schematic representation of Li2O formation over carbon nanofiber and catalyst-coated carbon nanofiber in Li–O2

batteries respectively, the radial distribution functions g(r) correspond to the fully discharge state. Planes 1–3 correspond to the points where the
nanofiber intersects at 5, 20, and 35 nm, respectively. Panels C and D represent the effects of solvent/Li-ion activation energy and temperature on
the SEI thickness and charging time in LIBs, respectively. Panel A and B are reprinted (adapted) with permission from ref. 59 Copyright 2017
American Chemical Society. Panel C and D are reprinted (adapted) with permission from ref. 61 Copyright 2017 American Chemical Society.
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tics of its growth. Using a combined DFT-KMC approach, we
investigated the relationship between SEI growth and capacity
loss over time (see Fig. 3a–h). We focused on the decompo-
sition of the solvent ethylene carbonate on two key surfaces –

Li2CO3(001) and Li2O(111) – which are representative of the in-
organic layer of the SEI. Our KMC simulations revealed the for-
mation and growth of the SEI structure, identifying different
capacity loss behaviors – nonlinear, linear, and mixed –

reflected by the loss of Li0, which correspond to the kinetics
during the initial stage without inorganic species (Fig. 3b) and
after the inorganic layer (Li2CO3) forms (Fig. 3f). Additionally,
Fig. 3c and g illustrate the spatially heterogeneous distribution
of SEI species before and after inorganic layer formation,
respectively. KMC captures the accumulation of inorganic
species like Li2CO3 near the Li-metal anode and organic
species such as alkyl carbonate (dilithium butylene dicarbo-
nate Li2BDC) near the electrolyte. These findings provide a
molecular explanation for the diverse capacity loss patterns
and the multilayered heterogeneous SEI structure observed
experimentally, demonstrating how KMC bridges molecular
simulations with experimental observations.

Another critical process related to the SEI layer is lithium
dendrite formation, which can lead to short circuits, perform-
ance degradation, and safety risks such as thermal runaway

and explosions. KMC models have explored dendrite growth by
analyzing the effects of various operating conditions.70–72 For
instance, Menzel et al.71 showed that voltage significantly
affects dendrite size and morphology, providing insights into
their growth mechanisms. These findings are crucial for
understanding and mitigating dendrite formation, a major
challenge in advancing Li-metal battery technology, which
offers energy densities far exceeding those of current LIBs.

KMC being a generally useful method, it has been adopted
to model the diffusion in various battery technologies.21,55,73,74

For example, Xiao et al.55 have investigated Li atom intercala-
tion in the commercial cathode material LiFePO4 found in
LIBs. The parameters for the KMC were obtained using DFT
through applying a cluster expansion approach. The model
revealed the formation of an ordered phase of Li0.5FePO4, with
alternating Li-rich and Li-poor planes as seen in Fig. 4A,
explaining the X-ray diffraction experiments that detected
peaks linked to an intermediate-Li phase. In the context of Na-
ion batteries, a recent study by Wang et al.21 has investigated
Na-ion transport in three Na superionic conductor electrode
materials: NaxTi2(PO4)3, NaxV2(PO4)3, and NaxCr2(PO4)3. To
estimate the rate constant, the activation energy for the
diffusion events were calculated using DFT, while the prefactor
was estimated to 1013 s−1, which is typical used for diffusion/

Fig. 3 Panels (a–d) show details of the initial ethylene carbonate (EC) decomposition reactions in the absence of the inorganic layer: (a) initial con-
ditions, (b) variation in species concentration over time, (c) specific mass density profile along the Z-axis of the simulation box, and (d) snapshots of
the simulation box after 0.6 μs. Panels (e–h) illustrate the EC decomposition reactions over Li2CO3 (001): (e) initial conditions, (f ) variation in species
concentration over time, (g) specific mass density profile along the Z-axis of the simulation box, and (h) snapshots of the simulation box after 1.2 ms.
Here, ρtotal denotes the total density. Reprinted (adapted) with permission from ref. 65 Copyright 2023 American Chemical Society.
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first order reactions.75 Fig. 4B shows the Na-vacancy sublattice
and the computed activation barriers with various Na compo-
sition and different transition metals. Their study revealed
that Na+ transport is primarily governed by the local chemical
environment, which is shaped by the arrangement of sodium

ions and their vacancies, and the oxidation states of transition
metals. Furthermore, they have also found that the ordering
and disordering of Na vacancies also impacts the transport.
Their study suggests that changing the local charge patterns
through modifying the transition metals could potentially
increase the capacity of these electrode materials.

