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ntamination and climate change
in Antarctic ecosystems: an updated overview

Roberto Bargagli and Emilia Rota *

Abiotic and biotic components of Antarctic ecosystems are valuable archives of past and current trends in

global processes and play an important role in assessing emissions and long-range transport of persistent

contaminants. After the ban on the production and use of alkyl-lead fuel additives, lead concentrations in

Antarctic environmental matrices (snow, ice, sediments and biota) have decreased, just as the hole in the

Antarctic stratospheric ozone layer is slowly shrinking following the ban on ozone-depleting gases. With

the entry into force of the Stockholm Convention, the occurrence of persistent organic pollutants

(POPs) in the Antarctic ecosystems could also decrease. However, the increasing anthropogenic sources

of POPs in the Southern Hemisphere and the remobilization of those previously deposited in Antarctic

ice could counteract the possible decreasing trend. Legacy pollutant concentrations in Antarctica are

among the lowest reported in the global environment, with an exception of the bioaccumulation in

various marine organisms of mercury (Hg) and cadmium (Cd) naturally occurring in Southern Ocean

waters, or that of POPs in some long-lived seabirds with particular migration routes and life histories.

However, despite the protection guidelines, long-range transport processes and especially the increase

in human activities in Antarctica are sources of many persistent contaminants not yet subject to

regulatory criteria and often lacking standardized sampling and analytical procedures. Chronic exposure

to anthropogenic contaminants (legacy and of emerging interest) and pathogenic microorganisms near

coastal scientific stations could cause synergistic or additive effects on marine biota. Most Antarctic

marine organisms are endemic, with unique ecophysiological adaptations, and are also exposed to

climate-related stressors. Warming and acidification of Southern Ocean waters along with increased

melting of ice will likely affect the transport, pathways and environmental fate of persistent contaminants

and could interfere with the metabolic processes of Antarctic organisms involved in the uptake and

detoxification of environmental contaminants. Therefore, to implement environmental protection

protocols around the coastal stations, the Council of Managers of National Antarctic Programs should

evaluate the possible cumulative impact on biotic communities in the context of changing climatic and

environmental conditions.
Environmental signicance

Reports of new persistent synthetic chemicals, not yet subject to regulatory criteria, and plastic debris reaching Antarctica via long-range transport are
continuously increasing. Scientic, tourism and shing activities in Antarctica are also on the rise, inevitably contributing to localized environmental
contamination and the introduction of alien species. The acidication of Southern Ocean waters and other climate-related stressors such as changes in sea ice
cover and ocean freshening by glacial meltwater could reduce the resilience of Antarctic ecosystems, increasing the risk of biological effects of contaminants,
especially in areas affected by human activities. This review discusses such possible cumulative impact. The most critical conditions and vulnerable species are
also highlighted to guide future research and to implement protocols for human activity management and environmental monitoring particularly around
science stations.
Introduction

Pesticides and other synthetic organic compounds, neither
produced nor applied in Antarctica, have been detected in
Antarctic animal tissue since the 1960s.1,2 In 1974, Molina and
Earth and Environmental Sciences, Via P.

: rota@unisi.it

the Royal Society of Chemistry
Rowland3 suggested that chlorouoromethanes, used primarily
in the Northern Hemisphere as refrigerants and aerosol
propellants, could promote the destruction of stratospheric
ozone through reactions catalyzed by chlorine atoms. Ten years
later, Farman et al.4 discovered a marked decrease in strato-
spheric ozone concentrations during the austral spring over
Halley station (75°3604500S 26°1105200W) and showed that this
“ozone hole” had started forming several years earlier. These
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discoveries increased global concern about the possible effects
of UV-B and UV-C radiation and formed the basis for the
implementation of the Montreal Protocol, one of the most
successful environmental policies of the twentieth century.5

Above all, it has emerged that, despite their remoteness and
geographical isolation (increased by currents owing clockwise
around the continent, which is also surrounded by a cyclonic
vortex of cold air), Antarctica and the Southern Ocean are linked
to global environmental processes. However, although the
Antarctic Treaty's Protocol on Environmental Protection
(ATPEP; signed in Madrid in 1991 and entered into force in
1998) designated the region south of latitude 60°S as a “nature
reserve, devoted to peace and science”, it has no purview over
global issues. Therefore, the growing global population, the
continuing exploitation of natural resources, generation of
wastes and release of environmental contaminants, including
persistent organic pollutants (POPs), pose increasing threats to
the mostly undisturbed nature of the Antarctic environment.6–10

Despite some international agreements, such as the Minamata
Convention to reduce the global Hg pollution and the Stock-
holm Convention to ban the production and use of some POPs,
these compounds can persist in the environment for decades
and, through repeated cycles of volatilization and condensa-
tion,11 will continue to move along gradients in air temperature
until they reach their nal sinks in the polar regions. Climate
change may also promote the remobilization and bioavailability
of POPs previously deposited in Antarctica, through melting ice
Fig. 1 Main sources of persistent contaminants in Antarctic ecosystems
cyclic aromatic hydrocarbons; PBDEs, polybrominated dyphenyl ethers;

544 | Environ. Sci.: Adv., 2024, 3, 543–560
and thawing of permafrost soils.10,12 Global chemical produc-
tion continues to grow, along with concerns for the ever-
increasing number of reports on the occurrence of many new
persistent synthetic chemicals, not yet subjected to regulatory
criteria (contaminants of emerging interest, CEI), and plastic
debris in the Antarctic environment (e.g., ref. 13–18) (Fig. 1).

South of 60°S, all human activities are regulated by ATPEP.
However, the increase in scientic, tourism and shing activi-
ties in Antarctica19 inevitably contributes to the introduction of
alien species and localized environmental contamination
through combustion of fuels, accidental oil spills, wastewater
and waste production (e.g., 20,21). Until the 1990s, at several
Antarctic stations, wastes were simply disposed of in landlls,
burned in the open air or dumped into the sea. Therefore,
although limited in space, the impact of past human activities
in some coastal areas has inuenced the diversity of biotic
communities and the functioning of ecosystems.8,21,22 National
organizations operating in Antarctica are mandated by ATPEP
to prevent and monitor the impact of ongoing activities.
However, many scientic stations and vessels lack wastewater
treatment facilities. Where such facilities are present, the harsh
Antarctic conditions oen cause operational problems and
malfunctions.23 Several Antarctic coastal ecosystems are
affected by pathogenic microorganisms and contaminants,
such as metals, hydrocarbons, detergents, ame retardants,
personal care products, pharmaceuticals and microplastics. An
improvement in environmental monitoring and control
. POPs, persistent organic pollutants; MPs, microplastics; PAHs, poly-
PPCPs, pharmaceuticals and personal care products.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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protocols around scientic stations is therefore urgently needed
(e.g., ref. 14, 15, 24 and 25).

