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Machine learning-based screening of Mn-PNP
catalysts for the CO2 reduction reaction using
a region-wise ligand-encoded feature matrix†
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Biswarup Pathak *a

The CO2 reduction reaction is a promising way to reduce the CO2 level in the environment and most

importantly to produce C1-based chemicals (HCOOH and CH3OH) that can be used as liquid fuels and

industrial chemicals. In this regard, homogeneous Mn-PNP based catalysts are found to be suitable

for the reaction and show promising potential for enhancing activity through ligand modification.

Herein, a novel ligand encoded feature matrix enabled machine learning (ML) model has been

developed to screen efficient catalysts from a large search space of earth-abundant aromatic Mn-PNP

catalysts using the effects of different ligands present on the different ligand sphere of the catalysts. The

ML models based on gradient boosting (GBR and XGBR) were found to be the best performing ML

models with a density functional theory (DFT) level of accuracy. Potential catalysts for HCOOH and

CH3OH formation are identified based on the overall reaction free energy barrier through ML + DFT.

The importance of different regions (R1 and R2) and the effect of ligand substituents (+I/�I) in the

catalyst are unleashed. Furthermore, a favorable mechanism to produce HCOOH has been ascertained.

Introduction

Homogeneous catalyst-driven reduction of CO2 into value-
added C1 based chemicals and liquid fuels (CO, HCOOH,
CH3OH, etc.) represents a sustainable route for the direct
utilization of CO2.1–4 However, the hydrogenation of CO2 is
challenging due to its high thermodynamic stability.5 In this
regard, homogeneous catalysts based on noble metals such as
Ru and Ir have been utilized to overcome thermodynamic
stability and product selectivity.3,6–10 However, such noble
metal-based catalysts are not sustainable for industrial scale
usage due to the cost associated with them. In recent years,
earth abundant Mn-based catalysts made of aromatic PNP
catalyst have been studied and found to show promising acti-
vity for CO2 reduction reactions (CO2RR) to produce HCOOH
and CH3OH and also for other hydrogenation reactions.11–14

Kirchner and co-workers have found the aromatic Mn-PNP
catalyst to be active for aldehyde hydrogenation.11 Gonsalvi
and co-workers have reported that, aromatic Mn-PNP catalysts
with different ligand substituents can hydrogenate CO2 to
HCOOH and CH3OH with good turnover number (TON).12,13

Similarly, Saouma et al. have also reported the good catalytic
activity of the analogous catalyst for the conversion of CO2 to
formate.14 Therefore, aromatic Mn-PNP catalysts are a suitable
choice for HCOOH and CH3OH formation, but their activity is
not up to the mark to be used as an industrial catalyst. There-
fore, finding suitable earth abundant metal-based catalysts for
the CO2RR is a need of the hour.

It was reported that a subtle change in the ligand sphere can
change the overall activity of the catalyst.12,15,16 Similarly, the
electronic environment of the ligand has a huge influence on
the catalyst activity. Thus, the activity of any catalyst can be
significantly enhanced through ligand substitution. The various
possibilities in the unknown ligand space are then confronted with
the challenge of choice from the vast structural possibilities. As a
result, there has been a long-standing interest in predicting a given
ligand’s likely impact on the structure and reactivity of organome-
tallic complexes through parameterization. In the absence of
insight into the correlation between ligand and catalyst, new
catalysts are developed mostly through a series of tedious trial
and error cycles guided by chemical intuition either using density
functional theory (DFT) methods or experiments. It takes a lot of
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time, money, and effort to complete the process. The possibilities
of catalyst combinations are vast considering the available ligand
space. Therefore, the existing strategies clearly fail to address the
full scope of the challenge. This raises the importance of develop-
ing faster, efficient, and more reliable data-driven catalyst design
techniques to guide future experiments. In this regard, machine
learning (ML)-based regression techniques have emerged as a
promising tool.17–19 Through specific strategies, ML algorithms
are able to learn underlying principles behind vast amounts of
data through mathematical theory and rigorous data analysis.
These laws are used to achieve the purpose of prediction. Thus,
the active catalyst search for the reaction can be accelerated using
ML models. Furthermore, the activity of the catalyst or any
chemical transformations are evaluated through the activation
barriers. For the ML prediction of the activation barriers, the
mostly used features are the DFT calculated features, which are
in a way time consuming and computationally expensive.20–22

Moreover, some features suffer due to the lack of interpretation.
Thus, it is necessary to develop a feature that does not require DFT
calculations and can alone predict the activation energy barrier.