Overall, one can see that the use of KMC is beneficial for
shedding light on the various reaction pathways and mecha-
nisms governing a wide range of battery systems. However,
KMC faces challenges that need to be addressed to enhance its
robustness and broaden its applicability in providing accurate
insights for experimental and theoretical battery research. In
the following sections we will discuss the key challenges in
KMC, including the consequences of its lattice nature to
model the complex battery interfaces, accurate estimation of
rate constants, time disparity, and lateral interactions.

4. The lattice nature of KMC and the
complexity of battery modeling

Even though the lattice nature of KMC is its strongest feature
in reducing the computational effort, it also entails many
intrinsic limitations and challenges that need to be addressed
when describing physical and chemical processes. For
example, density and concentration profiles are usually over/
under-estimated because KMC represents both small and large
species as points on a lattice, without accounting for their
actual physical volumes.59,65 This makes it hard to compare
with the concentration profiles obtained from experiments.
Vacant sites can increase/decrease concentrations during the
simulation or as part of the initial system setup. For instance,
consider a decomposition reaction like C → A + B. In a fixed-
lattice KMC, this reaction is represented as C + vacant site → A
+ B. The need for a vacant site is essential for the reaction to
take place (two sites for reactants and two sites for products;
conservation of the number of sites). As a consequence, if the
decomposition reaction is very fast but the number of vacant
sites is very low, then, the rate limiting step would be the pres-
ence of the vacant site rather than the real probability of the
event. Thus, the kinetics would become nonphysically slow,
which would induce erroneous conclusions.59,65,76

A challenge also arises when dealing with interfaces (e.g.,
solid/liquid) in fixed-lattice KMC simulations. In a solid atoms
are closely packed, but when representing the liquid phase,
the lattice will inherently include many vacant sites due to the
lower packing density of the liquid compared to the solid.
Such challenges becomes even more pronounced when
dealing with polymerization reactions. For example, the for-
mation of polymers in the SEI typically slows down the
diffusion of species. However, if the simulation setup includes
an excessive number of vacant sites, it can create numerous
diffusion pathways that may not accurately reflect the physical
behavior of the system. In such cases, the large number of
vacant sites can lead to an overestimation of diffusion coeffi-
cients, distorting the actual impact of polymer formation on

Fig. 4 Panel A shows the arrangement of Li during the charging
process of LiFePO4. The ordered pattern with alternating layers of Li-
rich and Li-deficient atoms is shown along the b axis (Li concentration
around 0.5 represents the intermediate phase). Reprinted (adapted) with
permission from ref. 55 Copyright 2018 American Chemical Society.
Panel B shows an illustration of the Na-vacancy sublattice in NaSICON,
and the computed kinetically resolved activation barriers (EKRA) with
varied Na compositions (x) and transition metals (M). Top x-axis is the
oxidation state of the transition metals while the bottom x-axis is the Na
composition. Reprinted (adapted) with permission from ref. 21
Copyright 2023 American Chemical Society.
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diffusion.65,76 As a result, the kinetics predicted by the KMC
simulation may not align with experimental observations,
leading to inaccurate conclusions about the effects of polymer
formation on the kinetics and stability of battery systems.65,76

Overcoming the fixed lattice nature of KMC is quite challen-
ging as it is tightly linked to the basics of lattice-based KMC.
However, one can modify the algorithm to make a model as
close as possible to the real physical system. One way to
address these challenges is to modify the KMC scheme to
allow large species to occupy multiple lattice sites, corres-
ponding to their actual volumes. For example, a molecule C
could occupy 3 sites, while molecules A and B occupy 1 and 2
sites respectively, reflecting their respective volumes. This
approach resolves issues related to the presence of vacant sites
in decomposition reactions. Implementing such modifications
would lead to a more realistic description of density and con-
centration profiles, leading to more meaningful comparisons
with experimental data. Moreover, such approaches to account
for the “actual” size of species would greatly facilitate the (re-)
construction of the 3D atomistic model corresponding to the
simulated system. These 3D reconstructions are necessary to
extract further physical/structural properties such as the radial
distribution function and pore size distribution, as well as the
evaluation of properties like ionic conductivity. To the best of
our knowledge, only the KMOS77 software package allows
species to occupy more than one site in 3D. However, we
expect that other KMC packages will soon adopt his feature, as
each KMC package has unique characteristics that makes it
appealing for specific applications.18,19