In sharp contrast to the very poor terrestrial biotic commu-
nities of the Antarctic cold desert, coastal marine ecosystems
host dense and diverse populations of benthic organisms.
Through long evolutionary processes in isolation, they have
acquired unique ecophysiological adaptations. By storing lipids
as an energy source, they are prone to the accumulation of
lipophilic and potentially toxic compounds such as POPs.26–29

The involvement of benthic invertebrate communities in the
transfer of energy and persistent pollutants to omnivorous sh
and their predators lengthens the Antarctic food chain, thereby
increasing the biomagnication of POPs and monomethyl
mercury (MeHg)28,30,31 and Cd bioaccumulation.32–35 Thus, in
some seabirds such as the south polar skua (Stercorarius mac-
cormicki), concentrations of pollutants can reach levels close to
those causing adverse health effects.36 Furthermore, the
Southern Ocean is among the seas most vulnerable to
increasing CO2 concentrations and water acidication.37 Marine
organisms may also experience additional global warming
stresses, such as changes in sea-ice cover and the freshening of
seawater due to melting glaciers. Therefore, climate-related
stressors could reduce the resilience of Antarctic organisms
and ecosystems, increasing the risk of possible biological effects
of anthropogenic contaminants, especially in coastal areas
affected by human activities. With these topics in mind, aer 15
(ref. 6) and 23 years38,39 from previous reviews, this review will
update the knowledge on the occurrence of legacy and new
anthropogenic contaminants in Antarctic ecosystems, and
discuss the scientic evidence of their possible cumulative
impact in the context of climate and environmental changes.
Our aim is to summarize the most recent scientic acquisitions
on the deposition of contaminants not in the Antarctic Plateau,
nor throughout the continent, but above all in the ecosystems of
the ice-free coastal areas and in the marine areas located near
Antarctic stations, more impacted by scientic, logistical and
tourism activities. The ecosystems of the Antarctic Peninsula
and the surrounding archipelagos are the most exposed to such
impacts. In the text, we refer to the “Scotia Arc” to indicate the
island arc system (54.5 to 62°S, 65 to 25°W) located north of the
Antarctic Peninsula and including, among others, South Geor-
gia, the South Sandwich, South Orkney and South Shetland
islands.

The most critical conditions and vulnerable species will also
be highlighted to guide future research, and to implement
protocols for the management of human activities and envi-
ronmental monitoring around the scientic stations.
Trace metals

Wet and dry atmospheric deposition contribute to the biogeo-
chemical cycle ofmajor and trace elements in Antarctic terrestrial
ecosystems. The snow elemental composition shows that these
elements originate mainly from local rock and soil dust, sea-salt
spray, active volcanoes such as Mount Erebus or Deception
Island, and natural or anthropogenic sources in South America,
South Africa and Australia.40–43 As a rule, past and ongoing
© 2024 The Author(s). Published by the Royal Society of Chemistry
human activities in Antarctica are associated with highly local-
ized depositions of metals, such as lead (Pb), copper (Cu), arsenic
(As), nickel (Ni) and zinc (Zn) around scientic stations (e.g., ref.
44). The temporal distribution of Pb concentrations in Antarctic
snow is paradigmatic of the long-range atmospheric transport
and deposition of metals from anthropogenic sources in the
Southern Hemisphere. The increase in Pb concentrations began
at the beginning of the 20th century with mining and smelting
activities, and especially with the global use of gasolines with
alkyl-Pb additives. Values peaked in the 1970s and declined in the
1990s, following the use of ethanol fuel blended with gasoline in
Brazil and unleaded gasoline in Australia and other countries.45

In Antarctic snow samples collected in 2017, mean concentra-
tions of Pb (4.4 pg L−1) were about half those recorded in 1970–
1980 (9.0 pg L−1), and the contribution of metals from remote
and local anthropogenic sources is probably currently lower than
that from natural sources.46

Most Antarctic scientic stations are located in coastal ice-
free areas, and historical and/or ongoing human activities
have resulted in localized environmental contamination by
metals21,34,47–49 (Table 1). Despite the low soil formation rate,
terrestrial ecosystems in the vicinity of stations can harbor
lichens, mosses, arthropods, nematodes, rotifers, tardigrades
and very diverse communities of microorganisms.6 Moreover,
coastal ice-free areas are essential breeding grounds for
seabirds and seals. Penguins form large colonies, and transfer
signicant amounts of nutrients, heavy metals and POPs from
the marine environment to terrestrial ecosystems through their
excrements.50–52 For example, according to Chu et al.,53 the
impact of metals from penguin guano on Ardley Island may
exceed that of human activities near scientic stations. Through
satellite digitization of visible disturbances around active and
abandoned infrastructures, Brooks et al.54 estimated that more
than 5000 km2 of Antarctic ice-free areas have been affected by
human activities.

Several species of lichens andmosses have a wide geographic
distribution in Antarctic ice-free areas and large-scale surveys,
or those performed around scientic stations, demonstrate
their reliability as biomonitors of atmospheric deposition of
metals and other persistent contaminants (e.g., ref. 30 and
58–61). As shown in Table 2, baseline concentrations of metals
in widespread Antarctic cryptogam species are in the same
range as those measured in other lichen and moss species
collected in reference areas of the Southern and Northern
Hemispheres, prepared and analyzed with the same
procedures.

Unlike othermetals emitted from natural and anthropogenic
sources, which are associated with atmospheric aerosol,
mercury (Hg) is mainly present in the atmosphere as gaseous
Hg0, with a lifetime of about one year.66 Once deposited in
terrestrial and aquatic ecosystems, inorganic Hg can be trans-
formed by microorganisms into MeHg, a potent neurotoxin
with a remarkably long biological half-life (some months
instead of a few days or weeks for inorganic Hg). Thus, through
a process of biomagnication, MeHg accumulates in primary
producers and its concentrations increase in the muscle and
other tissues of organisms along the food webs, reaching peak
Environ. Sci.: Adv., 2024, 3, 543–560 | 545
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Table 1 Metal concentrations (mg g−1 dry wt; mean ± SD) in Antarctic surface soils sampled in control areas and near active or abandoned
infrastructures. NA, not analyzed

Locations Cd Cu Hg Ni Pb Zn References

Victoria Land
(Volcanic) 0.13 � 0.05 21 � 8 0.04 � 0.02 12 � 9 8.8 � 3.5 12 � 9 38
(Granitic) 0.22 � 0.08 16 � 9 0.05 � 0.03 10 � 6 11 � 6 10 � 6

Larsemann Hills 0.04 � 0.08 17 � 15 0.03 � 0.08 14 � 6 1.6 � 1.1 32 � 19 55

Fildes Peninsula
Manned stations 0.17 � 0.08 122 � 32 0.02 � 0.01 14 � 5 16 � 13 59 � 9 56
Baseline values 0.09 89 0.01 10 5.4 51

Marambio Station <0.8 15 � 7 NA 12 � 4 44 � 54 97 � 103 47
Control sites <0.8 8.2 � 3.0 NA 11 � 8 10 � 0.1 41 � 8

O'Higgins Base (near penguin col.) 4.3 � 1.5 422 � 151 NA 28 � 10 28 � 87 485 � 182 57

Robert Island
(Refuge) <0.2 107 � 1 NA 38 � 0.5 102 � 2 148 � 5 48
Control soil <0.2 48 � 0.4 NA 40 � 0.5 7.3 � 0.5 44 � 0.2
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concentrations in long-lived species at higher trophic levels.
Aquatic food webs are much more complex and longer than
those of terrestrial ecosystems, and seabirds and marine
mammals accumulate much more MeHg than their terrestrial
counterparts. Although there appears to be no greater
bioavailability of MeHg in the Southern Ocean than in other
seas, its concentrations in seabirds such as the long-lived
wandering albatross, Diomedea exulans, are probably among
the highest ever reported for marine vertebrates (e.g., ref. 67 and
68). Analysis of contemporary and historical albatross feather
specimens shows only a slight increase in Hg concentra-
tions,69,70 suggesting that metal accumulation is primarily
a natural process due to species-specic life histories, metabolic
Table 2 Metal concentrations (mg g−1 dry wt; mean ± SD) in macrolich
uncontaminated areas in the Southern and Northern Hemispheres. NA,