Herein, under the assumption of the great influence of the
ligand in the aromatic Mn-PNP catalysts for CO2 conversion to
C1 products (HCOOH and CH3OH), we set out to identify the
best set of ligands and overall catalysts for the reactions.
To accomplish this, we used regression models using ligand
encoded matrix-based features for all the considered ligands
and further tested the reliability of the best fitted ML models
through cross-validation (CV) analysis and DFT calculated
results.

Methods

For the CO2 hydrogenation to HCOOH and CH3OH, an appro-
priate model was implemented using the Gaussian 09 D.01
package.23 Previous studies show the good accuracy of the
Becke’s three-parameter hybrid exchange Lee–Yang–Parr’s
(B3LYP) functional for the Mn based systems for the hydro-
genation of CO2.4,24 Thus, all the density functional theory

(DFT) based calculations were executed with the B3LYP correla-
tion functional. The Pople diffused basis set 6-31++G(d,p) was
considered for all the non-metals (P, F, O, N, C and H) beside
the LANL2DZ effective core potential (ECP) for Mn metal.25–30

Grimme’s DFT-D3 potential has been utilized in our study to
include all the non-covalent interactions (NCI).31 The common
solvent for these reactions is tetrahydrofuran (THF) and thus all
the structures were optimized using the implicit conductor-like
polarizable continuum model (CPCM) for the THF solvent
(e = 7.58) in order to mimic the experimental conditions.32,33

To obtain the accurate reaction free energy, zero-point vibra-
tional energy (ZPVE) and entropy correction (TDS) have been
included in the total calculated electronic energy at 298.15 K
temperature and 1 atm pressure. All the intermediates were
optimized and identified through the absence of imaginary
frequency. The structure of all transition states (TSs) has been
optimized and validated by frequency calculations with a single
imaginary frequency. The overall reaction free energy change
(DG) and the total reaction free energy barriers (DG‡) have
been evaluated based on the Shaik–Kozuch energetic span
model, where DDG‡ of a catalytic cycle depends on the TOF-
determining transition state (TDTS) and TOF-determining
intermediate (TDI):34

DDGz ¼
TTDTS � ITDI if TDTS appears before TDI 1ð Þ

TTDTS � ITDI þ DG if TDTS appears after TDI 2ð Þ

(

Natural bond orbital (NBO) analysis is done to understand
the charge distribution of different atoms.35

Results and discussion

In the CO2RR, CO2 can be converted to HCOOH in the presence
of a catalyst, which can be then converted to CH3OH through
direct or indirect mechanisms.4,8,10 We have considered the
indirect mechanistic approach employing morpholine as a co-
catalyst in our study (Fig. 1a) to produce CH3OH.10 We first

Fig. 1 (a) CO2 reduction reaction steps, (b) model catalyst showing different regions of ligand substitution and general workflow of the work,
(c) considered ligands for different regions and (d) suitable descriptors for the reactions.
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considered a Mn-PNP based aromatic catalyst (Fig. 1b) and
identified two specific regions on the catalyst. We have divided
the regions as R1 and R2 based on the distance from the metal
centre as well as based on the ligands bonded to the P or N
atoms (R1 - P and R2 - N), respectively, where the foreign
ligand can be attached. For the R1 and R2 region, a set of 10
(R1: L1 and L2) and 6 (R2: L3) ligands (Fig. 1c) are considered,
respectively based on the experimental reports of PNP and
other catalysts.13,36–39 The P atom sites in the catalysts were
found to be the most preferable sites for a variety of ligand
substitutions and thus the number of considered ligands for
the R2 region is less compared to the R1 region.36–41 The PNP
catalysts typically exhibit either complete symmetry with four
identical ligand substituents across two P (L1 = L2) sites or a 1 : 1
ratio of two different ligands across both P sites (L1 a L2)
(Fig. 1b).13,36–39,42,43 The number of possible catalysts that came
out from the considered ligands at the R1 region with respect to
each ligand present on the R2 region is 330.