Modeling the dynamic nature of solids represent another
major challenge for KMC. For example, mechanical cracking
of solids often occurs in various battery systems due to the
stresses and strains associated with ion movement during
charging and discharging. Specifically, in LIBs, the amount of
Li0 at the negative electrode constantly changes. Li0 concen-
tration increases during charging and decreases during dis-
charging due to the insertion and extraction of Li+. As a result,
the structure of the negative electrode and the SEI experiences
volume changes, which can lead to the formation of cracks
over time, altering the kinetics and accelerating degradation. It
should be noted that incorporating the impact of cracking
would help distinguishing calendar aging from the capacity
loss during cycling (where cracking primarily occurs due to the
movement of species between the electrodes). At the atomic
level, cracking occurs when mechanical stress and strain
exceed the material’s tolerance, leading to local strain.78,79

This strain results from a size mismatch between the original
lattice and the ions, which, when too large, triggers mechani-
cal cracking. For instance, the cracking of the SEI layer exposes
the “fresh” solid surface to the electrolyte. In KMC simu-
lations, accurately modeling this process is complex, as it
requires incorporating rules to detect excessive strain and
define cracking events. This involves accounting for the stress
and strain in the solid, adjusting the energetics of the lattice
sites to reflect the mechanical failure, and capturing the
material’s response to cracking events.71,78,79

5. Lateral interactions

In the context of solid interfaces, lateral interactions refer to
the interactions between adsorbed species over the solid
surface. These interactions play a crucial role in determining
the surface coverage, reaction kinetics and adsorption energy.
Additionally, they are essential for understanding scenarios
where solvent molecules (e.g., water in aqueous batteries) pre-
ferentially adsorb onto the surface over solutes, thereby dis-
tinguishing between inner-sphere and outer-sphere inter-
actions.80 Previous studies have primarily explored the impact
of lateral interactions in heterogeneous catalysis, with CO oxi-
dation over Pd(111)81 being a prototypical example. However,
in the context of batteries, these interactions have yet to be
incorporated. Ignoring lateral interactions can lead to signifi-
cant errors in simulation predictions, resulting in inaccurate
adsorption patterns and misinterpretations of surface
morphology.18,82 The inclusion of these interactions would sig-
nificantly enhance our understanding of the various important
processes at the electrode interface such as diffusion pro-
cesses, passive layer formation, and dendrite growth
mechanisms.70,71 For example, it has been shown that lateral
interactions near metal surfaces lead to a low hydrogen-bond
density, which restricts proton transport across the interface,
playing a key role in the kinetic pH effect observed in
electrocatalysis.83,84 In the context of battery systems, recent
studies have highlighted the importance of lateral interactions
for ion transport, surface adsorption, and reaction pathways
and, thus, our understanding of electrochemical performance,
stability, and interfacial kinetics.44,69,85 We here discuss two
particularly relevant examples of lateral interaction in the
context of batteries. First, we have investigated how varying
initial Li content in a graphite model system affects lateral
interactions among Li0 atoms.85 We found that as the number
of intercalated Li0 atoms increases, the reaction energy per Li0

becomes slightly more exothermic (by 10–20 kJ mol−1) up to
about five Li0 atoms, suggesting favorable lateral interactions
at low coverage. This behavior is likely due to structural defor-
mation being shared among neighboring intercalated Li0

atoms, which locally stabilize each other by collectively expand-
ing the graphitic layers. However, beyond this point, additional
Li0 atoms lead to less exothermic reaction energies. A notable
drop (∼40 kJ mol−1) in average intercalation energy is observed
when moving from half-lithiated to fully lithiated graphite
(LiC12 to LiC6). This is attributed to the partial positive charge
on Li0 atoms that enhances repulsive lateral interactions at
higher coverages, limiting further stabilization. These results
highlight that lateral interactions among intercalated lithium
atoms offer valuable insights into the battery’s state of charge
(SOC). In particular, they help explain the slowdown in char-
ging at high SOC: as more lithium is intercalated, repulsive
interactions between neighboring Li atoms increase, reducing
the availability of favorable insertion sites and thereby hinder-
ing further lithium insertion. Second, strong lateral inter-
actions between SEI salts, such as Li2O and Li2CO3, were
found to lead to the formation of patches and/or layered struc-
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tures. This underscores the critical role of these interactions in
passivating the electrode surface and enhancing the stability
of the SEI. Furthermore, the relative stability of these inorganic
species was found to depend significantly on the size of the
nanoparticle they form, with stabilization energies reaching up
to −350 kJ mol−1 compared to the isolated molecular units.