Locations/species Cd Cu Hg

Victoria Land
L Umbilicaria decussata 0.20 � 0.10 4.8 � 2.6 0.39 �
M Bryum pseudotriquetrum 0.21 � 0.12 9.9 � 3.3 0.14 �

Chilean Patagonia
L Nephroma antarcticum 0.15 � 0.08 5.6 � 1 0.07 �
L Usnea sp. 0.08 � 0.03 1.5 � 0.3 0.14 �

Italian Alps/Apennines
L Pseudevernia furfuracea 0.18 � 0.09 5.4 � 2.1 0.20 �

North-Eastern Italy
L Pseudevernia furfuracea 0.21 � 0.03 6.0 � 0.5 0.17 �
M Hypnum cupressiforme 0.23 � 0.02 5.7 � 0.3 0.13 �

Tuscany (Italy)
L Flavoparmelia caperata 0.26 � 0.11 5.8 � 1.3 0.17 �
M Hypnum cupressiforme 0.19 � 0.06 6.1 � 1.6 0.12 �

546 | Environ. Sci.: Adv., 2024, 3, 543–560
pathways, and the unique trophic web of the Southern Ocean.
The wandering albatross feeds atop trophic webs and also
frequents temperate waters (probably with higher MeHg
bioavailability). Furthermore, molting and egg laying are
important mechanisms for Hg excretion in seabirds. D. exulans
replaces feathers over a period of years rather than annually,
and has a low reproductive rate (one egg every two years).
Seabirds and mammals can demethylate MeHg in the liver and
accumulate selenium, an antagonist to Hg toxicity.71 Hence,
they are probably adapted to metabolize and tolerate MeHg
intake without deleterious biological effects.6,72

Although there are very few local sources of Hg in Antarctica,
a biomonitoring survey performed in the summers 1989/90 and
en (L) and moss (M) species from East Antarctica and other relatively
not analyzed

Ni Pb Zn References

0.27 NA 0.50 � 0.33 19 � 4 39
0.06 4.4 � 2.1 2.2 � 1.2 63 � 20

0.02 3.3 � 1.9 0.74 � 0.38 40 � 13 62
0.04 0.86 � 0.36 0.49 � 0.29 27 � 9

0.06 1.7 � 0.9 4.5 � 2.9 41 � 17 63

0.02 2.9 � 1.7 5.4 � 0.9 53 � 5 64
0.01 2.7 � 1.2 3.4 � 0.9 41 � 11

0.08 2.7 � 1.9 3.9 � 2.5 35 � 7 65
0.04 4.8 � 3.1 2.7 � 1.7 26 � 9

© 2024 The Author(s). Published by the Royal Society of Chemistry
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1990/91 with the lichen Umbilicaria decussata across Victoria
Land showed total concentrations of the metal in samples from
ice-free areas in the Nansen Ice Sheet to be in the same range or
higher than those measured in lichens of the same genus from
contaminated sites in Europe.58 In the Nansen Ice Sheet, there
were no human, volcanic, or geothermal activities, and mean
atmospheric Hg0 in the Southern Hemisphere is lower than in
the Northern Hemisphere. Therefore, there was no satisfactory
explanation for the unexpected and localized Hg bio-
accumulation. In the following years, it was demonstrated that
in the coastal Arctic ecosystems facing ice-free marine areas in
winter, the spring sunrise promotes photochemical reactions
with the activation of bromine compounds which oxidize
atmospheric Hg0, causing its deposition (so-called “Hg deple-
tion events”;73). In winter, the sea in front of the Nansen Ice
Sheet is free of ice. This is due to the recurring formation of the
Terra Nova Bay coastal polynya. In spring, the depletion of Hg
determines its accumulation in mosses, lichens, soils, lacus-
trine sediments and algal mats.74 Interestingly, a recent survey
of surface soils collected in Antarctic ice-free areas near scien-
tic stations, penguin rookeries, coastal polynyas, and in
control ice-free areas shows that Hg accumulation in soils is
mainly dependent on their organic carbon content. In all the
samples with an accentuated metal deposition, the value of the
ratio [Hg ng g−1]/[OC%] is usually >11.75

Emissions of Hg0 are increasing in some Southern Hemi-
sphere countries76 and global warming will likely reduce the
sea-ice cover in some Antarctic coastal areas; thus, concern is
Table 3 Metal concentrations (mg g−1 dry wt; mean ± SD) in feathers of

Locations/species Cd Cu Hg

King George Island
Pygoscelis antarcticus 0.21 � 0.14 26 � 5 NA
Pygoscelis adeliae 0.14 � 0.06 17 � 2 NA
Pygoscelis papua 0.14 � 0.07 18 � 6 NA
P. papua (chicks) 0.06 � 0.07 7 � 2 NA
P. adeliae (chicks) 0.13 � 0.08 13 � 8 NA

Livingston Island
P. antarcticus 0.14 � 0.11 29 � 6 NA
P. papua 0.14 � 0.07 18 � 2 NA
P. antarcticus NA NA 0.67
P. papua NA NA 0.22

South Georgia
P. papua NA NA 0.85

Antarctic Peninsula
P. antarcticus NA NA 0.62
P. adeliae NA NA 0.35
P. papua NA NA 0.31
Neko Harbor (P. papua) 0.05 � 0.07 14 � 2 NA
Doumer Island (P. papua) 0.09 � 0.07 15 � 4 NA
Stranger Point (P. papua) 0.14 � 0.09 20 � 2 NA
O'Higgins Base (P. papua) 0.21 � 0.28 21 � 4 NA

East Antarctica
Cape Bird (P. adeliae) 0.11 � 0.01 19 � 0.3 0.59
Cape Crozier (Aptenodytes forsteri) 0.04 � 0.02 14 � 1 1.35

© 2024 The Author(s). Published by the Royal Society of Chemistry
growing about Antarctica's potential role as the ultimate sink of
Hg. Furthermore, studies on the metal cycling between air and
snow in the Antarctic Plateau77,78 and the Hg accumulation
pattern in cryptogams collected along the Reeves Glacier79

indicate that coastal ecosystems also receive Hg0 via katabatic
winds (i.e., the cold and dense air masses sliding down-slope
from the Antarctic Plateau towards the sea).

Since the earliest investigations on the elemental composi-
tion of marine organisms in the Southern Ocean, it was unex-
pectedly found that they can accumulate much higher Cd
concentrations than those of related species from seas more
impacted by anthropogenic activities.32,80,81 In the highly
productive waters of the Southern Ocean, the low input of trace
elements such as Zn from the icy continent can limit the
development of phytoplankton. Therefore, Cd is actively taken
up by diatoms as a substitute for Zn to synthesize carbonic
anhydrase (a metalloenzyme that supplies carbon for photo-
synthesis) (e.g., ref. 82). From primary producers, the metal is
transferred to consumers and accumulates in their kidneys and
liver (or in the digestive gland of invertebrates). In general, the
Cd concentrations in these organs do not increase with age and,
depending on diet, may be higher in juveniles than in adults of
the same species. Like Hg bioaccumulation, Cd bio-
accumulation appears to be a natural process. During their
evolution in the Southern Ocean, Antarctic marine organisms
likely acquired metabolic pathways to regulate and tolerate Cd
accumulation.7
penguins from different Antarctic areas. NA, not analyzed