The consideration of the DFT calculated features would take
a great deal of time and resources for such a large number of
possible catalysts. Therefore, we introduced a ligand encoded
matrix-based feature for simplicity and better adaptability of
the model like the microstructural feature introduced in het-
erogeneous catalysis.44,45 The newly introduced matrix-based
feature can speed up the process of training and prediction as
the matrix contains only the information about variable parts
i.e., ligand substituents. This feature is obtained for each
catalyst through a ligand encoding technique considering the
kind of ligand and the number of specific ligands present on
different substitution sites R1 (L1 and L2) and R2 (L3) in the
catalysts. These variants of substitution sites are decided
according to the distance of the ligands from the metal centre.
An illustration of the feature matrix with a few catalysts is
shown in Fig. 2. Furthermore, each catalyst’s individual
matrices are combined into a large matrix capable of contain-
ing all the structural information. A total of 16 features (Fig. 2)

have been considered and these features are the different
ligands present in a specific region of the catalysts. In catalyst
1 (Fig. 2), two Et and two CF3 groups are present in the R1

region, and one H is present in the R2 region and therefore the
feature values for these features are 2, 2 and 1, respectively and
the rest of the feature values are 0 in the matrix for the catalyst.
In this way, a feature matrix has been prepared for 330 catalysts
for our machine learning study. The newly introduced feature
matrix can reduce the time and cost of feature selection and
feature engineering.

Two different reaction mechanisms such as Noyori and
revised Noyori (RN) are reported for the conversion of CO2 to
HCOOH (Scheme 1a).4,24 The subsequent step involves the
reaction between the HCOOH and the co-catalyst (morpholine)
to form N-formylmorpholine.10,24 There are two competing
pathways for the hydrogenation of N-formylmorpholine and
we have considered the most favorable mechanism for the
formation of CH3OH (CQO bond hydrogenation followed by
C–N bond; Scheme 1b).24,46 There are three important transi-
tion states for the formation of HCOOH and CH3OH from CO2,
namely hydride transfer to CO2 (TS1), heterolytic H2 cleavage to
regenerate the active catalyst (TS2) and heterolytic H2 cleavage
to transfer a proton (TS3) to HCOO� (Scheme 1a). In the RN
mechanism, either TS1 or TS3 can contribute to the overall
reaction free energy barrier (DDG‡RN),8,24,47 whereas TS2 is the
most important step that controls the overall reaction free energy
barrier of the Noyori type mechanism (DDG‡N).3,7 Similarly,
CH3OH can be produced through the indirect mechanism (free
energy barrier: DDG‡M), where TS2 is the most important transi-
tion state.3,24 Therefore, in all the cases, the calculated DDG‡ for
(Fig. 1d) each individual mechanism using the transition state
model is considered to be a suitable descriptor of the overall
reactions (DDG‡RN, DDG‡N and DDG‡M). Additionally, the activa-
tion barrier (DG‡) for each of these transition states (TS1: DG‡TS1;
TS2: DG‡TS2; and TS3: DG‡TS3) can also be a suitable descriptor to
identify the activity of the catalyst for a specific step of the reaction.

Fig. 2 Catalysts and the representation of the ligand encoded feature matrix.
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Through DFT calculations, a training dataset (44 catalysts)
was generated with proper sampling of the catalysts to make
sure all the ligand substituents are present in both the regions
of the catalysts (Table S1, ESI†). Herein, several regression
models were used to achieve all the considered output descriptors.
Initially considered ML models were trained and evaluated using
an 80 : 20 train-test split of the DFT calculated datasets.45,48 The
workflow is summarized in Fig. 1b. The performance of each
regression mode is estimated with train-test root-mean-square
error (RMSE) to avoid the overfitting condition.