Given the importance of lateral interactions, various
methods have been developed to identify and incorporate
them,86–89 with previous studies comparing these
approaches.18,19 In this section, we will be focusing on two
methods – cluster expansion-based (CE) and machine learning
(ML)-based approaches – which have gained widespread atten-
tion for their effectiveness in capturing these complex inter-
actions, see Fig. 5.

The nature of CE is to represent the electronic energy of the
lattice as a sum of interacting clusters that encapsulate the
energetics of adsorbate arrangements, including 1-body,
2-body, and n-body interactions,87–89 see eqn (7), where Nads is
the number of adsorbed molecules in a geometry gi, and
E(n)(gi) is the adsorption energy contribution of the n-body
effects only. What makes CE advantageous over simplified
models (e.g., analytical/linear models) is that CE considers the
spatial arrangement of surface species on lattice sites when
predicting the energetics of elementary steps.

EðgiÞ ¼ Eð1ÞðgiÞ|fflfflffl{zfflfflffl}
1�bodymodel

þ
XNads

n¼2

EðnÞðgiÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
many‐body correction terms

; ð7Þ

It should be noted that a major challenge for CE-based
models is the need to train the Hamiltonian using extensive

datasets, which can be difficult and time-consuming to
develop. These datasets must be sufficiently diverse to capture
both common and rare surface coverage patterns. At the same
time the computational cost of optimizing each geometry with
DFT necessitates a training set that should not be very big in
size, focusing solely on chemically relevant geometries crucial
for accuracy. However, the processes of selecting these geome-
tries often relies on personal intuition or random sampling,
making it arbitrary and time consuming.

ML techniques can help address these challenges by enhan-
cing model accuracy and managing complex datasets.
Approaches like cross-validation, regularization, and pattern
recognition, when integrated with CE, have proven effective in
predicting adsorption energies and refining model perform-
ance.82 ML-based methods like deep learning techniques in
the framework of graph convolutional neural networks, have
been used to predict adsorption energies via analyzing large
datasets of surface configurations.82 However, and similar to
all other ML-based methods, they also suffer from the limited
availability of accurate training data, the substantial compu-
tational cost required to generate it, and the lack of a physical
basis in these models, which limits their interpretability.82

The complexity of batteries arises from the intricate elec-
trode/electrolyte interface, where the SEI forms. In this
context, lateral interactions are highly complex, involving mul-
tiple layers, including the electrode, inorganic species, organic
species (e.g., polymers), and the electrolyte. This complexity
significantly increases the computational cost, surpassing that
of heterogeneous catalysis, which, while simpler, still encoun-
ters challenges in accounting for lateral interactions.18,19

Building a training set using DFT becomes particularly chal-

Fig. 5 How lateral interactions between adsorbates are typically considered: analytic relationships, machine learning (ML)-parameterized cluster
expansions (CE), and advanced deep learning models, like graph convolutional neural networks. Reprinted (adapted) with permission from ref. 82
Copyright 2022 Elsevier.
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lenging for large systems due to the computational cost,
making the process increasingly difficult to manage. A promis-
ing alternative is to employ more affordable methods, such as
semiempirical approaches. Semiempirical methods have a
quantum mechanical foundation that explicitly accounts for
valence electrons, enabling the modeling of chemical reactions
and complex processes such as charge transfer. Still, even in
this case many-body effects involved in lateral interactions
might be difficult to capture accurately.90 By leveraging these
methods, large training datasets can be efficiently generated
through molecular dynamics simulations combined with
enhanced sampling techniques. This approach provides a cost-
effective way to construct training sets for the system of inter-
est. Once these large datasets are available, various ML tech-
niques can be utilized to analyze and model lateral inter-
actions. For instance, the datasets can guide the exploration of
the system’s configuration space, train graph neural networks
to capture complex lateral interactions, or develop machine
learning potentials for extended molecular dynamics simu-
lations as they are even faster than semiempirical methods.