Ni Pb Zn References

0.28 � 0.15 NA 89 � 20 86
0.24 � 0.08 NA 71 � 11
0.27 � 0.12 NA 80 � 28
0.01 � 0.01 0.87 � 0.86 81 � 11 83
0.05 � 0.03 0.24 � 0.83 61 � 20

0.16 � 0.07 NA 117 � 32 86
0.20 � 0.05 NA 103 � 11

� 0.46 NA NA NA 35
� 0.09 NA NA NA

� 0.88 NA NA NA 84

� 0.30 NA NA NA 57
� 0.09 NA NA NA
� 0.10 NA NA NA

1.6 � 1.6 0.06 � 0.06 37 � 6
1.0 � 1.2 0.10 � 0.17 33 � 4
3.8 � 2.4 0.60 � 0.34 64 � 11
5.9 � 8.2 0.63 � 0.27 64 � 11

� 0.02 NA 0.09 � 0.02 75 � 1 85
� 0.06 NA 0.05 � 0.06 68 � 3

Environ. Sci.: Adv., 2024, 3, 543–560 | 547
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Like mosses and lichens, penguins have a circumpolar
distribution. Due to their longevity (about 20 years) and
tendency to return to their annual breeding sites, they are
valuable bioindicators of temporal changes in the bioavail-
ability of contaminants in the different foraging areas.83–85

Comparison of the mean metal concentrations in penguin
feathers from different Antarctic regions (Table 3) mainly shows
higher bioavailability of Pb for colonies living in the Antarctic
Peninsula and the Scotia Arc archipelagos, and higher bio-
accumulation of Hg in feathers of emperor penguin from the
Ross Sea. However, the latter penguin feeds at higher trophic
levels than the other species and feather samples were collected
in an area that may be affected by Hg emissions from theMount
Erebus volcano.85 When comparing the elemental composition
of penguin feathers, it should be noted that even for samples
collected in the same breeding areas, the results are inuenced
not only by interspecies differences (e.g., foraging habits, diet,
migrations, molting pattern and detoxication mechanisms),
but also by sex and stage of maturity.86 Furthermore, Sun et al.87

showed that feather sampling is itself a critical step since
samples taken from different parts of the penguin body con-
tained different concentrations of metals. By applying a stan-
dardized sampling protocol, they found higher As
concentrations in the feathers of the Adélie penguin (range:
from 0.62 to 2.95 mg g−1 dry wt) than in those of seabirds from
other seas (max 0.07 mg g−1 dry wt), and higher concentrations
of Cd, Cu, Hg, Ni, and Zn in samples from the Ross Sea than in
those from the Antarctic Peninsula.
Legacy and new persistent organic pollutants

The rst synthetic pesticide (dichloro-diphenyl-
thrichloroethane, DDT) was produced in the 1940s. Due to its
effectiveness in combating insect vectors of human diseases, it
was later also extensively used against species harmful to crops
and livestock production. In 1962, with the book “Silent
Spring”, Rachel Carson88warned against the biological effects of
pesticides. A few years later, Sladen et al.1 found DDT in
Antarctic penguins and seals. The discovery raised the question
of how chemicals never used in Antarctica were able to reach
Table 4 Concentrations of SPAHs (mean ± SD or range, ng g−1 dry
anthropogenic activities

Locations Matrix

McMurdo Station (outfall) Coastal sediments
Winter Quarter Bay
Cape Hermitage (control)
Turtle Rock (control)
Prydz Bay Sediments (up to >1000 m depth
Anvers Is., Palmer Station (outfall) Sediments (18–24 m depth)
Reference area
Potter Cove, Carlini Station Surface sediment (20–30 m)
South Fildes Pen. (some stations)
Reference areas
King George Island, Arctowski St. Coastal sediments
King George Island Soil
Fildes Peninsula Soil

548 | Environ. Sci.: Adv., 2024, 3, 543–560
such a remote region. As later conrmed by Wania and
Mackay,11 since the rst reports on the occurrence of pesticides
in Antarctica, it was hypothesized that semi-volatile organic
compounds could enter the atmosphere in warmer regions, and
be transported by air masses towards the poles to then
condense and settle. Shortly thereaer, other organochlorine
pesticides, polychlorinated biphenyls (PCBs), polybrominated
diphenyl ethers (PBDEs) and other POPs, mostly produced and
used in the Northern Hemisphere, were detected in the
Antarctic environment (e.g., ref. 2 and 89–94).

Historically, the most frequent causes of environmental
contamination in Antarctica have been oil spills during vehicle/
aircra refueling and spills caused by shipwrecks, collisions or
accidents when transporting bunker fuel. Indeed, high
concentrations of polycyclic aromatic hydrocarbons (PAHs)
have been detected near some scientic stations.95–97 At Arthur
Harbor, the sinking of the Argentine supply ship Bahia Paraiso
on 28 January 1989 released approximately 600m3 of diesel fuel.
Because it was the middle to end of the seabird breeding
season, thousands of seabirds were affected and some
hundreds died.98 Small amounts of oil on penguin plumage can
cause waterlogging, reduced buoyancy and reduced thermal
insulation. Furthermore, PAHs ingestion can cause histopath-
ological changes in the liver, kidney and intestine, impaired
osmoregulation and reduced fertility.28,99,100

In Antarctic terrestrial ecosystems, contamination by
aliphatic and aromatic compounds reduces soil microbial
diversity and promotes the development of hydrocarbon-
degrading bacteria.101 However, due to the extreme climatic
and environmental conditions, the biodegradation of hydro-
carbons proceeds very slowly. In marine sediments, a eld
experiment was performed that aimed at investigating the bio-
logical effects of various hydrocarbon products on the benthic
macrofauna. The study showed that diesel fuel had the greatest
initial impact, especially on annelids. However, aer 5 years, the
communities treated with diesel fuel seemed to recover faster
than those treated with lubricating oils.29

Being largely due to local anthropogenic activities, rather
than long-range atmospheric transport or local natural sources,
wt) in Antarctic marine sediments and soils differently affected by

n of PAH species SPAHs References

16 779 � 590 102
1095 � 1082
36 � 37
5.7 � 3.6

s) 15 18 � 6 (13–31) 103
16 32–302 104

6–30
21 18–146 105

19–143
4.6–16.6

16 56–445 106
15 1.8–32.9 107
15 61 (mean 2013–2019) 108

© 2024 The Author(s). Published by the Royal Society of Chemistry
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contamination by PAHs in Antarctic marine sediments and soils
is signicantly higher near scientic stations than in reference
areas (Table 4).

Bioaccumulation of PAHs has been reported in many species
of marine organisms from contaminated coastal sites, but
concentrations do not appear to increase along food webs.109

Palmer et al.,102,104 for example, measured higher levels in
benthic invertebrate species, such as the so coral Alcyonium
antarcticum or the limpet Nacella concinna, than in their
predators.