Five ML models were implemented, namely ordinary linear
regressor, kernel ridge regressor (KRR: kernel-based algorithm),
Random-forest regressor (RFR: tree-based algorithm made of
bagging technique) implemented in the scikit-learn package49

and gradient boosting frameworks such as gradient boosting
regressor (GBR) and eXtreme gradient boosting regressor
(XGBR).50 The NumPy and Pandas libraries were used for the
mathematical functions and data pre-processing, respectively,
along with Matplotlib and Seaborn for the plotting of numerical
data and visualization.51–53 Through the hyperparameter
tuning of all the algorithms, we achieved the best possible
values of the hyperparameters, resulting in optimized algo-
rithms (Table S2, ESI†). The performance of all the considered
models is given in Table S3 (ESI†). The best performing ML
model for each descriptor was chosen based on the lowest
train-test errors. We have found that the optimized XGBR has
the lowest train-test RMSE for both DDG‡RN and DDG‡M and the
GBR model for DDG‡N (Table 1). The plots of DFT calculated
versus predicted DDG‡ are shown in Fig. 3. Similarly, for other
descriptors (DG‡TS1, DG‡TS2 and DG‡TS3), either of the gradient
boosting regressors (GBR or XGBR) performed well with the
least test RMSE (Table 1 and Fig. S1, ESI†). All the train-test
RMSEs for the best fitted models are reasonable enough to be
considered for suitable predictions of unknown catalysts. In the

case of DDG‡RN, the calculated RMSE is slightly higher com-
pared to the other cases, underlying the fact that either TS1 or
TS3 can contribute in the DDG‡RN and both of these transition
states are chemically different from each other. In contrast, for
the individual case of the DG‡TS1 and DG‡TS3 the test RMSE is
significantly low (Table 1). Taking all these results into account,
it appears that the learning complexity rises to the ML
model for the training data of descriptor DDG‡RN, resulting in
a slightly higher RMSE.

To ensure the stability and generalizability of the best fitted
ML models, we have performed 5-fold CV analysis (Fig. S2,
ESI†). The average RMSE of CV in each case is close to the test
RMSE (Fig. 4a and Table S4, ESI†). This reflects that all the best
fitted ML models are suitable and generalizable even though
the training dataset is small. The reliable performance of the
ML models could be due to the proper sampling of all the data
points to prepare the training dataset.54,55 Considering the best
fitted ML models for individual descriptors with optimized
hyperparameters, all the descriptors (overall reaction free
energy barriers (DDG‡) and activation barriers (DG‡) of indivi-
dual transition states) were predicted for the rest of the 286
catalysts (Table S5, ESI†). Further validation of our predictions
is also carried out with 5 arbitrary catalysts (Fig. S3, ESI†)
from the predicted data points calculating all the considered
output descriptors using the DFT method. Interestingly, it was
observed that the predicted values closely matched with the

Scheme 1 Possible CO2 hydrogenation mechanisms to (a) produce HCOOH and (b) the hydrogenation of N-formylmorpholine to CH3OH with an
aromatic Mn-PNP based catalyst.

Table 1 Best fitted ML Models with their train test RMSEs. All the values
are in eV

Name DDG‡N DDG‡RN DDG‡M DG‡TS1 DG‡TS2 DG‡TS3

Method GBR XGBR XGBR XGBR GBR GBR
Train (RMSE) 0.01 0.08 0.03 0.04 0.01 0.01
Test (RMSE) 0.09 0.14 0.12 0.07 0.10 0.08
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DFT calculated values (Fig. 4b and Table S6, ESI†), which again
suggests that all the best fitted models are stable and suitable
for prediction.

Based on DFT calculation and ML prediction, the RN type
mechanism was found to be the favourable pathway over the
Noyori type mechanism for aromatic Mn-PNP catalysts to
produce HCOOH.3,24 The TS2 accounted for the overall high
DDG‡N for the Noyori-type mechanism, thus making the mecha-
nism not suitable for HCOOH formation (Scheme 1a and Table
S1, ESI†). In contrast, in the RN-type mechanism, the barriers
for both TS1 and TS3 are low (Scheme 1a and Table S1, ESI†),
thereby making the pathway more favourable for HCOOH
formation.