6. Estimating the rate constant from
transition state theory

The rate constants (k) of the various chemical reactions can be
obtained from transition state theory (TST) according to
Eyring’s equation:

k ¼ κ
kBT
h

exp
ΔS‡

kB

 !
exp �ΔH‡

kBT

 !
ð8Þ

where κ is the transmission coefficient (<1; a correction term
to expresses the exact rate), kB Boltzmann’s constant, T the
temperature, and h Planck’s constant. The enthalpic contri-
bution, ΔH‡, can be estimated by examining the reaction path-
ways and the energy difference between the transition state
and the reactants using quantum mechanical methods (e.g.,
DFT). Next, the zero-point energy is calculated, along with the
thermal corrections related to the rotational, vibrational, and
translational degrees of freedom. These corrections provide a
more accurate estimation of the enthalpic contribution ΔH‡.
In the gas phase, the entropy contributions ΔS‡ such as
vibrational, rotational and, most importantly, translational
entropy can be easily determined from statistical thermo-
dynamics.91 However, in the condensed phase, determining
ΔS‡ becomes significantly more challenging, as it requires
explicit phase-space sampling, such as performing molecular
dynamics simulations of the entire system, to compute it
rigorously.

In surface reactions (like those in batteries), molecules are
adsorbed onto a solid and are constrained to at most two-
dimensional movements, which in KMC corresponds to the
surface area of the solid. This gives rise to an entropy term
known as configurational entropy, Sconfads . This configurational

entropy accounts for the multiple possible configurations that
the adsorbed molecules can adopt on the surface, see eqn (9).

Sconfads ¼ �kB ln
θA
θ*

� �
ð9Þ

where θA represents the coverage of the adsorbate A, which is
the fraction of surface sites occupied by A and θ* represents
the coverage of the vacant surface sites, i.e., the fraction of
sites that are unoccupied (available for adsorption). The stan-
dard state for surface coverage is a matter of debate that has
not yet been settled.92,93 One of the most intuitive choices is to
set it such that the surface is equally shared between adsorbed
molecules and vacant sites, i.e., θA = θ*. Hence, when only one
species is present, the standard coverage corresponds to a
surface that is half covered by adsorbates (θA + θ* = 1).
However, if more than one species, i.e., let’s say two (A and B)
the total converge becomes θA + θB + θ* = 1, which illustrates
the challenge of defining a physically meaningful standard
state for adsorbates. Further details on the entropy calcu-
lations can be found in ref. 91.

The accuracy of the rate constants used in KMC simulations
heavily relies on the theoretical level applied to estimate the
contributions of ΔS‡ and ΔH‡, as outlined in eqn (8). Selecting
an appropriate energy expression involves a trade-off between
accuracy and computational cost. In order to model bond for-
mation or breaking during chemical reactions, quantum
mechanical methods (primarily DFT) are commonly employed
to calculate activation energies. While DFT is the standard
method used in the battery community for reactions, its accu-
racy can vary significantly: differences of up to 90 kJ mol−1 for
the same reaction have been reported when changing the level
of theory.56 It is tempting to advocate the use of reliable wave
function-based methods such as DLPNO-CCSD(T) instead of
DFT. While this is a suitable option for gas-phase
reactions,94,95 the associated computational cost is prohibitive
in the condensed phase for routine applications.96 In other
words it is important to choose the most reliable, accessible
level of theory for each reaction in question and not to be over-
confident in the activation energies that come directly out of
DFT. Still, first-principles should provide reasonable activation
energies that lead to useful qualitative results. The situation is
worse for large systems where DFT is computationally (too)
expensive. In such instances, alternative methods like reactive
force fields, machine learning potentials (MLPs), and semiem-
pirical methods can be used as faster alternatives.9,85 For
example, in a recent study, a pretrained MLP, SevenNet,97 was
applied to simulate liquid electrolytes in LIBs. Although orig-
inally trained on inorganic compounds, SevenNet demon-
strated strong predictive performance for properties such as
solvation structures and diffusivities. However, it showed limit-
ations in predicting liquid densities due to undersampled and
ill-described long-range intermolecular interactions. Similar
approaches have also been explored in the context of semiem-
pirical methods: a particular study98 examined how the thick-
ness of the passive SEI layer affects tunneling barriers during
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electrolyte decomposition to estimate rate constants for incor-
poration into KMC simulations. These findings offer valuable
insight into interfacial stability and decomposition kinetics. In
the case of reactive force fields,99 studies of the cathode–elec-
trolyte interface revealed that the presence of specific cations
can suppress manganese dissolution into the bulk electrolyte.
This suppression enhances battery performance, particularly
by improving long-term stability. Such studies underscore a
broader interest in developing fast computational methods for
modeling complex electrochemical environments.85,97–99

However, these methods require careful parameterization with
sufficient training data (usually from DFT) to ensure their
accuracy. The difficulty in obtaining accurate rate constants
means that using KMC to model the timescale of a process is
often a qualitative approach.65 While other properties, such as
structural properties, can still be valid, they rely on the
assumption that the rate constants obtained from DFT are
qualitative and that the relative energies are valid.