Other POPs listed under the Stockholm Convention, such as
organochlorine pesticides, PCBs and PBDEs, have been re-
ported in the Antarctic environment. Analyzing air and snow
samples from the western Antarctic Peninsula, Khairy et al.110

found the highest concentrations of these compounds in snow
(suggesting the melting of ice and snow as a possible secondary
source), while the vapor phases of hexachlorobenzene (HCB),
PCBs, heptachlor and PBDEs prevailed in air. It is also probable
that these latter compounds had originated from local sources.
Although ATPEP bans the import and release of POPs in Ant-
arctica, organohalogen compounds have been used as ame
retardants in a range of household items, plastics, electronics,
and materials used in the construction and/or renovation of
scientic stations. Bengtson Nash et al.111 found atmospheric
PBDEs contamination around two stations. During the building
of the Troll Station, they showed a marked increase in the
concentrations of their penta-formulation congeners. As early
as 2008, Hale et al.112 had detected PBDEs in the indoor dust and
sewage sludge of McMurdo Station and Scott Base. Their
concentrations in sediments, sh and invertebrates from
McMurdo Sound were in the same range as those measured in
samples from urbanized North American areas. By analyzing
legacy POPs in key species of the Ross Sea food web, such as
Euphausia superba and Pleuragramma antarctica and their
predators, Corsolini et al.113 found the highest concentrations of
PBDEs in Adélie penguins and skuas nesting near a long-term
eld camp. Markham et al.114 detected PBDEs in all samples
of phytoplankton, krill, sh and fur seal milk collected over a 14
year period. Moreover, between 2000 and 2014, the values
increased in samples of fur seal milk, phytoplankton and
zooplankton.

Most POPs reach Antarctica and the Southern Ocean through
long-range transport processes, and Antarctic organisms are
deemed to be reliable biomonitors of global POP emissions. As
a rule, the concentrations of these contaminants in their tissues
are lower than in related species from lower latitudes, and are
usually much lower than those that would cause adverse health
effects.115 However, upon returning to Antarctica, opportunistic
predators/scavengers (such as the south polar skua that migrate
to the more polluted Northern Hemisphere during the austral
winter) contribute to the contamination of terrestrial environ-
ments through their guano, abandoned eggs, and dead
individuals.116

Following the entry into force of global conventions such as
the Long-range Transboundary Air Pollution117 and the Stock-
holm Convention,118 legacy POPs have gradually been banned
worldwide. However, there are few long-term surveys on POPs
© 2024 The Author(s). Published by the Royal Society of Chemistry
concentrations in the Antarctic environment. Furthermore, the
assessment of bioaccumulation temporal trends in the different
study areas is made difficult by latitudinal variations in climatic
and environmental conditions, and by differences in feeding
and migratory behavior of organisms. Corsolini,119 for example,
highlighted the different temporal trends in PCB accumulation
in a variety of marine species from West and East Antarctica.
van den Brink et al.120 found decreasing trends in PCBs, HCB
and dieldrin levels in Adélie penguins, southern fulmars and
pelagic sh from 1993–1994 to 2003–2004, even though their
concentrations were steady or increasing in benthic organisms;
thus, they questioned whether the POPs contamination in
Antarctica is actually declining. Isla et al.121 detected cytotoxic
activity in extracts of marine sediments collected along thou-
sands of kilometers of the Antarctic continental shelf and up to
1200m depth. However, somemore recent works would seem to
indicate a decreasing trend of long-range transport and
bioavailability of POPs in the Antarctic environment. Hao
et al.122 monitored the atmospheric concentrations of POPs in
the Fildes Peninsula (King George Island) from 2010 to 2018.
With the exception of HCB, they found low and declining levels
of PCBs, HCHs, DDTs, and endosulfans. Summarizing the
literature data on POP concentrations in penguin fat and eggs
from 1964 to 2011, Ellis et al.123 showed a decrease in the
concentrations of DDTs, HCB and HCHs (hexa-
chlorocyclohexane). In embryos from failed eggs of Wilson's
storm-petrel collected on King George Island from 1998 to 2003
and 2014 to 2016, Kuepper et al.124 found that concentrations of
legacy pollutants were higher in 1998, 2001 and 2003, than in
2014–2016. A decrease in the bioaccumulation of HCB, HCHs,
PCDDs (polychlorinated dibenzodioxins) and PCDF (poly-
chlorinated dibenzofurans) was also reported by Cincinelli
et al.31 in the Antarctic sh Trematomus bernacchii over a 30 year
period (early 1980s to 2010).

Among the new POPs listed in the Stockholm Convention are
a few poly- and peruoroalkyl substances (PFAS): per-
uorooctane sulfonate (PFOS), peruorooctanoic acid (PFOA),
peruorohexane sulfonate (PFHxS) and related compounds.
Some of these proteinophilic compounds have been detected in
Antarctic snow and waters,125,126 seabirds and marine
mammals.127,128 In general, PFAS concentrations in Antarctica are
lower than those reported for the Arctic or other remote regions.
To assess possible trophic transfer along food webs, Gao et al.129

analyzed sediments, algae, molluscs, sh, petrel and penguin
feathers from King George and Ardley Islands. They found
a unique PFAS prole that suggests long-range transport as the
prevailing source. Furthermore, peruorobutyric acid (PFBA) was
predominant in all Antarctic organisms. No biomagnication
was detected for the short-chain PFAS, such as C4–C7 per-
uorocarboxylic (PFCA) and peruorobutanesulfonic acids
(PFBS), but trophic magnication factors of 2.09 and 2.92 were
calculated for C-8 PFHxS and PFOS, respectively.
Pharmaceuticals and personal care products

In Antarctica, there are more than 80 summer and year-round
research stations, most of which are located in ice-free coastal
Environ. Sci.: Adv., 2024, 3, 543–560 | 549
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areas and discharge wastewater into the marine environment.
Several stations do not have wastewater treatment plants, and
where they are installed, the wastewater treatment plants oen
experience operational problems mainly due to the extreme
climatic and environmental conditions and the great variability
in station attendance.23 Therefore, scientic and logistics
personnel together with tourists are sources of alien microor-
ganisms and many synthetic chemicals: pharmaceuticals and
personal care products (PPCPs), micro- and nanoplastics. Also,
due to the dry atmosphere and high levels of UV-B radiation,
people operating in Antarctica make heavy use of sunscreens
and moisturizers, and there is widespread consumption of
personal hygiene products in order to prevent the spread of
diseases. While many of these chemicals are not yet subject to
regulatory criteria, they are increasingly being recognized as
ubiquitous contaminants. Many PPCPs released into the envi-
ronment usually undergo photochemical and biological degra-
dation.130 However, in Antarctic coastal ecosystems, their
persistence is increased by seasonal formation of sea-ice, polar
night and reducedmetabolic rate of microorganisms in the cold
waters of the Southern Ocean.

In the blubber of Antarctic fur seals collected in January–
February 2004 on Livingston Island (Antarctic Peninsula),
Schiavone et al.131 found polycyclic musks in addition to pesti-
cides, PCBs, PBDEs and polychlorinated naphthalenes (PCNs).
These synthetic fragrances are used extensively in skin cream,
soaps, detergents and deodorants, and can have anti-estrogenic
effects. A few years ago, these compounds were also detected in
East Antarctica in coastal waters collected near the Italian
Station “Mario Zucchelli”.132 In the same region, near McMurdo
and Scott Base stations, Emnet et al.133 found several personal
care products and steroid hormones in samples of seawater,
sea-ice andmarine organisms. PPCP concentrations in seawater
and sea-ice were in similar ranges, and many compounds were
detected up to 25 km away from wastewater discharges.