The permutation feature importance analysis (Fig. 3) shows
the contribution of different ligands present on different posi-
tions of the catalysts towards DDG‡ for the considered
reactions.54 The ligands present in the first region have higher
contributions as compared to the second region, which shows
that the former is the most important part to tune the activity of
aromatic Mn-PNP for a specific reaction. Ligands having a
stronger/moderate �I effect are found to adversely affect the
activation barriers of the reactions (Table S1, ESI†). Conversely,
groups with +I effects are observed to be beneficial for
the reactions. Using DFT+ML, we have identified the top-
performing catalysts for the formation of CH3OH and HCOOH
from CO2 (Fig. 5 and Fig. S4, ESI†). For the HCOOH formation,

Fig. 3 Plot of DFT calculated vs. ML predicted DDG‡ and feature importance for (a) Noyori, (b) revised Noyori and (c) CH3OH formation mechanisms.

Fig. 4 (a) 5-fold CV analysis with the best fitted ML models for all the descriptors and the Avg. is the mean RMSE of the CV, and (b) comparison of DFT
calculated vs. ML predicted DDG‡ of all the catalysts considered in Fig. S3 (ESI†).
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along with the three top performing catalysts (1 to 3) (Fig. S4,
ESI†), we have proposed two symmetric catalysts (4 and 5) from
the ease of synthesis perspective, which are found to be
comparable in terms of activity with top performing catalysts.

For the CH3OH formation, the suitable ligands (–iPr and
–tBu) mostly have a strong/moderate +I affect, in agreement
with the experimentally reported suitable catalysts for the
reaction.10,12 The –iPr is the most suitable ligand substitution
in both the regions though –tBu is the group having the
strongest +I effect. The presence of a –tBu group in both
the regions together creates steric hindrance, which reduces
the available space for reactants to approach the active center.
This, in turn, has an adverse effect on the overall DDG‡ of the
reactions. In the case of HCOOH formation, the two different
transition states (TS1 and TS3) play an important role and both
these steps are chemically different in nature. Thus, catalysts
having moderate +I and weak �I effecting groups are found to
be the most suitable.

The natural bond orbital (NBO) analysis of the two catalysts
having strong +I/�I effecting (Fig. S5, ESI†) groups showed that
the presence of such groups largely affects the overall charge
distribution of the catalysts. In the case of TS2, the +I effecting
groups shifted the electron density towards the aromatic ring,
thus stabilizing the overall transition state. At the same time,
the higher positive charges on the P-atoms helped the hetero-
lytic hydrogen cleavage, whereas the �I effecting groups pull
the electron density from the ring thereby destabilizing the
overall transition states for CH3OH formation. On the other
hand, good catalysts for HCOOH formation should have an
overall balanced charge distribution, which can control both
TS1 and TS3. Therefore, moderate +I and weak �I effecting
groups are suitable for the HCOOH formation. This proof-of-
concept model may be very helpful for experimentalists to
design catalysts in no time for the conversion of CO2 to HCOOH
and CH3OH.

Conclusions

In summary, we have developed an ML prediction model based
on a DFT database. This scheme can significantly expedite the
exploration of a vast catalyst search space, leading to the
identification of promising homogeneous aromatic Mn-PNP
catalysts for converting CO2 into HCOOH and CH3OH in
solvent medium. The newly proposed feature matrix and the

proper sampling of the dataset are the backbone of the remark-
able predictive capability of the used ML model. The ML
models based on gradient boosting (GBR and XGBR) were
found to be the best performing and well-trained ML models
with high accuracy. The utility and predictive capability of the
best fitted model were tested through cross-validation and DFT
calculations. Our model shows that the revised Noyori-type
mechanism is favourable compared to the Noyori mechanism
for HCOOH formation. The first region of the catalysts is found
to be the most important position to tune their activity. The
ligand substituents having a strong +I effect are found to be
suitable for CH3OH formation. In contrast, the moderate +I and
weak �I effecting groups are found to be suitable for HCOOH.
We believe that our model and feature matrix-based approach
may be able to speed up the catalyst search process.
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