Obtaining accurate rate constants for battery interfaces can
be conceptually categorized into two primary scenarios. The
first involves electrolyte species in direct contact with the elec-
trode surface, or scenarios where dendrite formation occurs
during battery operation. In these cases, reaction kinetics are
strongly influenced by solid–electrolyte interaction environ-
ment including the applied voltage, reminiscent of electro-
catalytic interfaces. As the battery continues to operate, passive
interfaces such as the SEI begin to form, and the reaction
environment gradually shifts away from the charged electrode
surface, as a new interface is formed: electrode/SEI/electrolyte,
the second scenario. Furthermore, in most commercial bat-
teries, a pre-formed SEI is typically present as a passive layer
from the outset.100,101 The SEI/electrolyte interface resembles a
heterogeneous catalytic interface, where reactions occur across
complex, spatially extended, and chemically diverse surfaces.
However, what distinguishes battery systems from convention-
al heterogeneous catalysis is the presence of a wide variety of
ionic species, often at high concentrations. For example, in
aqueous batteries employing water-in-salt electrolytes, the
interfacial structure and reactivity are dramatically influenced
by the nature and concentration of the electrolyte com-
ponents.102 In that case, the rate constant will be highly depen-
dent on the local environment. Moreover, in contrast to cataly-
sis, reversible and irreversible reactions are of prime interest:
the former are characteristic for the proper functioning of the
battery, while the latter describe degradation.

It should be noted that KMC’s reliance on predefined reac-
tion pathways and rate constants is very challenging in battery
systems with strongly coupled reactions that are difficult to
resolve. One alternative strategy is to identify the rate-deter-
mining steps and estimate their rate constants using low-cost
computational techniques, such as semiempirical methods,
MLPs, or reactive force fields, combined with enhanced
sampling methods like umbrella sampling or metadynamics.
These estimates can then be incorporated into the KMC frame-
work. However, this approach depends heavily on chemical
intuition to correctly identify the rate-limiting steps – a task

that is often nontrivial and system-dependent. To overcome
these limitations, advanced methods such as the ones
implemented in the EON software,103 which enables long-
timescale atomic-scale simulations, and Red Moon (RM)
approach104 have been developed. EON integrates automated
saddle-point searches with adaptive KMC to discover and
simulate rare events on-the-fly, efficiently exploring complex
reaction networks without prior knowledge of the mechanisms
involved. Meanwhile, The RM approach is a hybrid simulation
method that employs molecular dynamics to capture short-
time-scale molecular motions and uses Monte Carlo to sample
rare events (chemical reactions) according to a transition-rate
criterion. RM efficiently simulates complex reaction systems –

particularly molecular aggregates – where direct sampling of
reaction events by MD alone would be prohibitively slow.
Given this strength, RM has been successfully applied to
battery systems like LIBs and Na-ion batteries, revealing key
insights such as the differences in SEI formation between sol-
vents like ethylene carbonate and propylene carbonate.
Another approach involves applying KMC by treating certain
complex or poorly characterized processes in a coarse-grained
or effective manner – i.e., lumping diffusive or reactive events.
This enables KMC to extend beyond purely atomistic modeling
and function as a mesoscale framework that captures system-
level behavior. For instance, SEI formation can be modeled as
a layered growth process guided by experimental trends rather
than relying on a full molecular lattice representation where
detailed mechanistic data are unavailable. This strategy retains
the stochastic and kinetic rigor of KMC while broadening its
applicability to study the effects of operating conditions (such
as temperature) and material design in a computationally
efficient and experimentally grounded way.

7. Disparity of timescales in KMC: the
slow process of battery aging

One of the major challenges for KMC is handling slow and fast
processes at the same time.18,105–107 To elaborate, let us con-
sider a hypothetical system where there are fast diffusive
events (e.g., in the range of nanosecond) and some slow reac-
tive events (e.g., in the range of seconds). In such cases the
KMC simulation becomes stiff, i.e., the simulation will spend
an excessive amount of time sampling the fast diffusive events,
while it struggles to accurately capture the much slower, but
critical, reactive processes.