The north of the Antarctic Peninsula is the Antarctic region
most affected by research, tourism and shing activities, and
the human inuence is also emphasized by the presence of
a number of PPCPs. Gonzáles-Alonso et al.134 analyzed 25
selected pharmaceuticals and 21 recreational (licit or illicit)
drugs in water samples from streams, ponds, glacier drains, and
a wastewater discharge near Marambio Station. The highest
concentrations were found in wastewaters, and analgesic and
anti-inammatory residues (acetaminophen, diclofenac and
ibuprofen) were the most abundant pharmaceuticals, while
caffeine and ephedrine were the most widespread recreational
drugs. In water samples from Seymour/Marambio Island, King
George Island and Deception Island, Olalla et al.15 analyzed 54
substances belonging to drugs/medicines of abuse, endocrine
disruptors, pyrethroids, peruorinated compounds and
sunscreens. By calculating the ratio of measured environmental
concentrations of PPCPs to their predicted no-effect concen-
tration, they found higher environmental risks for residues of
acetaminophen, diclofenac, ibuprofen, the antibiotic clari-
thromycin, nonylphenol diethoxylate and long-chain PFASs. In
untreated wastewater from Arctowski Station (Admiralty Bay,
King George Island), among more than 170 substances
550 | Environ. Sci.: Adv., 2024, 3, 543–560
analyzed, Szopińska et al.18 identied 34 PPCPs and other
emerging contaminants. The highest environmental risk was
calculated for residues of ketoconazole (azole antifungal),
diclofenac, ibuprofen and caffeine. In wastewater and sea water,
they also detected antibiotic and sulphonamide resistance
genes. By analyzing a sample of phytoplankton from Port Foster
Bay (Deception Island) by high-resolution Fourier-transform ion
cyclotron-resonance mass spectrometry (FT-ICR-MS), Duarte
et al.24 found residues of 5 personal care products and 40
pharmaceuticals, including anticonvulsants, antihypertensives
and beta-blockers, antibiotics, analgesics and anti-
inammatories.

Numerous multi-antibiotic resistant bacterial strains have
been found in Antarctic ecosystems (e.g., ref. 135). Antibiotic
resistance genes can emerge naturally in microorganisms,
especially in the extreme conditions of the Antarctic environ-
ment where bacteria can compete for nutrients.136 However, Jara
et al.137 analyzed the antibiotic-resistance patterns and
antibiotic-resistance genes in strains of bacteria from fresh-
water samples collected in human-affected and control areas in
the Fildes Peninsula. They found that isolates from the
impacted sites had a greater richness and diversity of antibiotic-
resistance genes, and were resistant to synthetic and semi-
synthetic drugs, while those from relatively undisturbed sites
were highly susceptible to antibiotics. Therefore, there is
growing concern about the impact of wastewater from scientic
stations, which can modify the native resistome of microbial
communities, and can also introduce antibiotic resistance gene
carriers such as transposons, integrons and conjugative plas-
mids into the environment.18
Microplastics

Plastic debris has become one the most common and persistent
synthetic wastes in the global environment. Microplastics (MPs,
size 1–5000 mm), produced deliberately or by the fragmentation
of larger debris, are among the most enduring evidence of past
and recent human activities even in Antarctica.17 In regions with
the strongest human footprint, such as the Northern Antarctic
Peninsula and the Scotia Arc, entanglement of seals in plastic
waste or plastic ingestion by seabirds have been reported for
forty years.138,139 However, only in recent years, aer the envi-
ronmental impact of MPs had assumed global signicance,
have numerous investigations been conducted on the presence
of MPs in the Antarctic environment. Most of the studies
focused on coastal marine ecosystems with higher human
pressure, and only plastic fragments >300 mm were oen
considered. Thus, the distribution pattern of MPs in the
Southern Ocean, their background concentrations and poten-
tial impact on pelagic communities are currently unknown.
Furthermore, it is very difficult to compare the available data
and evaluate their reliability because of the differences in
sampling and analytical methods among the different studies,
and the lack of standardized protocols for assessing the
contamination of samples in the eld and in the laboratory.
Further difficulties in assessing the potential impact of MPs
arise from the spatio-temporal variations of the Southern Ocean
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3va00113j


Critical Review Environmental Science: Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Fe

br
ua

ry
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

/2
0/

20
26

 1
2:

47
:3

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
environmental characteristics, such as seasonal changes in sea-
ice cover and exposure to UV-radiation. Depending on the
polymer composition, these factors can contribute to the frag-
mentation and degradation of plastic wastes and inuence their
environmental fate.

Antarctic marine organisms include many endemic species
with unique ecophysiological adaptations to the Southern
Ocean. Without better knowledge of the spread of the tiniest
plastic particles (nanoplastics, size < 1 mm) that are potentially
more dangerous, it seems impossible to tell what impact these
organisms will suffer. Although the Southern Ocean also prob-
ably receives plastic particles from lower latitudes through long-
range marine and atmospheric transport,140 their concentra-
tions in open ocean waters appear to be very low. By sampling
oating MPs (>100 mm) in subsurface waters from the Arctic to
the Scotia Sea, Pakhomova et al.141 found signicantly lower
concentrations in the Southern Hemisphere than in the
Northern. In surface and subsurface waters of the Weddell Sea
gyre, Leistenschneider et al.142 measured MP concentrations of
0.01 ± 0.01 m−3 and 0.04 ± 0.1 m−3, respectively. In addition,
they found that about half of the particles sampled (>300 mm)
originated from paints of the research vessel. In a circum-
Antarctic survey, Kuklinski et al.143 collected bers that
appeared to be plastic, but analysis via Fourier-transform
infrared (FT-IR) spectroscopy showed that they were
composed of silica (i.e., likely of biogenic origin). By contrast,
several surveys have reported relatively high concentrations of
Fig. 2 Simultaneous and cumulative impacts of climate changes and hu

© 2024 The Author(s). Published by the Royal Society of Chemistry
MPs in seawaters, sediments and organisms in coastal ecosys-
tems of the northern Antarctic Peninsula, South Georgia Island,
and the Ross Sea, especially those directly affected by waste-
water from scientic stations and/or rather intensive tourism
and shing activities (e.g., ref. 16, 144 and 145). In general,
bers from washing clothes are among the most common MPs.
In some coastal waters and sediments, their concentrations are
in the same range as those reported in coastal environments
outside Antarctica.

The Ross Sea is one of the largest marine protected areas in
the world. Near the Italian scientic station “Mario Zucchelli”,
synthetic bers have been found in zoobenthic species146 and in
the sh Trematomus bernacchii.147 Other scientic stations along
the Ross Sea coasts such as McMurdo and Scott Base have been
in operation for several decades. Zhang et al.148 foundmore MPs
in sh from the Ross Sea than in those from the nearby
Amundsen Sea, where there are no scientic stations. The
presence of MPs has also been reported in penguin scats,
particularly in samples collected in the Antarctic Peninsula and
the Scotia Sea.149–151 Although these studies seem to suggest
trophic transfer and possible biomagnication of MPs along
food webs, Sfriso et al.146 found 3–5 times higher concentrations
in lter-feeder bivalves and benthic grazers than in omnivorous
or predatory species of Antarctic invertebrates. Furthermore,
Leistenschneider et al.152 found that none of the 85 particles
ingested by chicks of the emperor penguin (Aptenodytes forsteri,
the only penguin species breeding around Antarctica during the
man activities on Antarctic organisms and ecosystems.