Traditionally, to overcome the problem of timescale dis-
parity in KMC, researchers used manual scaling of the fastest
process (highest rate constant), while monitoring the effect on
the accuracy of the model.105 More sophisticated and auto-
mated methods and algorithms have been developed over the
years.19,106,108–113 For example a method called accelerated
superbasin KMC (AS-KMC)108 can automatically handle the
scaling without user input. Such methods are based on the
assumption that fast processes become quasi-equlibrated with
time, limiting the need for further simulation of these pro-
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cesses. Hence, the algorithms force the system to exit the
current superbasin through scaling the rate of these fast quasi-
equilibrated processes. The process illustrated in Fig. 6 depicts
a hypothetical scenario where a superbasin is defined as a col-
lection of lattice configurations between which the system
transitions via quasi-equilibrated processes only (meaning the
jumps are easy and happen frequently). A typical battery-rele-
vant example would be the electrolyte diffusion. The occur-
rence of a non-equilibrated process signals the system’s tran-
sition into a new superbasin, which requires overcoming a
higher energy barrier. In LIBs this could, for instance, be the
solvent degradation. On one hand, this approach is simple
and effective. On the other hand, it faces difficulties for
complex system with many configurations, as fully sampling
even a single superbasin can be time-consuming. Algorithms
have undergone various improvements over time and led to
the development of ever more advanced methods to handle
the time disparity challenge.19 To illustrate how such algor-
ithms work, we consider an example of a more recent method
of rate constant rescaling (RCR) developed by Núñez et al.106

In their study, they compared the speedup factor for theRCR
algorithm, against other alternative approaches, including par-
allel processing and the likelihood ratio sensitivity analysis
(LRSA) method, across three different systems, one of which
was the water–gas shift reaction. Parallel processing refers to
the case when running multiple trajectories at the same time,
which maximizes the sampling efficiency within a given simu-
lation period. LRSA is a statistical method used to estimate the
sensitivity of rates. It employs parallel processing, and post-
processing trajectory derivatives (how sensitive the system’s be-
havior is to parameter changes) with covariance statistics that
increase the efficiency by reducing the need for repeated simu-
lations. As shown in Fig. 7A, the RCR algorithm outperforms
the others, achieving a speedup factor approaching 104.

The main principle in RCR is that the equilibrated elemen-
tary step is reduced by a factor of αi ≥ 1 during each step of the

algorithm. It should be noted that both of ki (forward rate con-
stant) and k′i (backward rate constant) need to be divided by
the same rescaling factor αi to maintain the thermodynamics
(equilibrium constant Ki ¼ ki

k′i
), so the rescaling process alters

only the transition states, not the overall thermochemistry.
The algorithm starts by identifying whether an elementary
step is in equilibrium using partial equilibrium criteria, and
identifies the fastest irreversible step. Then, it imposes an
upper bound on how much the rate constant of any elementary
step can be rescaled without affecting the slow dynamics.
While effective, it should be noted that the value of this upper
bound in theRCR algorithm is system specific which requires
intensive and careful testing. This task becomes particularly
challenging when dealing with reactions at interfaces, where
different media – such as solids, gases, or liquids – introduce

Fig. 6 An illustration of the potential energy surface (PES) for a system
with processes occurring over large differences in timescales, due to
varying barriers. The KMC simulation is accelerated using a constant rate
rescaling method, where, prior to rescaling, the system spends most of
its time sampling the smaller barriers. After applying the rescaling
method (represented by the blue dotted line), the barriers become
closer, allowing for faster transitions between states and enhancing the
sampling of neighboring regions on the PES. Reprinted (adapted) with
permission from ref. 19 Copyright 2019 Frontiers.

Fig. 7 Panel A shows a comparison of the speedup factor for the RCR
algorithm, parallel processing, and the likelihood ratio sensitivity analysis
method is made across three systems. The first model (A ↔ B) involves
the adsorption of reactant A onto a catalyst, its isomerization to B, and
subsequent desorption. The symbol # represents the same model with
different parameters, while the third model is the water–gas shift reac-
tion (CO + H2O ↔ CO2 + H2). Reprinted (adapted) with permission from
ref. 106 Copyright 2017 American Institute of Physics. Panel B represents
the speed up factor ξ for modeling the fast electronic processes and the
slow reduction reactions at the interface in hybrid organic–aqueous
electrolyte. ξ represents the ratio between per reduction event of the
reference simulations and of the accelerated simulations. Reprinted
(adapted) with permission from ref. 110 Copyright 2022 American
Chemical Society.
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varying diffusion scales, densities, and lattice packing arrange-
ments. To overcome the specific case of disparity between
diffusion and reactive events, various methods have been
developed.110–113 For example, a recent algorithm developed by
Gößwein et al.110 combined the superbasin concept with a
local, particle-based criterion for identifying quasi-equilibrium
processes. They give an example of the disparity between reac-
tive and diffusive events in hybrid organic–aqueous electrolyte
where the acceleration of KMC was several orders of magni-
tude, see Fig. 7B. Kaiser et al.114 have developed an accelerated
scheme that samples the diffusion events through identifying
the critical superbasins at the beginning of the simulation.
Their algorithm was found to be faster than the AS-KMC algor-
ithm for a 1D-chain example. They have also investigated the
time-of-flight of charge carriers in organic semiconductors.
The scheme was found to achieve up to 65 times faster results
while keeping the errors minimal.114

Even though significant progress has been achieved to over-
come the challenge of time scale disparity, each algorithm
comes with its own strengths and weaknesses. Indeed, these
algorithms are often built for specific processes (e.g., linear
radical polymerization111) and cannot easily be transposed to
different processes. In other words, a transferable approach for
dealing with the presence of fast and slow elementary steps in
KMC is still to be developed.

8. Conclusion and outlooks

The use of KMC in battery research represents a highly promis-
ing approach to understanding the underlying mechanisms of
battery aging and failures and thereby to accelerate the optim-
ization and design of future systems. KMC has been instru-
mental in providing various insights into the SEI of LIBs, such
as the porosity, diffusion coefficients and growth mechanims.
These parameters are crucial for BMS found in electronic
devices, contributing to improved safety and extended lifespan
of existing batteries. Furthermore, KMC aids in understanding
patterns of capacity loss, whether nonlinear (e.g., diffusion-
limited) or linear (e.g., constrained by slow reactions). Such
insights are essential for identifying areas of improvement.

Despite the achieved insights and successes of KMC,
models and algorithms need further improvements to account
for the heterogeneity and complexity of interfaces in batteries.
One key step is moving beyond single lattice points to account
for the spatial heterogeneity of battery systems, particularly at
the electrode interfaces. Additionally, given the wide range of
timescales associated with reactions relevant in batteries,
addressing the timescale disparity in KMC requires the devel-
opment of transferable algorithms that can effectively differen-
tiate between fast and slow events and sample them accord-
ingly without extensive testing and user-intervention.

To further enhance KMC performance, the accurate deter-
mination of rate constants and the inclusion of lateral inter-
actions are essential. These improvements will enable more
realistic simulations through the inclusion of the reaction

environment. In this regard, we anticipate an increased
reliance on cheaper alternatives to DFT, such as semiempirical
methods, reactive force fields, and MLPs.9,85 Overall, it is
important to note that while reactive force fields and MLPs
typically deliver faster performance than semiempirical
methods, the latter, owing to their quantum mechanical
nature, performs better in extrapolating to regions outside the
training data or when no prior information about the reaction
pathways is available. To improve the estimates of kinetic pre-
factors from activation entropies, the atomic scale simulation
methods should be coupled with enhanced sampling tech-
niques such as thermodynamic integration, umbrella
sampling, or metadynamics. These combinations hold great
promise for improving the sampling of rare events in mole-
cular dynamics simulations while maintaining computational
efficiency. Moreover, ML-based methods (when coupled to
methods like cluster expansion) can complement these efforts
by improving lateral interaction predictions at manageable
computational cost through advanced approaches like deep
graph neural networks.

Looking forward, KMC could be implemented in real-time
to optimize the BMS in devices like electric vehicles, laptops,
and cell phones by integrating real-time data such as charging/
discharging rates, state of charge and temperature. For
example, KMC could simulate ion migration through the SEI
and solid electrolytes under operating conditions, detecting
uneven ion distribution and identifying areas of lithium
accumulation. These accumulations could lead to dendrite for-
mation or interfacial instabilities, increasing internal resis-
tance and/or the risk of short circuits. By modeling the impact
of these factors on SEI stability, KMC would enable the BMS to
dynamically adjust charging strategies, such as modulating the
rate or halting charging to prevent overheating, thereby mini-
mizing SEI degradation and enhancing battery longevity.
Achieving this vision will require advancements in KMC algor-
ithm physics and processing speed to support effective real-
time applications.
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