Environ. Sci.: Adv., 2024, 3, 543–560 | 551
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austral winter) collected in Queen Maud Land were MPs, and
the synthetic bers found were due to contamination during the
analysis and processing of the samples. Also, Garcia-Garin
et al.153 found that the bers and fragments found in scats of
male Antarctic fur seals (Arctocephalus gazella) collected at
Deception Island (a hotspot of tourism and scientic activities
in Antarctica) were silicate minerals and chitin bers, and not
MPs. Recently, the absence of MP particles (>80 mm) has also
been reported in the stomachs of 10 ringed seals from the
western Canadian Arctic.154
Possible cumulative impacts of climate changes and
environmental contaminants

With the exception of some local impacts in the vicinity of the
scientic stations, marine and terrestrial ecosystems in conti-
nental Antarctica are scarcely affected by anthropogenic
contaminants or by macroscopic climatic and environmental
changes so far. By contrast, in the Antarctic Peninsula and the
islands of the Scotia Arc, the larger and growing scientic,
tourist and shing activities constitute important local sources
of metals, PAHs, PBDE, PCBs and PCPPs.155 Rapid warming has
led to the thinning and disintegration of ice shelves, the retreat
and melting of ice sheets and the thawing of permafrost soils.
The expansion of ice-free areas, together with the increase in
liquid water availability, has promoted soil-formation processes
and changes in terrestrial biotic communities.156 Marine
ecosystems harbour many endemic species, which through long
evolutionary processes in isolation, have adapted to the cold
waters of the Southern Ocean (−1.8 °C). Compared to related
species in other seas, these organisms tolerate much smaller
temperature increases, which could impair their metabolism
and ability to detoxify and eliminate environmental
contaminants.

The role of climate change in shaping the responses of
Antarctic marine organisms to environmental pollutants has
recently been highlighted in coastal benthic communities at
McMurdo Station.94,157 Until the mid-1980s, the waste produced
at the station was disposed of in snow pits, by open incineration
or dumped directly into sea. In 1988, the US National Science
Foundation initiated a dumpsite cleanup and long-term envi-
ronmental monitoring.49 Although the concentrations of most
pollutants in sediments and marine organisms have progres-
sively decreased to values typical of nearly pristine environ-
ments, Palmer et al.102,157 found no signs of recovery in
macrobenthic communities. Moreover, they found that
temporal changes in species composition correlated with the
Interdecadal Pacic Oscillation climatic index, and were also
inuenced by the Antarctic Oscillation climatic index and
maximum sea-ice extent rather than by decreases in environ-
mental pollution.

About 15 million km2 of sea-ice grows around Antarctica
each year, and its summer melt promotes blooms of sympagic
and pelagic communities at the ice edges. Sea ice intercepts and
accumulates persistent contaminants from atmospheric depo-
sition and seawater, and likely contributes to their uptake by
sea-ice algae and other organisms in cryopelagic communities.
552 | Environ. Sci.: Adv., 2024, 3, 543–560
These communities play a crucial role in Southern Ocean
productivity, and ice-algae are critical for the wintering of
juvenile Antarctic krill (Euphausia superba, age class 0), the
keystone species of Antarctic food webs.158 However, aer a few
years of record highs, the sea-ice cover of the Southern Ocean
has begun to exhibit a rapid decline since 2016 (the most
pronounced since the beginning of 40 years of satellite obser-
vations;159). This decrease is likely due to progressive ocean
warming and southward advection of atmospheric heat that
adversely affects ocean productivity, and may also contribute to
the transport of POPs and MPs from lower latitudes to the
Antarctic environment.

Seawater acidication could be another climate-related
stressor affecting the resilience of Antarctic marine organisms
and increasing their sensitivity to anthropogenic contami-
nants.37 In seawater, aragonite saturation is essential for calci-
fying organisms. Negrete-Garćıa et al.160 estimated that the
Southern Ocean could experience aragonite undersaturation by
2050. Preliminary laboratory experiments by Ericson et al.161

indicate that adult E. superba specimens are resilient to one-year
exposure to near-future levels of ocean acidication (1000–2000
matm rCO2). However, other experiments showed inhibition of
embryonic development of this key species at simulated
concentrations of 2000 matm rCO2.162 Furthermore, Morley
et al.163 have emphasized the sensitivity of E. superba to
increasing water temperatures and sea-ice loss.

Any climatic and environmental stress can affect the bio-
logical thresholds of organisms for other stressors, such as
environmental contaminants. Although no eld data from
Antarctic coastal ecosystems exist yet, some ecotoxicological
experiments show impaired larval development or survival of
Antarctic marine species exposed to the combined effects of
water acidication and nanoplastics.164,165 Additional cumula-
tive stresses and threats to Antarctic organisms may arise from
alien species and pathogenic microorganisms accidently
introduced by the growing number of scientists and tourists.
Shimada et al.166 found strains of Legionella spp., Pseudomonas
spp., and Mycobacterium spp. in water facilities of the Syowa
station and in waters collected in the surrounding glacial lakes.
Again, climate change could play an important role in enabling
the colonization and spread of pre-adapted and invasive alien
species.

A wide range of microorganisms, microalgae and some
invertebrate species have been found on the surface of plastic
debris collected in the Antarctic Peninsula, and strains of
bacteria with multiple antibiotic resistance have been isolated
from a polystyrene fragment beached on King George Island.167

Wastewater from scientic and tourist stations and vessels are
also sources of PPCPs. Furthermore, the laundering of technical
clothing releases plastic bers, water repellents and ame-
retardant chemicals. In the marine environment, plastic
debris can adsorb and accumulate metals and hydrophobic
organic contaminants in much higher concentrations than in
the surrounding seawater.168 Lu et al.169 found that MPs affect
the bioaccumulation and chronic toxicity of Cd in zebrash.
Since Antarctic marine organisms are already exposed to
a naturally high bioaccumulation of Cd and Hg, ingestion of
© 2024 The Author(s). Published by the Royal Society of Chemistry
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MPs could contribute to their exceeding the tolerance thresh-
olds for these metals (Fig. 2).

Conclusions

Most of continental Antarctica and the Southern Ocean are
minimally affected by local human activities, and receive
persistent contaminants primarily through long-range trans-
port processes. Therefore, levels of contamination in snow,
water, soil, and sediment are among the lowest reported in the
global environment. Several species of Antarctic lichens,
mosses, seabirds and marine organisms with a circumpolar
distribution are reliable biomonitors of global emissions of
metals and POPs, and usually accumulate these contaminants
to levels below or in the same range as those measured in
related species from other remote regions. The main exception
appears to be the “natural” accumulation of Cd and Hg, which
is likely due to the unique features of the Southern Ocean
environment and its food webs. The species-specic ecophysi-
ological characteristics, migration routes and life histories of
some long-lived seabirds (such as the south polar skua) may
also contribute to signicant bioaccumulation of some organic
contaminants. However, as some recent surveys have suggested,
aer the declining Pb contamination, the POPs concentrations
in Antarctic organisms are likely to be declining with the entry
into force of global conventions banning POPs. Nonetheless,
climate change can (directly or indirectly) affect the transport,
pathways and environmental fate of persistent contaminants
released in the Southern Hemisphere, and can also remobilize
and make bioavailable those deposited in the past. Therefore,
continental-scale monitoring with standardized procedures is
needed to evaluate the long-term distribution pattern of legacy
contaminants and their possible biological effects.

ATPEP bans the import and release of POPs in Antarctica,
and provides stringent guidelines for the protection of its near-
pristine environment and its value for studying global
processes. However, the research results summarized in this
review show that the global chemical production and the
growing number of visitors and activities undertaken in certain
Antarctic regions are sources of numerous (and quite over-
looked) persistent contaminants. Several scientic and tourism
stations and vessels lack wastewater treatment facilities,
resulting in the release of metals, hydrocarbons, detergents,
ame retardants, personal care products, pharmaceuticals, MPs
and pathogenic microorganisms into marine ecosystems. Many
of the chemicals are not yet subject to regulatory criteria. For
some of them, there is also a lack of standardized methodolo-
gies for sampling and analytical determinations. Efforts
directed at a reliable assessment of their occurrence and
distribution appear to be particularly urgent in the marine
ecosystems of the Antarctic Peninsula and the islands of Scotia
Arc, where most human activities are concentrated. Moreover,
these regions are more exposed to the transport of contami-
nants from South America, and have experienced conspicuous
temperature increases in the recent past. In coastal marine
ecosystems near scientic stations, chronic co-exposure to
some contaminants of emerging interest and to pathogenic
© 2024 The Author(s). Published by the Royal Society of Chemistry
microorganisms can give rise to synergistic or additive biolog-
ical effects. Most Antarctic marine organisms are endemic
species with unique ecophysiological adaptations to living in
seawater with near freezing temperatures and tolerate only
minimal variations. Small increases in water temperature can
affect the properties of cell membranes and the metabolic
processes involved in the absorption and detoxication of
environmental contaminants. Thus, when evaluating biological
responses to simultaneous exposure to metals, POPs, PCPPs,
MPs, and pathogenic organisms, it is necessary to consider
possible exacerbations due the concomitant impact of climate-
related stressors and other anthropogenic disturbances.

The Southern Ocean is very sensitive to water acidication,
and has shown amarked decrease in sea-ice formation in recent
years. These processes can modify the biogeochemical cycling
of nutrients, the productivity of marine ecosystems, and the
composition of biotic communities. Warming and changes in
sea-ice cover, along with rising Hg emissions in the Southern
Hemisphere, could also enhance Antarctica's role as a metal
“cold trap” through increased inputs of reactive halogens into
the continental atmosphere and increased Hg depletion events.
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J. R. D. Guimarães, C. Labuschagne, et al., A synthesis of
mercury research in the Southern Hemisphere, part 2:
anthropogenic perturbations, Ambio, 2023, 52, 918–937,
DOI: 10.1007/s13280-023-01840-5.

77 H. Angot, O. Magand, D. Helmig, P. Ricaud, B. Quennehen,
H. Gallée, et al., New insights into the atmospheric mercury
cycling in central Antarctica and implications on
a continental scale, Atmos. Chem. Phys., 2016, 16, 8249–
8264, DOI: 10.5194/acp-16-8249-2016.

78 C. Li, J. Chen, H. Angot, W. Zheng, G. Shi, M. Ding, et al.,
Seasonal variation of mercury and its isotopes in
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.1007/s10661-011-2476-x
https://doi.org/10.1007/s11270-014-2266-5
https://doi.org/10.1007/s11270-014-2266-5
https://doi.org/10.1017/S0954102093000021
https://doi.org/10.1016/S0048-9697(97)00265-9
https://doi.org/10.1021/es203425b
https://doi.org/10.1017/S0954102021000419
https://doi.org/10.1039/C2EM30246B
https://doi.org/10.1016/j.scitotenv.2017.11.276
https://doi.org/10.1016/j.scitotenv.2017.11.276
https://doi.org/10.1016/j.envpol.2007.06.008
https://doi.org/10.1016/j.envpol.2007.06.008
https://doi.org/10.1016/s0269-7491(01)00125-7
https://doi.org/10.1016/s0269-7491(01)00125-7
https://doi.org/10.5194/acp-11-4779-2011
https://doi.org/10.5194/acp-11-4779-2011
https://doi.org/10.1007/s003000050396
https://doi.org/10.1016/j.envpol.2013.06.032
https://doi.org/10.1007/BF00238759
https://doi.org/10.1073/pnas.1013865108
https://doi.org/10.1007/978-3-319-41283-2_34
https://doi.org/10.1016/j.envres.2015.10.024
https://doi.org/10.1038/28530
https://doi.org/10.1038/28530
https://doi.org/10.1021/es0507315
https://doi.org/10.1021/es0507315
https://doi.org/10.1016/j.catena.2022.106718
https://doi.org/10.1016/j.catena.2022.106718
https://doi.org/10.1007/s13280-023-01840-5
https://doi.org/10.5194/acp-16-8249-2016
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3va00113j


Critical Review Environmental Science: Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Fe

br
ua

ry
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

/2
0/

20
26

 1
2:

47
:3

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
atmospheric particles at the coastal Zhongshan Station,
eastern Antarctica, Environ. Sci. Technol., 2020, 54, 11344–
11355, DOI: 10.1021/acs.est.0c04462.

79 R. Bargagli, Atmospheric chemistry of mercury in
Antarctica and the role of cryptogams to assess deposition
patterns in coastal ice-free areas, Chemosphere, 2016, 163,
202–208, DOI: 10.1016/j.chemosphere.2016.08.007.

80 J. W. Lock, D. R. Thompson, R. W. Furness and J. A. Bartle,
Metal concentrations in seabirds of the New Zealand
region, Environ. Pollut., 1992, 75, 289–300, DOI: 10.1016/
0269-7491(92)90129-x.

81 P. Szefer, J. Pempkowiak, B. Skwarzec, R. Bojanowski and
E. Holm, Concentration of selected metals in penguins
and other representative fauna of the Antarctica, Sci. Total
Environ., 1993, 138, 281–288, DOI: 10.1016/0048-9697(93)
90421-2.

82 F. M. M. Morel and N. M. Price, The biogeochemical cycle of
tracemetals in the oceans, Science, 2003, 300, 944–947, DOI:
10.1126/science.1083545.

83 S. Jerez, M. Motas, J. Benzal, J. Diaz and A. Barbosa,
Monitoring trace elements in Antarctic penguin chicks
from South Shetland Islands, Antarctica, Mar. Pollut. Bull.,
2013, 69, 67–75, DOI: 10.1016/j.marpolbul.2013.01.004.

84 R. L. Brasso, A. Chiaradia, M. J. Polito, A. Raya Rey and
S. D. Emslie, A comprehensive assessment of mercury
exposure in penguin populations throughout the
Southern Hemisphere: Using trophic calculations to
identify sources of population-level variation, Mar. Pollut.
Bull., 2015, 97, 408–418, DOI: 10.1016/
j.marpolbul.2015.05.059.

85 N. Pilcher, S. Gaw, R. Eisert, T. W. Horton, A. M. Gormely,
T. L. Cole and P. O. ’B. Lyver, Latitudinal, sex and inter-
specic differences in mercury and other trace metal
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Martin, Degradation kinetics of pharmaceuticals and
personal care products in surface waters: photolysis vs
biodegradation, Sci. Total Environ., 2017, 590–591, 643–
654, DOI: 10.1016/j.scitotenv.2017.03.015.

131 A. Schiavone, K. Kannan, Y. Horii, S. Focardi and
S. Corsolini, Occurrence of brominated ame retardant,
polycyclic musks, and chlorinated naphthalenes in seal
bubbler from Antarctica: comparisons to organochlorines,
Mar. Pollut. Bull., 2009, 58, 1415–1419, DOI: 10.1016/
j.marpolbul.2009.05.019.

132 M. Vecchiato, E. Gregoris, E. Barbaro, C. Barbante,
R. Piazza and A. Gambaro, Fragrances in the seawater of
Terra Nova Bay, Antarctica, Sci. Total Environ., 2017, 593–
594, 375–379, DOI: 10.1016/j.scitotenv.2017.03.197.

133 P. Emnet, S. Gaw, G. Nothcott, B. Storey and L. Graham,
Personal care products and steroid hormones in the
Antarctic coastal environment associated with two
Antarctic research stations, McMurdo Station and Scott
Base, Environ. Res., 2015, 136, 331–342, DOI: 10.1016/
j.envres.2014.10.019.
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